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Abstract. Computer vision and deep learning have been widely pop-
ularised on the turn of the 21st century. On the centre of its appli-
cations we find autonomous driving. As this challenge becomes a rac-
ing platform for all companies, both directly and indirectly involved
with transportation systems, it is only pertinent to evaluate exactly how
some generic, state-of-the-art models can perform on datasets specifically
built for autonomous driving research. With this purpose, this article
aims at directly studying the evolution of the YOLO (You Only Look
Once) model since its first implementation until the most recent ver-
sion 3. Experiences carried out on the respected and acknowledged driv-
ing dataset and benchmark known as KITTI Vision Benchmark enable
direct comparison between the newest updated version and its predeces-
sor. Results show how the two versions of the model have a performance
gap whilst being tested on the same dataset and using a similar con-
figuration setup. YOLO version 3 shows its renewed boost in accuracy
whilst dropping minimally on detection speed. Some conclusions on the
applicability of models such as this to a real-world scenario are drawn so
as to predict the direction of research in the area of autonomous driving.

Keywords: YOLO · Deep learning · Autonomous driving · KITTI
Vision Benchmark

1 Introduction

Autonomous driving has established itself as the topic of the future. Most inter-
national news outlets are filled with information on research and tests being car-
ried out on such vehicles operating in innumerable urban environments. These
scenarios have already stirred much confusion and created barriers for further
research. Indeed, failures of such systems are identified in tragic ways that are

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2020

Published by Springer Nature Switzerland AG 2020. All Rights Reserved

A. L. Martins et al. (Eds.): INTSYS 2019, LNICST 310, pp. 203–218, 2020.

https://doi.org/10.1007/978-3-030-38822-5_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38822-5_14&domain=pdf
http://orcid.org/0000-0003-4873-8488
http://orcid.org/0000-0003-2846-9014
http://orcid.org/0000-0002-1566-7006
https://doi.org/10.1007/978-3-030-38822-5_14


204 F. Ramos et al.

counterproductive towards the full implementation of autonomous vehicles on
real-life roads, while ensuring safety and public acceptance.

The idea of autonomous vehicles entails many complex requirements that
need to be fulfilled. It certainly starts with the vehicle’s perception of the sur-
rounding environment. If the transportation system does not have a good grasp
of its outside system, there is no possibility of ensuring safety. On this topic,
many non-trivial tasks unfold such as object detection and tracking, traffic signs
interpretation, lane detection and many more. All of these are tasks that are not
fully computationally solved as of today. As such, autonomous driving imposes
invaluable research opportunities and challenges for the technological world.

Specifically on RGB camera detection, there is also the impingement of hard-
ware limitations. As a camera captures almost the same information a human eye
would, it also suffers in worse scenarios such as darkness, storms, rain showers
and many others in which even the human eye has difficulties detecting objects.
These are frontiers hard to overcome and with still much exploration to be made
as reporeted in previous studies [14,15].

Furthermore, if computational models are to be applied to these vehicles
in real time, real-world ensembles, the speed of inference and reaction of the
independent intelligence centre of the system is paramount. Accidents on the
roads happen in a fraction of second and are many times triggered by the delay
between the tasks of object detection and classification, risk assessment and cor-
responding body movement performed by humans when they drive any vehicle.

Broadly on the topic of computer vision and two dimensional object detec-
tion, one model that has been keeping up with the state of the art over its
improvements and evolution is the YOLO model. Standing for You Only Look
Once, this neural network is able to detect and classify objects on camera images.
When it launched, the model devised by Redmon et al. [17] showed that real-
time, unified object detection and classification was possible. YOLO was one of
the first detectors that only ran through the image once, detecting and classi-
fying all objects within this single step. This enabled the model to outperform
every other alternatives in the indispensable metric of detection speed. Support-
ing this, its accuracy was approximately parallel to that of much slower running
models.

