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Abstract. Good, efficient and reliable public transportation systems are of
crucial importance for all major cities today. In this paper, we propose a concrete
solution to a particular problem: improve the prediction of the bus arrival time at
each bus stop station on a given itinerary, by taking to account global and local
traffic contexts. The main principle consists of modeling the traffic data as an
image structure, adapted for applying CNN deep neural networks. The results
obtained shows that the proposed approach outperforms traditional machine
learning techniques, such as OLS (Ordinary Least Squares) or SVR (Support
Vector Regression) with different kernels (RBF or Polynomial), with more than
18% better accuracy prediction, while being computationally faster.
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1 Introduction

In all urban areas around the world, mobility is of the most crucial importance, and the
question that needs to be solved is the following: how to minimize the time spent in
transport going from one point of the city to another?

In addition, let us underline that vehicular transports in the urban areas performed
by individuals or public transportation vehicles contributed heavily on the carbon
footprint, called greenhouse gas. The data [1] obtained from the French government in
2015 gives an extensive overview of the key numbers about production of the
greenhouse gas. Transport, in general, is responsible for 27% of the production of
greenhouse gas. Transport operated by road represents 94,8% of these emissions. The
logical solution to this problem is to decrease the number of vehicles used for private
transportation, by proposing more reliable public transportation systems. The question
of reliability is here highly important since the user acceptancy strongly depends on.
Within this framework, disposing of efficient traffic prediction tools, dedicated to public
transportation, is a challenging issue, for both users (which want to be informed pre-
cisely and in real-time) and transport operators (which want to optimize their transport
networks/itineraries).
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2 Related Work

In this paper, we specifically tackle the issue of bus arrival time prediction in urban
areas. The main objective is to minimize the predicted time error of bus arrival at
each bus stop while taking to account global and local traffic data at the itinerary of
the bus.

In order to obtain this particular data type, we decided to simulate the scenario with
the help of a traffic simulation software. Traffic simulation can be defined as the
mathematical model of transportation systems, implemented through the application of
dedicated algorithms [2]. Two main branches exist for traffic simulation software,
including macroscopic [3] and microscopic [4] approaches. Each traffic simulation has
its own pros and cons. In our work, a microscopic traffic simulator has been adopted,
since it can provide a highly detailed picture (with velocity, location, time, speed…) of
each individual entity in the system. More precisely, among the various well-
established simulation frameworks [5–7] available, the SUMO [8] traffic simulator has
been retained. SUMO (Simulation of Urban MObility) [8] is an open-source, micro-
scopic, multimodal traffic simulator that can simulate various scenarios with different
type of traffic data and it is supported by a large developer community.

Different algorithms, techniques, and applications have been introduced in the last
years in order to address the issue of traffic prediction [9–12]. A conventional com-
mercial application like Google Maps [13] and Citymapper [14] have been widely
adopted by the general population. Among other applications, let us mention Transilien
[15] for Paris and MVV [16] for Munich. Traditional techniques include time-series
analyses [17], ARIMA models [18] with its variations [19] and Kalman Filter [20].
They have been successfully implemented and still intensively exploited today.
However, in recent years, with the rapid growth of computational powers, notably
GPUs, such approaches have been surpassed in many applications by machine learning
techniques [21] and more specifically by deep learning approaches [22]. Different
neural networks have also been introduced for solving similar issues, including LSTMs
(Long Short Term Memory) [23, 24], CNNs (Convolutional Neural Networks) [25, 26]
and GNNs (Graph Neural Networks) [27, 28].

Our main contribution is twofold and concerns the development of the data model
involved as well as the prediction approach exploiting the dedicated data model. Thus,
the vehicular traffic data is in our case modeled and represented as an image. This
makes it possible to exploit an original, dedicated convolutional neural network
(CNN) that yields the predicted arrival times of the bus as a regressor.

The rest of the paper is organized as follows, Sect. 3 describes the simulation
scenario and the data model. In Sect. 4, the proposed CNN method is described in
details. Experimental results are presented and discussed in Sect. 5. Finally, Sect. 6,
concludes the paper and opens some perspectives of future work.
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3 Simulation Scenario and Data Model

3.1 Simulation of a Real-Live Scenario

Obtaining data that contains information about vehicles, public transportation, pedes-
trians…. is not obvious and easy to acquire, for various reasons, including economic
barriers and regulation issues. In our work, we have considered instead synthetic data,
that we have created with the help of the SUMO (Simulation of Urban MObility) [8]
open platform.

The simulation scenario under consideration concerns two real bus lines, that are
fully operational in the city of Nantes, France. They are illustrated in Fig. 1. The
decision of choosing these lines is based on the geographical location of the bus
itineraries, which globally cover the same geographical region. This makes it possible
to include two different bus lines in a single simulation scenario. The bus data,
including itineraries, location and names of the bus stops have been recovered from
TAN (Transport de l’Agglomeration Nantaise) [29] and Nantesmetropole [30] – open
data repository, while the map was loaded from OSM (Open Street Map) [31].

