
Towards Dynamic Monocular Visual
Odometry Based on an Event Camera

and IMU Sensor

Sherif A.S. Mohamed1(B), Mohammad-Hashem Haghbayan1,
Mohammed Rabah3, Jukka Heikkonen1, Hannu Tenhunen1,2, and Juha Plosila1

1 University of Turku (UTU), 20500 Turku, Finland
samoha@utu.fi

2 Royal Institute of Technology (KTH), 11419 Stockholm, Sweden
3 Kunsan National University (KNU), Gunsan 54150, South Korea

Abstract. Visual odometry (VO) and visual simultaneous localization
and mapping (V-SLAM) have gained a lot of attention in the field of
autonomous robots due to the high amount of information per unit cost
vision sensors can provide. One main problem in VO techniques is the
high amount of data that a pixelated image has, affecting negatively the
overall performance of such techniques. An event-based camera, as an
alternative to a normal frame-based camera, is a prominent candidate to
solve this problem by considering only pixel changes in consecutive events
that can be observed with high time resolution. However, processing
the event data that is captured by event-based cameras requires specific
algorithms to extract and track features applicable for odometry. We
propose a novel approach to process the data of an event-based camera
and use it for odometry. It is a hybrid method that combines the abilities
of event-based and frame-based cameras to reach a near-optimal solution
for VO. Our approach can be split into two main contributions that are
(1) using information theory and non-euclidean geometry to estimate the
number of events that should be processed for efficient odometry and (2)
using a normal pixelated frame to determine the location of features in
an event-based camera. The obtained experimental results show that our
proposed technique can significantly increase performance while keeping
the accuracy of pose estimation in an acceptable range.

Keywords: Event-based camera · Monocular · Visual-odometry · IMU

1 Introduction

Visual odometry (VO) is one of the most popular topics in machine vision (MV)
that is used in broad types of applications, such as autonomous navigation,
object avoidance, and 3D scene reconstruction. VO estimates the position and
orientation of a moving platform by analyzing the variations induced by the
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motion of the camera on a sequence of consecutive images, i.e., ego-motion esti-
mation. Frame-based cameras are widely used in conventional VO approaches,
because they can provide high-resolution images with low cost and have a sim-
ilar output to human vision. In VO techniques based on frame-based camera,
the location of the camera is reconstructed by computing the optical flow (OF)
from key information extracted from two consecutive frames. The key informa-
tion in a frame, e.g., corners, is extracted using a frame feature detector, such as
Moravec [1] or Harris [2], and the reconstructed scene can be refined using bun-
dle adjustment [3] or another offline optimization method. Even though there
has been significant advancement in the field of odomery based on frame-based
cameras, there still exist practical problems in using such cameras in odometry,
for example high latency of image delivery, motion blur phenomenon, and low
dynamic range, which negatively affect the efficiency of the odometry algorithm
w.r.t. the accuracy of the result and performance.

Another type of camera that can be used for odometry is the event-based cam-
era [4]. Opposite to frame-based cameras that acquire the intensity of all pixels
simultaneously and generate frames at fixed rates, event-based cameras use bio-
logically inspired vision sensors to output pixel-level temporal intensity changes,
i.e., events. This feature of event-based cameras makes them very appealing and
efficient for odometry. An event is triggered whenever the brightness of a pixel
changes. In such a case, the location of an event in a pixelated image (u,v),
polarity of the brightness change (1 or 0), and time-stamp, are passed as a sin-
gle event to the camera output. Therefore, such cameras produce a stream of
events that has no redundant data and can thereby reduce the latency (response
time) down to 10 µs. Moreover, the power consumption of odometry can be
significantly reduced, even by the factor of 50, which is an important aspect
especially for resource limited devices.