The research for object detection has gone through an exponential growth in
which many models surfaced namely the Faster R-CNN [21] and others in the
search for a valid solution. In order to keep up with the evolution in the field, the
YOLO version 2 [18] was born, presenting many elements of significant improve-
ment. With these upgrades, YOLO once more proved to be an already mature,
strong detector and classifier even if it still had more room for improvement.
However, as it becomes more and more of a huge public topic of research, new
models keep rising almost every day and most recently, Facebook AI Research
(FAIR) launched its Retinanet [11], based on the use of focal loss in order to
diminish more effectively the effects of class imbalance. In the current research
scenario, this model is considered one of the leading references in both accuracy
and speed. Even more fresh, the newest update for YOLO has launched, namely
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version 3 [20]. The paper describing YOLO version 3 reports an accuracy par-
allel to that of the commonly found best detectors on the .50 IoU mAP metric
(even Retinanet). Unfortunately and opposed to this improvement, the model
has become more heavy and slower at performing detection.

On an ensemble system that draws information over a panoply of sensors,
this model can certainly be a good candidate for real-world autonomous driving
applications. In order to dwell in more depth how this new model can really
achieve such impressive results, this article reflects on the distance spanning
YOLO version 2 and the newest updated version 3, all the same applying it to a
prestigious urban driving dataset in several configurations in order to ascertain
how the improvements have reflected on its application.

On the topic of the dataset, the KITTI Vision Benchmark Suite [5] aims
at connecting research with the real-world application which makes it ideal in
order to predict more informed data on how researched models will perform
outside of the laboratory. Sporting scenarios from highways to urban and rural
areas of Karlsruhe, frames can contain up to 15 cars and 30 pedestrians either
truncated, occluded or fully visible which makes it a dataset with abundance of
easy, medium and hard cases. Many respected models with good results on other
benchmarks have been found to have a poor performance on this benchmark
comparatively. This paper also intends to demonstrate how YOLO – which has
been evaluated on general object detection datasets like PASCAL VOC [2] and
COCO [12] – can cope with the complex and challenging autonomous driving
scenario.

2 State of the Art

Ever since deep learning established itself as the path to follow for object detec-
tion, the evolution on the field of generally referred to as two dimensional
object detection has been characterised by two main different approaches. These
methodologies seem to divide themselves in two stage detectors, which seem to
prime in accuracy and the one stage detectors which are usually the fastest.

The concept of two stage detectors really kicked off with the surface of the
R-CNN [7] (Regions with CNN features) model. What this model had in accu-
racy, it did not have in detection speed which invalidated it for such scenarios as
autonomous transportation systems. In fact, the original system took over 40 sec-
onds to perform detection on a single image. Over the years, many updates were
proposed namely the R-CNN minus r [9], Fast R-CNN [6], the Faster R-CNN [21]
and most currently the Mask R-CNN [8] specialised in object instance segmen-
tation. Lenc et al. even proposed R-CNN minus r [9] which used static bounding
box proposals instead of the selective search [24]. Furthermore, through further
improvements made on R-CNN, specifically from Faster R-CNN [21], the selec-
tive search [24] ended up being substituted for a fully qualified region proposal
neural network. Selective search proposals were estimated to take around 2 s per
image which invalidates its application on a real-time scenario. Incrementally,
the updates that the model suffered unified the network, reducing the strenuous
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process of having to train or tune independently the feature extraction convo-
lutional neural network, the box scoring SVM, the bounding box adjustment
linear model and the non-max suppression step. Unifying this pipeline meant
the network became much faster, however, its speed is still incomparable to that
of the current YOLO model.

On the topic of one stage detection, the field was dominated by such models
as SSD [13] and YOLO [20] for quite some time. The SSD, Single Shot MultiBox
Detector, relied on loosing the feature re-sampling step and the evaluation of
default boxes for feature maps of different sizes. This model surpassed, at the
time, its competitor YOLO version 1. Following SSD, Fu et al proposed DSSD
[4] which introduced feed forward modules with deconvolutional layers which
improved accuracy over the original model. However, the contribution did not
seem to be significant in terms of detection speed, having approximately equal
and at some resolutions even worse detection times than its predecessor.