The simulation scenario has been developed and executed by the SUMO traffic
simulator with the following tools and parameters:

• The 2D map of the considered region of the city of Nantes has been converted and
imported from OSM.

• The bus itineraries and the bus stop have been manually added to the simulation.
• The total number of simulations performed is 12000.
• The total number of vehicles inserted into the system varies between [8000, 25000].
• Each vehicle itinerary is calculated using the shortest path algorithm of Dijkstra

[32], presented with Origin/Destination matrix.
• The total number of pedestrians was set for all simulations to 3600. Let us note that

it is important to use pedestrians in the simulation due to the impact of pedestrian

Fig. 1. A geographical area in city of Nantes, with Bus line 89 (middle) – 36 bus stops and
13,4 km, bus line 79 (right) – 25 bus stops and 9,64 km
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traffic lights. This makes it possible to increase the degree of realism of the entire
simulation.

• The simulation time was set to 19000 s, which ensures that all the vehicles will get
in and out of the system, as presented in Fig. 2(A).

• The bus time spends at each bus stop was fixed to 20 s.

Each consecutive simulation differs from the previous one by the number of
vehicles inserted within the system. This may be questionable because of the small
number of vehicles inserted into the system between two consecutive simulations.
However, huge disparities from one simulation to another can appear, even though the
number of vehicles is increased by small units. This phenomenon is illustrated in Fig. 2
(B), which show the time of completion of the bus itinerary with respect to the total
number of vehicles that are inserted in the system. This can be explained as a result of
the random distribution of the initial vehicle starting point to the systems, and also by
the fact that for each vehicle the shortest route algorithm is calculated, taking to account
the global situation.

In the same time, the results in Fig. 2(B) demonstrate that attempting to make a
global prediction of the time of completion of an itinerary is impossible.

3.2 Data Model

Our initial goal is to take into account the traffic situation around the bus itinerary. Each
simulation is used to create a specific traffic density map that later on can be trans-
formed into one channel (grayscale) image as presented in Fig. 3.

In order to represent traffic as a grayscale image, first, we need to compute and
create a so-called TDM (Traffic Density Matrix). This matrix represents the traffic
situation at each measurement station. Measurement stations are points in space that
detects and counts how many vehicles pass in a given period of time. In real-life
scenarios, such information can be acquired with the help of loop detectors. In our
work, for the convenience of the simulation, each bus stop location has been considered
as a measurement station. In this particular scenario, the detection radius around the

Fig. 2. A – region of interest and stability range; B - time needed to compute the whole itinerary
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considered measurement station was set to 100 m. This representation can be inter-
preted as a traffic density matrix evolving over time, which is traversed by the con-
sidered buses. The last step is to normalize the values of the traffic density matrix by the
maximum value of 255 as one channel (grayscale) image.

For each bus generated at each simulation, we create in this way a local density map
simulation matrix, denoted by D, of size (Mstations x T), where Mstations is the
number of measurement stations and T is the number of time instances measured. In
order to simplify and speed up the process, we have evenly sampled the simulation
interval with a step of 10 s. This helps reduce the amount of data and consequently the
related storage/computational requirements.

The simulation yields the following two outputs, controlled by a global parameter
which is the total number of vehicles injected within the system:

• A vector a ¼ a1; a2; aNstops
� �

of size Nstops, storing the bus arrival times in all the
stations of the itinerary

• The density matrix D, of size Mstaions � Tð Þ
• Mstations is (25, 36) for bus 79 and 89 respectively
• T - the time is 4000 s, but since is measured every 10 s, T ¼ 400
• The final image was developed by the grayscale (min/max) normalization

procedure:

I ¼ 255
X � min Xð Þ

max Xð Þ � min Xð Þ ð1Þ

Fig. 3. Traffic density matrix, computation, normalization and traffic data visualized as an image
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• X: the value of the original image
• I: the output - grayscale value of the image after the normalization procedure.

The objective is then to predict the arrival vector a, given as an input the image I. In
order to solve such a problem, we have adopted a CNN architecture, described in the
following section.

4 Proposed CNN Architecture

The (Convolutional Neural Network) CNN architecture proposed is illustrated in
Fig. 4.

It includes the following elements:

• 3 convolutional layers with kernel size (18, 2) and channels (8, 16, 8) respectively,
• 1 max-pooling layer of size (4, 2),
• 3 fully connected layers with size (1000, 100, 36).

The specific kernel size was chosen because of the particular elongated shape of the
image data considered (cf. Section 3.2). The size and structure of the fully connected
layer depend heavily on the vector that is received after the convolutions and down-
sizing step. Padding was chosen as 0, so it was not used in this scenario because the
traffic information at the beginning and the end of the image is not relevant for the
prediction process. The SGD (Stochastic Gradient Descent) algorithm (with learning
rate of 0.001) has been considered for the learning stage.