The benefits event-based cameras provide make them attractive for odometry
in navigation and tracking on high speed agile robotic platforms that operate
under challenging lighting conditions. However, processing data of event-based
cameras for odometry is not straightforward, since the output of these cameras is
fundamentally different from that of frame-based cameras. For example, unlike
in frame-based cameras, features cannot be extracted easily in event-based cam-
eras, making odometry difficult in practice. Moreover, reconstruction of a frame
based on data captured by an event-based camera is problematic. The main
question here is that how many events should be considered together to form an
instantaneous frame? There are recent studies that aim at solving these prob-
lems by defining the new features of event-based cameras and by determining
the number of events per frame in a given time interval [5]. However, such tech-
niques are efficient only in special situations, e.g., when the number of events is
not changing for different scenes, and, therefore, they do not offer general solu-
tions. The main drawback of such techniques is that their efficiency, in terms of
performance and accuracy, is dependent on the velocity of the camera and the
number of events in a scene. In dynamic situations, where the scene and velocity
of the camera change drastically, i.e., the number of events in a frame changes
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rapidly in time, processing the events for accurate and fast (real-time) odometry
poses still a big challenge.

In this paper, we propose a hybrid technique for odometry based on data
captured by both frame-based and event-based cameras, combining the ability
of frame-based cameras to detect and track features and the low latency and high
dynamic range of event-based cameras to achieve fast and accurate odometry.
To do this, our proposed techniques can be divided into two main novel methods
that are: (1) defining dynamically the number of events for a frame to reach a
minimized amount of data processing for a scene while keeping the accuracy of
pose estimation, and (2) using a frame-based camera as a reference guide for an
event-based camera to recognize and track features in an event-based camera
output. To determine the number of events to construct a frame in run-time, we
define two factors that together affect the number of events in an instantaneous
scene: (1) entropy of the scene that is the entropy of a pixelated image [6], i.e.,
the amount of information the image can convey from an event-based camera,
and (2) velocity of the camera that determines how fast the environment changes
and is one of the main factors in ego-motion. In this definition, we assume all the
objects in a scene are stationary and only the camera is moving. To estimate the
velocity of the scene, we use IMU data that can report the acceleration of motion
in run time. To extract features from the output of an event-based camera, we
use a common method, FAST [7], to first extract features from a frame-based
image and then use this information to initiate tracking of those features in the
event-based camera output. After this, the detected features on the event-based
camera are tracked. Periodically, features from the frame-based camera are used
to correct the error of feature tracking in the event-based camera.

We organize the remaining part of this paper as follows. In Sect. 2, we demon-
strate motivation to show the existing problem in odometry based on event-based
camera and review the related work in visual odometry for both traditional and
event cameras. In Sect. 3, we illustrate the overall system workflow, which con-
sists of three steps: event frame generator, feature tracking, and visual odometry.
In Sect. 4, we present the experimental results. Finally, in Sect. 5, we draw the
conclusions.

2 Motivation and Related Work

In standard frame-based cameras, e.g., those cameras with global-shutter or
rolling-shutter sensors, images are generated at a fixed rate by obtaining the
intensity of pixels in the whole image simultaneously. To estimate the pose based
on these cameras, two main problems might occur. The first problem is the
amount of redundant repetitive data that the next frame might contain in the
case where the scene does not change much, i.e., the information in the image is
low or the movement of the camera is slow. Such amount of redundant data takes
unnecessary transfer and process cost and does not add any new information
w.r.t. the previously captured data. The second problem, from the other side, is
the amount of information that might be missed between two frames, i.e., blind
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time, when the change in the scene is too fast due to rapid movement of the
camera and high amount of information in the scene between two frames. To
solve this problem, one solution is to dynamically change the frame rate of the
camera based on the speed and entropy of the captured image1. However, this
solution does not solve the problem of redundant repetitive data between two
frames, and also there is a strict limitation to change the frame rates of those
cameras.

(a) ΔT = 1ms (b) ΔT = 40ms (c) Reference image

(d) #Events = 102 (e) #Events = 104 (f) Our approach

Fig. 1. The effect of applying different techniques to define the number of events for a
frame on the resolution of the output image while rapid movement

Event-based cameras solve this problem by transmitting a stream of asyn-
chronous events that happen in the pixels of an image. Therefore, instead of
reporting the scene at each time interval, like in the case of frame-based cam-
eras, only the events are reported, and the new scene can be updated based on
the events and the current history of the scene. If the change in the scene is
slow, then the number of generated events is small, and the information can be
processed fast. Since the accepted interval between two events is small, in the
range of microseconds, such cameras can transfer the information at a very high
resolution in the cases where the change in the scene is very fast, making this
approach well-suited for cases where fast actions are needed due rapid changes
in the scene.