Recently as well, Facebook’s FAIR proposed a novel network, the Retinanet
which has been performing outstandingly well in both accuracy and speed. This
network is inserted in that of 1 stage detectors, however, it uses a new balanced
focal loss which reduces the impact of imbalance between foreground and back-
ground classes on the data. The Retinanet detector’s backbone is based on the
feature pyramid network [10] which has established itself as a strong architec-
ture choice on the field of deep learning for object detection and convolutional
related tasks. This network uses an hierarchy of pyramidal features each merged
and combined following a top-down order. The existence of both lateral and
top down connections in between feature maps enables the network to be more
accurate and fast at the same time.

On the other hand, YOLO has been one of the longest standing one stage
detectors. The fact that YOLO’s premise focus so specifically in detection speed
makes it ideal to use in autonomous driving systems. Moreover, with the evolu-
tion of the network, the trade off between its performance in terms of results and
detection time is even smaller. Hence the importance of studying its behaviour in
urban scenarios specially to ascertain if and how the newest version outperforms
its predecessor as advertised.

3 KITTI Dataset for Object Detection

The KITTI dataset used for training and testing the models scoped by this paper
is described in a work by Geiger et al. [5] in more detail. This section sums up
on some general information that may be relevant for the experiences presented
below.

The KITTI dataset was collected using a test vehicle equipped with a panoply
of cameras (both RGB and grayscale), a laserscanner, one inertial navigation
system and varifocal lenses. The raw dataset contains all the information mus-
tered through the movement inside urban areas. 3D tracklets are provided for
all labelled classes. The labelled classes that can be found in this dataset are
explained below.
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Car Any standard vehicle.
Van All kinds of vehicles that present an intermediate size and

shape in between that of a Car and a Truck.
Truck The largest kind of moving vehicles.
Pedestrian People in movement or in position of initiating movement.
Person (sitting) People that do not seem to be in movement on the scenario.

For example, people on a park bench.
Cyclist Any moving person on a bicycle.
Tram A standard, urban tram.
Misc Other kinds of objects attached to vehicles such as trailers

or segway.

The raw dataset provided by KITTI explores a variety of urban scenarios.
Some statistics on the tracklets can be found in Fig. 1. As we can denote on
the left graph, the most frequent label is Car, followed by Van. Classes such as
Truck, Pedestrian, Cyclist and Misc have approximated frequency of labels. The
rare classes are Tram and Person (sitting) with special emphasis on the last as it
is particular hard to find examples of this behaviour on the dataset. The graph
on the right explores the frequency of tracklets per frame. From what can be
seen, the largest percentage of frames seem to have around 2 and 6 tracklets.

In order to evaluate identification on the KITTI Vision Benchmark Suite,
the objects are separated according to their difficulty of identification. Levels of
difficulty are extracted according to the occlusion and truncation of the object
to be found on the tracklet. The three levels span from Easy and Moderate to
Hard.

The 2D labelled dataset available in KITTI’s 2D object detection benchmark
page contains labels for all these classes. Benchmark evaluation is done over
three levels of difficulty for classes Car which requires an overlap of 70% with
the ground truth, Cyclist and Pedestrian which require an overlap of 50%.

Fig. 1. Statistics on the KITTI raw data.

4 “You Only Look Once”

The You Only Look Once model looks at the full image once. This was the
original premise and with this, YOLO was able to efficiently extract context from
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Fig. 2. From the You Only Look Once: Unified, Real-Time Object Detection [17] paper,
YOLO detection pipeline.

the whole consumed image, joining both the global features and each object’s
specific characteristics. Taken from its original paper [17], image 2 shows the
pipeline proposed initially for object detection.

As one can denote in Fig. 2, the pipeline starts from the division of the image
into an S × S grid. Each cell will then predict B bounding boxes along with
a confidence score for each of them. A box confidence is evaluated over the
multiple classes conditional probabilities and the overall intersection over union
of the predicted box with the ground truth one. All classes are predicted at the
same time for the whole image and that is the premise that makes the model
as fast as it has always been. The resulting tensor encodes both the number of
grids, the number of classes to classify and the number of bounding boxes that
each cell predicts.