For implementation purposes, we have considered the PyTorch [33] deep neural
network framework for the CNNs.

Fig. 4. A proposed convolutional neural network with 3 convolutional layers, one max-pooling
and 3 fully connected layers, ReLU as an activation function
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5 Experimental Results

For comparison purposes, we have considered several machine learning techniques:
Linear Regression (OLS) [34], Support Vector Regression (SVR) [35] (with different
kernels). We have retained the Scikit-learn [36] machine learning toolbox with their
respective implementations. All the data has been structured in .csv format and com-
pressed with the MsgPack [37] library. The next step is to split the data randomly into
three different sub-set and performing 10-fold cross-validation. The training/test split
was performed as follows:

• Total number of simulations 12000
• Training dataset - 80% (9600)
• Test dataset – 20%, (2400), from which: 10% (240) were used for validation, and

90% (2160) for evaluation purposes

Our first approach is based on Linear Regression also known as OLS (Ordinary
Least Squares). Figure 5 illustrates a snapshot of the simulation from the bus during the
scheduled itinerary, together with the prediction curves obtained by the linear regres-
sion model (versus the ground truth), for booth buses 79 and 89.

Fig. 5. Prediction results and snapshot from the simulation software. A - bus line 79, the traffic
situation is normal and fluid. B - bus line 89 on the right with a traffic jam.
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The corresponding MAE (Mean Absolute Error) scores are summarized in Table 1.

For bus line 79, the results are highly accurate, with an MAE inferior to 5 s. In this
case, we can observe that the traffic is mostly fluid and the OLS model is perfectly
adapted for prediction purposes. However, the prediction results degrade significantly
in the case of bus line 89. We can observe from Fig. 5(B), that some localized sin-
gularities events (traffic jams) occur in some places and introduce a certain non-
linearity. As a consequence, the MAE value increases up to 134,18 s.

In order to investigate this behavior, we have considered a second approach, based
on SVR (kernel = ‘Poly’ and ‘RBF’). The polynomial kernel is of second degree known
as Quadratic kernel, and the RBF (Radial Basis Function) kernel with gamma =
1/n_features and C = 1.0. The obtained prediction curves are presented in Fig. 6.

We can observe that the SVR method with both kernels significantly outperforms
the Linear Regression model. These results are also confirmed by the global MAE
values and computational time reported in Table 2. We can observe that the CNN
training process is faster than the other two methods.

Table 1. Prediction results for bus 79 and 89 both directions

79 Beau > Ovra 79 Ovra > Beau 89 Beau > Le Cr 89 Le Cr > Beau

MAE 4.96 3.18 134.18 133.2

MAE = Mean Absolute Error (s), Beau = Beausejour, Ovra = Ovrault, Le Cr = Le Cardo

Fig. 6. Support vector regression (‘Poly’ and ‘Rbf’) vs linear regression

Table 2. Prediction error and computational time for bus 89 direction Beausejour > Le Cardo

OLS SVR (rbf) SVR (poly) CNN

MAE 134.18 71.23 72.06 59.38
cTime 818 12063 11727 768

MAE = Mean Absolute Error (s), cTIME =
Computational Time in (s), OLS = Ordinary
Least Squares, Poly = Polynomial, Rbf = Radial
Basis Function
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The results obtained confirm our original intuition: more complex, non-linear
machine learning techniques are required, in order to be able to obtain more accurate
predictions while taking to account this localized, non-linear phenomena. Let us now
investigated if the proposed CNN can further confirm this intuition.

Figure 7 presents the prediction curves between the different machine learning
techniques considered.

The proposed CNN method outperforms the two previously considered techniques,
with overall gains accuracy (Table 2) of 18,5% with respect to SVR and 77,7% better
over OLS. The learning curve evolution of the CNN training model (for 105 epochs) is
also illustrated here.

In Fig. 8, the histogram and cumulative histogram plots are presented.
From the plot (left) we can observe that 50% of the simulations have an MAE lower

than 34 s (which corresponds to the median of the MAE). Moreover, in 80% of cases
the MAE is inferior to 86 s.

Fig. 7. OLS vs SVR (Poly and Rbf) vs CNN, the Learning curve for CNN
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6 Conclusion and Perspectives

In this paper, we have proposed a new approach for the prediction of bus arrival times
in the various bus stops over their itinerary.

We have shown that modeling the traffic data as a 2D image can offer multiple
benefits for structuring the information in a meaningful and exploitable manner.

A dedicated CNN network architecture has been proposed, which makes it possible
to predict the bus arrival time while taking into account the current traffic situation. The
experimental results obtained showed that the proposed CNN outperforms the tradi-
tional prediction techniques based on linear regression or SVR approaches, in both
prediction accuracy and computational complexity.

Our perspectives of future work concern the consideration of different neural
network-based approaches able to deal with the temporal nature of the data, such RNN
(Recurrent Neural Networks) and LSTM (Long Short Time Memory).
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