As mentioned in the introduction part, even though an event-based camera
provides rich and small data that is suitable to be transferred and computed

1 This technique is widely used in cinema to show the importance or inferiority of a
scene by applying slow-motion, fast motion, and time-elapsed photography.
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(a) ΔT = 1ms (b) ΔT = 40ms (c) Reference image

(d) #Events = 102 (e) #Events = 104 (f) Our approach

Fig. 2. The effect of applying different techniques to define the number of events for a
frame on the resolution of the output image while slow movement

fast and accurately, the captured data requires specific processing to be used for
odometry. To process a scene that is constructed from event-based camera data,
a frame of such a scene should be first constructed based on the captured events.
The first issue that makes such processing challenging is the number of events
that can be considered to make a frame. Indeed, since an event-based camera only
reports a stream of events, determining the suitable amount of events to make
a frame becomes an important problem. In [8], the authors propose a fixed time
interval, i.e., ΔT , and the events accumulated during this interval are considered
a frame. In [5], the author proposes a fixed number of events, i.e., #Events, to
form a frame. Using a fixed ΔT or #Events causes a problem corresponding to a
fixed frame rate in frame-based cameras, i.e., inflexibility in dynamic situations

Fig. 3. Feature detection and matching. (a) Frame with detected corners and patches
(green boxes). (b) edge map using Canny detector. (c) accumulated events in ΔT time.
(d) (zoom for a patch) point sets used for feature matching: edges (in gray) and events
in (red and blue). (Color figure online)
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where the number of events for different frames varies significantly. Inspired by
this observation, we propose a technique to dynamically calculate the number of
events based on the velocity of the camera and entropy of the capture pixelated
image of the scene. Figures 1 and 2 show the reconstructed frames based on two
different values for ΔT and #Events and in two different situations wherein
the velocity of the camera is high (a high amount of information per unit time)
and low (a low amount of information per unit time), respectively. At the right
side of Figs. 1 and 2, the result of our proposed dynamic frame construction
technique is shown to demonstrate how dynamicity in detecting #Events can
help to reconstruct the frame in these two different environmental conditions.
As can be seen in these two figures, while using a large ΔT and #Events, the
constructed frame is blurry and non-informative when the velocity of the camera
is slow. In contrary, small ΔT and #Events result in a weakly depicted frame
for rapid motion and is not suitable for odometry.

After frame construction, the next step is to utilize the reconstructed frame
for odometry. As indicated above, the event-based approach requires a specific
technique to process the frame, differing from traditional odometry that is based
on frame-based cameras. Generally, the traditional odometry techniques can be
divided into two main strategies that are (1) feature-based, also know as indirect,
and (2) direct methods. In a feature-based method, instead of processing all the
pixels in an image, some selected interest points, i.e., features, are processed.
Feature-based techniques can be further categorized into two main branches
that are sparse and dense methods. The sparse feature-based method is the
most widely used algorithm to estimate the 6-Dof pose from a set of features
that are extracted from an image. The optimization process is performed by
minimizing the estimated geometric error without any notion of neighborhood [9,
10]. Dense approaches [11] use the geometric error estimation and geometric
prior, i.e., smoothness of the flow field, together for odometry. Direct approaches
analyze the intensity of pixels in the image to recover the pose of the camera [12–
14]. Sparse direct methods, such as SVO [15] and DSO [16], use only selected
pixels in an image, which reduces the computational cost drastically. However,
direct methods do not cope very well with large frame-to-frame motions, because
they obtain the pose by minimizing the photometric error.