A cell on the grid is responsible for a detection and classification if the object’s
centre is found within it. A bounding box is then represented by 5 different
variables: (x, y) is the tuple that represents the centre coordinates of the box, the
(w, h) contain the width and height of the box according to the image proportion
and a confidence value that the box contains the object. As such, the loss function
is modelled over these 5 parameters, being a combination of the sum of squared
errors with some characteristics added in order to balance errors in large or small
boxes and distinguish between classification and localisation mistakes.

The whole YOLO model is implemented using the Darknet framework [19]
and its classifier was previously trained on Imagenet [23]. The architecture is
quite simple, being a standard convolutional network with 24 layers followed
by 2 fully connected layers. Non maximum suppression is also used in order to
eliminate duplicated boxes.

Just like any other model, YOLO has its strengths and weaknesses. The
incremental work done with the updates was in the sense of reducing the handi-
caps and augment even more the existent strengths. The most flagrant obstacle
to tackle is the reduction of the sources of error from wrong localisation. In a
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comparison in between Fast R-CNN and YOLO, Redmon et al. reported that
whilst their network makes much less false positive classifications coming from
background image areas, it looses most of its mAP on localisation errors. More-
over, detection of small objects specially grouped together has been a great
challenge to overcome.

4.1 Version 2

The 2016 paper [18] introduced the second incremental version of the model
alongside a joint training algorithm that enables training on both detection and
classification data namely YOLO9000.

On the newest architecture, some changes were made which focused directly
on the region proposal setup, diminishing the number of location errors and the
low recall achieved by its predecessor. All the while, the objective was to always
maintain the classifier’s accuracy. One direct point of approach was the difficulty
that the original YOLO model had with small objects.

The incremental approaches taken are described below.

Batch Normalisation. Its application on all convolutional layers improved
mAP and stabilised the model. It also eliminated the need for dropout.

Higher Resolution. The classifier is tuned for 448 × 448 input resolution on
ImageNet which helps adjust the filters for higher resolutions on the detection
step. Opposed to the initial model which trained the classifier at a 224 × 224
resolution and used 448 × 448 for detection.

Anchors. Inspired by Faster R-CNN’s offset prediction, anchor boxes are used.
Network resolution is reduced to 416× 416 in order to have only one cell at the
centre of the image. Higher resolution output after the removal of one pooling
layer.

Clustering. Anchor priors are chosen through k−means clustering. With a
k = 5, anchors are defined using a distance metric that involves the intersection
of union between the box and its centroid.

Location Predictions. Bounding boxes are predicted according to the respon-
sible cell. Sigmoid activation is used in order to constraint the ground truth to
a range between 0 and 1. Parameters tx, ty, tw, th, to are used to calculate the
boxes centre/dimensions alongside with the top left corner offset coordinates
(cx, cy) and the prior width and height pw, ph.

Fine-Grained Features. Additional feature map of larger resolution (26× 26)
stacked with the 13 × 13 feature map through a pass-through layer.

Multi-Scale Training. Training done with random net resolutions switched at
each 10 batches.

Darknet-19. Classifier network changes to Darknet-19, a more mature and
evolved model with 19 convolutional layers and 5 max pooling layers. Data aug-
mentation, hue, saturation, crops, rotations and exposure shifts used in order to
introduce variety in the data.
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4.2 Version 3

Most recently, the YOLO project web page1 has launched a newer update –
version 3. On a preprint arXiv archive the changes are described and the newer
results are advertised as still being much faster than any model and on par with
accuracy on the AP .50 metric. However, on the newer .95 metric, the model
can not keep up with Retinanet in terms of accuracy, having around 7% less
mAP. This fact immediately leads us to the conclusion that this model seems to
be great at localising and classifying objects but not great at giving an exact,
almost perfect bounding box that contains the object.

Objectness. Objectness score was introduced in version 2. However, on the
newest update, this score is calculated using logistic regression which represents
the ratio of overlapping in between the ground truth object and the bounding
boxes prior.

Classification. Softmax is removed and independent logistic classifiers are
added instead. Predictions are then obtained using binary cross-entropy.

Pyramid Extraction. Much like feature pyramid networks [11], YOLOv3
extracts features at several scales and concatenates the upsampled feature maps
with ones obtained on earlier stages.

Anchors. Box priors are still extracted through k−means clustering, only now
with 9 clusters and 3 arbitrary scales.

Darknet-53. The classifying network evolves towards 53 layers and adds short-
cut connections in order to process the connected feature maps with more fine
grained information. This network is also trained on ImageNet [23] and achieves
top classification on par with ResNet-152 but much faster.

With these newer updates, the model moves towards more accuracy. Even
whilst loosing some speed, it is still a very powerful and fast network. It is
reported that small objects are not such a challenge for the model anymore
however, it seems that more difficulties arise on the larger and medium objects.

5 Experiments

In order to ascertain how the model would perform on the KITTI dataset, several
experiments were conducted. The bulk of experiences were carried out using
the raw dataset available at KITTI’s website2 since the objective of this work
was not to benchmark the YOLO series but rather to observe its performance
under different conditions and versions. The dataset used contains around 12932
different images. Since this collection encompasses all frames taken during the
trips made with the test vehicle, several consecutive images are very similar with
small changes. A validation dataset was drawn from 355 frames. The validation

1 Found at https://pjreddie.com/darknet/yolo/.
2 Download at http://www.cvlibs.net/datasets/kitti/raw data.php.

https://pjreddie.com/darknet/yolo/
http://www.cvlibs.net/datasets/kitti/raw_data.php
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set always contains frames from different drives since inside the same drive the
variation of data is very small. Even though the validation set is small compared
to the number of existent frames, the data extracted is very significant since it
eliminates any kind of repetition and similarity in between most of the frames
from training.

All experiments described below were run on a single NVIDIA Geforce GTX
1080 Ti with 11GB of dedicated memory. Libraries CUDA and CudNN are used
on version 9.0 and 7.0 respectively. Also, all models were trained until they
stabilised and reached a convergence stage. The weights chosen for each result
comparison are those at the best early stopping point in order to avoid overfit-
ting. Loss values displayed are taken from an average around the early stopping
point. Val time corresponds to the time that takes to validate performance on
the whole testing dataset (which means detection time for 355 images). The
threshold used for mAP calculations is 0.25. Training thresh equals 0.6.

Experiments follow an incremental evolution pattern. In fact, if a parameter is
found to be better than the others in a given experiment, in following experiences
these best performing configurations are kept, varying only the tweaks in study.

5.1 RGB

All training was carried out using the colour left images of the dataset from all
available drives and frames with tracklet information.

Network Resolution. A study that was found to be interesting was the vari-
ation of the network resolution. Since the input images have a rectangular reso-
lution (width larger than height by approximately 3.6 times), when training was
deployed on squared resolutions, the end results seemed to be much lower. For a
squared resolution test, the 416×416 size was chosen. Since resolutions over 832
are not advisable, the testing rectangular resolution 256 × 832 was used. This
is approximately a factor of 1.5 (closer resolution multiple of 32 as expected by
the model) times smaller than the original dataset image size.

Anchors. YOLO comes with default anchors. However, for each dataset, using
the specified k−means approach for each version, it is possible to generate new
anchors that are supposedly more appropriate for the training in question. Train-
ing was carried out for both versions with the default priors and with calculated
ones. The results can be observed in Table 2.

Random. One of the new introductions made by the YOLOv2 paper [18] was
the enabling of the model to switch its own resolution at random in order to
enable the model to generalise better for other input dimensions. Tests with this
configuration were also carried out. The comparison is made between random
training runs, starting either with a squared or a rectangular resolution for both
models.
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Table 1. Results obtained for the variation of the network resolution. The evaluation
metrics are mAP, which stands for mean average precision, and IOU, which represents
the intersection of union.

Network Resolution Loss mAP IOU Val time

YOLOv2 416 × 416 0.30 56.06 55.05% 4 s

YOLOv3 416 × 416 0.9 72.58 65.72% 8 s

YOLOv2 256 × 832 0.28 69.91 59.27% 4 s

YOLOv3 256 × 832 0.43 75.51 73.12% 9 s

Table 2. Results obtained for the variation of the anchors.