Recently, odometry based on event-based cameras has been used in several
SLAM algorithms. Since an event-based camera generates asynchronous events,
obtaining the ego-motion, i.e., the 6-DoF motion, is a challenging problem.
In [17], the authors propose an algorithm to estimate the rotational ego-motion
and reconstruct intensity images based on captured events. In [18], a 2D SLAM
system is presented to estimate the planar motion based on captured events. This
is extended for 3D in [19] with the help of an extra RGB-D camera. In [20], the
authors propose an approach to estimate the 3D rotation of the camera based on
a particle filtering framework. In [21], the authors propose a VO system which
first extracts features from intensity images and then tracks those features in
events produced by an event-based camera. In [22], the authors present a system
to estimate the motion and depth of a 3D scene, by reconstructing the image
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intensity based on captured events. Most of the mentioned techniques are com-
putationally intensive due to high amount of processing needed to understand
the events and process the additional data, especially in the cases where an extra
frame-based camera is used.

3 System Architecture of the Proposed Framework

The overall system architecture of the proposed hybrid algorithm is shown in
Fig. 4. The system consists of two main novel parts as explained earlier: (1)
dynamic frame generation based on captured events and (2) feature extraction
and tracking. For the rest of the algorithm we use conventional methods of 3D
mapping component and pose optimization.

Event-based
camera

Dynamic
frame

generator

IMU
sensor

Entropy
calculation

Detect features

Matching

ICP

pose

Feature
Tracking

Visual
Odometry

event stream

velocity

Keyframes

entropy

Fig. 4. A overall system architecture of the proposed framework for visual odometry

3.1 Dynamic Event-Based Frame Generation

As mentioned in the previous sections, generating a suitable frame highly
depends on richness of information captured by a scene. To estimate this rich-
ness, we propose two metrics that are the velocity of the camera and the entropy
of the pixelated image of the scene. Entropy or average information in a pixelated
image is a common metric used in different vision applications, e.g., automatic
image focusing, and can be determined approximately from the histogram of
the image, where the histogram shows the different grayscale probabilities in the
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image. For example, in automatic image focusing, the state of a camera’s focus
can be determined by image entropy, i.e., whenever the focus state varies, so
does its entropy [23]. Even though image entropy provides richness of a scene,
in a moving object, the scene changes over time based on the velocity of the
camera in ego-motion. Therefore, velocity is needed as additional information to
model the change of entropy over time. This combination results in a suitable
metric to estimate how many events are needed to construct a frame. To prop-
erly determine such a metric, the relationship of velocity and entropy on the
number of events has to be discussed. To find such a relationship, we first show
the relationship between the camera velocity and the number of events.

Definition 1: Let V and W be two vector spaces based on the same field F .
linear map is a function f : V → W if for any two vectors u and v in V and
any scalar c ∈ F the following two conditions are always satisfied: f(u + v) =
f(u) + f(v) and f(cu) = cf(u). The former condition is called additivity and
the latter is called the operation of the scalar multiplication.

Based on this definition we can formulate the following lemma:

Lemma 1: In a pinhole camera with a projection matrix, the velocity of the 2D
pixels associated to a constant object in 3D environment is the result of linear
map of the camera velocity.

Proof: In a pin hole camera, a 3D point in the world metric coordinate system
X = [X,Y,Z, 1]T can be mapped onto a 2D point in the image pixel coordinate
system x = [u, v, 1]T by knowing the mathematical model of the camera, i.e.,
the intrinsic and extrinsic parameters of the camera2. If it is assumed that the
origin of the world coordinates and camera projection are the same, and the Z
axis of the camera, i.e., the principal axis, and the world coordinate lie on each
other, then the point x is calculated as follows:

⎡
⎣

xp

yp

1

⎤
⎦ =

1
Z

⎡
⎣

fu αu u0 0
0 fv v0 0
0 0 1 0

⎤
⎦

⎡
⎢⎢⎣

X
Y
Z
1

⎤
⎥⎥⎦ (1)

where fu and fv are the focal length in the dimension of pixels, and u0 and v0
are the principle point. The parameter α is determined when the pixels are rect-
angular and is called the skew factor [24]. According to the formula of velocity,
which is v = dx/dt, where x is the pose and t is the time, we get:

vp = d

⎡
⎣

xp

yp

1

⎤
⎦ /dt =

1
Z

⎡
⎣
fu αu u0 0
0 fv v0 0
0 0 1 0

⎤
⎦ d

⎡
⎢⎢⎣

X
Y
Z
1

⎤
⎥⎥⎦ /dt (2)

2 The points are represented by homogeneous vectors in projective geometry.
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The above equation shows that the velocity of pixels in an image is a linear
map of the velocity of the camera.