Network Anchors Loss mAP IOU Val time

YOLOv2 standard 0.28 69.91 59.27% 4 s

YOLOv3 standard 0.43 75.51 73.12% 9 s

YOLOv2 generated 0.3 68.59 59.71% 4 s

YOLOv3 generated 0.56 73.48 69.56% 9 s

5.2 Grayscale

Having trained the model on RGB images and using the exact same validation
set, however this time with grayscale left pictures, the model was validated.
YOLO uses saturation, hue changes and other techniques referred on previous
sections for data augmentation. This experiment shows how this technique can
help the model generalise better to other environments. The results were quite
positive and are described in Table 4. Figure 3 shows a detection with the model
on a painting, as an example for other kinds of generalisation.

5.3 Version 2 vs Version 3

Wrapping up all the experiences previously exposed, the best configurations from
each version are chosen in order to directly compare how both models wage on
the dataset. On this dataset, the best configuration found for both models does
not use random training but a rectangular resolution and the standard anchors.
Table 5 shows a strong improvement on mean average precision of around 5
points and an increase for intersection of union of over 13% which are incredibly
substantial results for YOLO version 3 over its predecessor.

From the bundle of experiments carried out, it is possible to conclude that,
overall, the YOLO model has improved considerably. Even so, there is still a
visible trade-off in the newest update such as the loss of detection speed in
detriment of accuracy, which is obvious in all previous experiments. In most
cases, it has approximately doubled the detection time for 355 images, properly
observable in Table 5 through the column Val time. There certainly is a trade-off
between accuracy and speed which may influence the applications of this model
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Table 3. Results obtained for the variation of the random resolution switch.

Network Random Resolution mAP IOU Val time

YOLOv2 0 256 × 832 69.91 59.27% 4 s

YOLOv2 1 416 × 416 61.05 55.59% 4 s

YOLOv2 1 256 × 832 22.21 54.27% 4 s

YOLOv3 0 256 × 832 75.51 73.12% 9 s

YOLOv3 1 416 × 416 72.58 65.72% 8 s

YOLOv3 1 256 × 832 11.42 50.13% 9 s

Table 4. Results obtained for the tests on grayscale data.

Network mAP IOU Val time

YOLOv2 63.79 57.59% 5 s

YOLOv3 71.45 70.27% 8 s

in certain real-world situations. However, it is still the fastest model known
publicly, producing detection in around 25 ms per image on the newest update
at a large resolution (of 832 in one parameter). This behaviour was more than
expected as the number of layers was more than doubled from Darknet-19 to
Darknet-53.

As for resolution, the YOLO model shows different behaviours in version
2 and in the newest update. It seems reasonable to conclude that keeping the
aspect ratio of the original training images is the best approach regardless of the
model being used. However, it is also obvious to conclude that YOLO version
2 was much more sensible to the object’s original ratio. This is proved by the
astounding improvement in mAP of 13.85 points gained by using a rectangular

Fig. 3. Output of YOLO version 3 on a painting that did not have a coincident reso-
lution with the network’s training resolution. Painting by Tom Brown [1], 2015.
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Table 5. Compilation of the best results obtained for each version of the YOLO system.

Network Loss mAP IOU Val time

YOLOv2 0.28 69.91 59.27% 4 s

YOLOv3 0.43 75.51 73.12% 9 s

resolution as seen in Table 1. Meanwhile, the improvement in version 3 is only
of around 3 points. This may be due to the use of connection of the different
scales and feature maps that make it more invariable to natural scales on the
newest update. The lack of sensibility in between resolutions is certainly a good
aspect as it may increase the capacity of the model to generalise better in new
conditions.

When it comes to the prior generation, the results seem a bit puzzling. Even
if the standard anchors have been properly tuned on larger datasets such as
COCO [12] and PASCAL VOC [2] with a large abundance of classes and cases,
it is still surprising to find that the standard anchors produce slightly better end
results for both models. Nevertheless, this is good news as it means that YOLO
can be adapted to new datasets with minimal pre-processing overhead. Table 2
shows small differences between using standard and generated anchors, having
only an increase around 1–2 points on mean average precision. Even though
slightly, the use of generated anchors over the standard ones for version 3 seems
to produce worse results compared to the behaviour of version 2.

The possibility to variate resolution during training was also tested and yield-
ing interesting results. The use of random for training with a starting squared
resolution gives good results even though the testing images are rectangular in
both version 2 and 3. Even so, training for a rectangular resolution specifically
proves to the best approach, assumption proved by the results showcased in
Table 3.

Moreover, the use of random training from a starting rectangular resolution
produces rather poor results on both metrics even if more heavily on average
precision. This seems to be a limitation in the classifier. Both versions of the
model have the same kind of behaviour towards this parameter. From Table 3
one can denote that having a direct rectangular resolution produces superior
outcomes compared to having a randomly sized training process which consumes
more gpu resources and takes around twice the time to train. When the ratio of
the images is known beforehand, it is preferable to keep the network’s resolution
parallel to that of the original aspect whilst still keeping it under 832 for width or
height since larger resolutions have a directly proportional decrease in detection
speed that would nullify the objective of trading off speed over accuracy. This
was also tested in extra experiments.

YOLO is able to generalise to different resolutions, environments, lightning
conditions and even paintings. On the grayscale experience, with results show-
cased in Table 4, it is only noticeable a little drop in mean average precision
compared to the colour validation set. This is an invaluable quality for an
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Fig. 4. Output of YOLO version 3 on the KITTI dataset for lane detection [3].

autonomous driving situation. On the road, many unplanned, new scenarios
arise and the model needs to be elastic enough to respond to all of them with
the degree of safety and confidence as the cases it was trained for. On this
aspect, YOLO maintains and in some aspects even increments on its generali-
sation value. Table 4 depicts less loss in average precision in the newest version
than in its predecessor whilst comparing these with the best obtained on the
RGB set.

6 Conclusions

It was intuitively expected that the additional layers would decrease the speed of
the network whilst boosting its performance. However, there are more tweaks on
the newest version that prove that the YOLO series has even more room to grow
and expand itself into a possible alternative to meet the demanding requirements
of the autonomous driving scenario. However, its behaviour with the prior gen-
eration must be more deepened in order to ascertain its true advantages to the
model. Using random resolution training is an expensive alternative that must
only be applied to certain use cases.

Overall, YOLO version 3 is a much superior object detection model over
version 2. The model has reached new heights in accuracy in all configurations,
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keeping a standard mean average precision around 70% which was rare and
quite hard to obtain by using version 2 on this dataset. The improvements are
expressed as well on the placement of more correct bounding boxes, supported
by the increasing intersection of union.

Moreover, the fact that the YOLO series is able to generalise so well to
grayscale images is a step forward towards solving the problem of object identi-
fication in such complex environments as night time, rain conditions, storms and
such. If the model were to show such results on applications of thermal images,
it could be a reliable solution for the more demanding conditions to be faced
on the road. Furthermore, if YOLO could perform detections on these types of
cameras whilst only having been trained on RGB images, the gathering of such
powerful, mixed information would be a gigantic step for autonomous driving
as it would allow having less sensors on the vehicles and less training processes
in order to make them operational. Very much similarly to YOLO9000 [18] that
generalised to 9000 classes, future work on the direction of enabling YOLO to
perform just as accurately on several types of cameras could be an interesting
step moving forward. Another study of great interest would be the thorough
analysis of the relationship between the number of layers in the classifier net-
work and its impact on speed degradation, so as to identify the optimal point
for the reasonable trade-off between accuracy and speed.

Finally, this study contributes with a thorough analysis of YOLO version 2
and version 3, emphasising on the improvements of the latter version towards
supporting the autonomous driving scenarios. Currently YOLO is underlying
the development of an Artificial Transportation Systems platform, coined MAS-
Ter Lab [22], endowing such an environment with computer-vision-as-a-service
functionality. Both traffic and transport control and management, as well as the
simulation of autonomous vehicles in urban settings [16] are under development
within the MAS-Ter Lab platform using the YOLO model.
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