In an event-based camera, any variation in the pixels of an image causes an
event. Such variation is caused by movement of pixels. Based on this and Lemma
1, it can be concluded that the number of events in an even-based camera has
a relationship with the linear map of the velocity of the camera and can be
modeled by the transformation matrix of the camera. In other words, to use the
velocity as a parameter in the model, we need to consider the velocities of all the
linear-mapped pixels. Based on this, we propose our metric value for the velocity,
to be considered to determine the number of events in a frame, as follows:

∫∫

(xp,yp)

d

⎡
⎣

xp

yp

1

⎤
⎦ /dt dxp dyp (3)

which shows the average summation of all the velocities of the pixels in x and y
directions.

Even though the number of events generated by an event-based camera has
an relationship with the velocity of the camera, the velocity alone cannot provide
us with a good metric to estimate a suitable number of the events in a frame.
To understand this fact, let us imagine that the camera is moving very fast but
in an empty area with a totally black scene. In such a case, regardless of the
velocity of the camera, no data will be generated as an event. Based on this
simple example, it can be concluded that another factor should be included in
the estimation of the number of events in a frame. This factor highly depends
on the amount of contrast a scene provides. Such contrast is directly connected
to the amount of information a scene contains. The entropy H(x) of a pixelated
frame gives us a metric to measure the amount of information and is calculated
as follows:

H(x) = −
n∑

i=1

pi log2 pi (4)

where p denotes the occurrence probability of a given intensity and n is the
number of pixels in the image.

Figure 5 shows the linear relationship between the number of high intensity
pixels in a totally black image and entropy. As can be seen, by increasing the
amount of contrast in an image, the entropy linearly increases. Our final metric
to determine the number of events in a frame, is the product of the entropy
and the result of Eq. 3, providing us a suitable method to estimate the number
of events in a scene. It should be mentioned that usually event-based cameras
provide also the pixelated normal image that can be used to calculate the entropy.
Another important fact is that, calculating the entropy is not necessarily needed
to generate each frame, and entropy estimation can be done in a longer epoch
than frame reconstruction. As mentioned earlier, in this estimation, we assume
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Fig. 5. Relationship between entropy and pixel intensity

for simplicity that all the objects in a scene are stationary and only the camera
is moving.

In our proposed techniques in Fig. 4, we use an IMU sensor to estimate the
velocity of the camera. IMUs typically consist of an accelerometer and gyroscope
unit to obtain linear and angular acceleration at a high data rate, up to 5kHz.
Three-axis accelerometer gets merged with the three-axis gyroscope to measure
the sensor’s angular rate and linear acceleration. In order to acquire the velocity
of an object, the current orientation of the IMU is calculated by integrating
the gyroscope output. Next, the obtained orientation of the IMU is used to
construct a rotation matrix that will transform the accelerometer readings from
the IMU “body frame” of reference to the “world frame” of reference. Finally, by
integrating the transformed accelerometer output, the current speed of the IMU
in the world frame is obtained. After determining the velocity of the camera,
this velocity, accompanied by the camera parameters needed for estimating the
velocity of pixels in different parts of the image, and the estimation of the image’s
entropy, are passed to the frame generation module to create a frame based on
the estimated number of events.

3.2 Feature Extraction and Tracking

After reconstructing the frame based on the determined number of events, fea-
ture extraction and tracking for the captured events is performed. It should
be noted that most event-based cameras provide also normal frames that can
be used whenever needed. In our proposed algorithm, which is based on the
DAVIS [25] event-based camera, we use features extracted from the normal
frame-based output of the camera to initiate tracking in event-based frames.
To detect features, we use FAST [7] due to its low computational cost and high
performance as is shown in Fig. 3. We also use the Canny detector [26] to detect
edges as other key features inside patches. To reduce the computational complex-
ity of feature detection in normal frame-based images, the initialization process
is performed infrequently (with a long interval), to correct potential errors that
might happen in the feature tracking process on event-based frames.
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We use Iterative Closest Point (ICP) algorithm [27] to minimize the distance
between the edges and events as follow:

Tk,k−1 = arg min
Tk,k−1

N∑
i=1

1
2

‖eiR + t − fi‖
2

(5)

where the set of edge features and events in patches are denoted by fi and ei,
respectively. The Euclidean transformation Tk,k−1 is obtained which minimizes
the distance between the edges points and event points in each detected cor-
ner. The operation of this algorithm consists of three main stages: (1) finding
point correspondences according to the minimum Euclidean distance, (2) esti-
mating the transformation matrix, and (3) applying the same process on the
edge features. The algorithm converges when the error difference between two
consecutive iterations is below a given threshold.

Fig. 6. Comparison of error for several odometry techniques based on an event-based
camera. The instantaneous value of the number of detected events for the camera,
entropy of the pixelated image of the scene, and velocity of the camera are also shown,
used for analyzing the behavior of each technique w.r.t. the change in the environment
setup
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Fig. 7. The measured response time for different odometry techniques based on event-
driven camera

4 Experimental Results

We evaluate the proposed event-based VO by running the algorithm considering
several situations of the camera movement in normal, rapid, and slow motion. For
this, we use the Event-Camera Dataset [28] which contains IMU measurements
at 1kHz and many sequences captured with a DAVIS-240C camera. Kalman
filtering (KF) is used to merge both accelerometer and gyroscope of noisy IMU
data to obtain smooth and rather precise estimation of the acceleration. The
camera can capture events and intensity images at the resolution of 240 × 180.
In a normal motion scenario, the DAVIS camera generates up to 105 events per
second. On the other hand, in rapid camera movements, it can generate up to
1.5 million events per second. The proposed algorithm is tested on a Jetson TX2
board with a quad-core ARM Cortex-A57 CPU @ 2GHz clock frequency.

Figure 6 shows a comparison of the obtained accuracy for different odometry
techniques based on the event-based camera, including our method. The velocity
of the camera, entropy, and the number of generated events are shown as separate
synced graphs to demonstrate how the behavior of the camera and environment
can affect the number of generated events and accuracy. In Fig. 7, the response
times of the considered event-based VO techniques are depicted.

As can be seen, our proposed method outperforms the other techniques by
obtaining the best accuracy, i.e., the smallest error, and the shortest response
time. The technique with a large ΔT time to accumulate the events to be pro-
cessed in a frame loses accuracy whenever the speed of the camera increases. On
the other hand, the technique with a small ΔT provides better results when the
speed of the camera is high, but for the low camera speeds the error is quite
high. A similar analysis can be applied to the techniques that are based on the
number of events. In these cases, since the number of events is strongly affected
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by the amount of information coming from the environment, together with the
velocity of the camera, the effect of entropy can be clearly seen in the accuracy of
the algorithms. The accuracy of the method with the fixed number of 10k events
is not good, while for the technique with 100 events the accuracy is acceptable
most of the time, decreasing only when entropy increases. Our proposed algo-
rithm keeps the accuracy constantly high, because it is aware of the velocity of
the camera and entropy of the environment simultaneously.

The other aspect to be discussed is the response time of the algorithm. As
can be observed, the response times are quite high for the techniques with a
small ΔT or #Events. On the other hand, the techniques with a large ΔT or
#Events can provide small response times, because their iterative processes take
place in longer intervals, sacrificing the accuracy of the methods. The proposed
technique, in turn, can keep the execution time at a reasonable level, making it
suitable for different applications in which odometry is needed to be performed
in real time.

5 Conclusion

In this paper, a hybrid technique was proposed to enable efficient odometry
based on data captured by event-based cameras. The main contribution of the
approach is its ability to flexibly change the number of events that are processed
as a frame. To do this, we employed concepts of 3D projection and information
theory to define a metric to dynamically determine the number of events that are
considered for each frame. We used normal pixelated image data to extract the
features in events and track those features in event-based frames. Experimen-
tal results show that the proposed hybrid method outperforms the traditional
approaches that are based on considering either a fixed number of events per
frame or a fixed time interval to accumulate the events. Our algorithm can oper-
ate efficiently and accurately in different environmental conditions and camera
velocities.
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