
A-GNN: Anchors-Aware Graph Neural
Networks for Node Embedding

Chao Liu1,2 , Xinchuan Li1,2, Dongyang Zhao1, Shaolong Guo3,
Xiaojun Kang1,2(&) , Lijun Dong1,2 , and Hong Yao1,2

1 School of Computer Science, China University of Geosciences,
Wuhan 430074, China

kangxj@cug.edu.cn
2 Hubei Key Laboratory of Intelligent Geo-Information Processing,

China University of Geosciences, Wuhan 430074, China
3 Sinopec Exploration Company, Chengdu 610041, Sichuan, China

Abstract. With the rapid development of information technology, it has
become increasingly popular to handle and analyze complex relationships of
various information network applications, such as social networks and biolog-
ical networks. An unsolved primary challenge is to find a way to represent the
network structure to efficiently compute, process and analyze network tasks.
Graph Neural Network (GNN) based node representation learning is an
emerging learning paradigm that embeds network nodes into a low dimensional
vector space through preserving the network topology as possible. However,
existing GNN architectures have limitation in distinguishing the position of
nodes with the similar topology, which is crucial for many network prediction
and classification tasks. Anchors are defined as special nodes which are in the
important positions, and carries a lot of interactive information with other
normal nodes. In this paper, we propose Anchors-aware Graph Neural Networks
(A-GNN), which can make the vectors of node embedding contain location
information by introducing anchors. A-GNN first selects the set of anchors,
computes the distance of any given target node to each anchor, and afterwards
learns a non-linear distance-weighted aggregation scheme over the anchors.
Therefore A-GNN can obtain global position information of nodes regarding the
anchors. A-GNN are applied to multiple prediction tasks including link pre-
diction and node classification. Experimental results show that our model is
superior to other GNN architectures on six datasets, in terms of the ROC, AUC
accuracy score.

Keywords: Graph Neural Network � Node embedding � Link prediction �
Node classification � Global structure information

1 Introduction

Network applications are ubiquitous in the real world, such as protein-protein inter-
action networks [1], information networks [2] and biology networks [3]. In network
analysis, it is critical to learn effective representations for nodes, which determine the
performance of many downstream network tasks, such as node classification [4], link

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2020
Published by Springer Nature Switzerland AG 2020. All Rights Reserved
X. Chu et al. (Eds.): QShine 2019, LNICST 300, pp. 141–153, 2020.
https://doi.org/10.1007/978-3-030-38819-5_9

http://orcid.org/0000-0003-3992-0229
http://orcid.org/0000-0002-5628-0545
http://orcid.org/0000-0002-1409-9473
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38819-5_9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38819-5_9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38819-5_9&domain=pdf
https://doi.org/10.1007/978-3-030-38819-5_9

prediction [5]. Recently, the use of node representation learning (also known as node
embedding) to solve network application problems has received wide attention from
researchers, which is aimed at preserving the structure of networks in a low-
dimensional vector space.

Many node embedding methods have been proposed in recent years, which can be
categorized into three types according to the category of node fusion information. The
first type is unsupervised node embedding [8, 9]. This type of models integrate the
connection information of each node and its neighbor nodes into the vector repre-
sentation of the node. However, these models cannot capture node attributes, which is
important supplementary information for nodes. The second type is attributed node
embedding [6, 10], which is proposed to incorporate node attributes to node embed-
ding. The third type is GNN node embedding [7]. In the GNN framework, the
embedding of nodes can contain nodes’ attribute information and network neighbor
information.

However, the existing methods related to GNN node embedding and attributed
node embedding cannot capture the global position information of the node within the
broader context of the graph structure, which hinders the processing of downstream
tasks. Take the node classification task as an example. Figure 1 shows a symmetrical
structure, in which nodes v1 and v2 are in the identical symmetrical positions. In GNN
and attributed node embedding methods, v1 and v2 are embedded to the same point in
the low-dimensional space because they have isomorphic network neighborhoods.
Thus, v1 and v2 cannot be distinguished in node representation vector, and they are
classified into the same class.

P-GNN model has partially addressed this problem of distinguishing symmetric
nodes [12], which incorporates a node’s global positional information with the help of
anchors randomly selected in the network. However, P-GNN model has two limita-
tions: (1) Randomly selection of anchors shows the location of the makers is uncertain,
causing the P-GNN model unstable; (2) Besides, anchors are usually difficult to be
selected at symmetrical locations or the distribution of them is relatively concentrated
in a small part. In this case, positional information of most nodes wouldn’t work,
because the path between anchors and normal nodes in the symmetrical structure are
identical. Actually, Anchors are the nodes with important positions and have a lot of
information interaction with other nodes, which are not considered in P-GNN model.

Fig. 1. A symmetrical structure example for a simple node classification task, in which nodes v1
and v2 are structurally symmetrical, A and B represent two different node classes respectively.

142 C. Liu et al.

Figure 2 gives a further explanation of limitations mentioned above. It shows a
large network containing a symmetrical structure (Fig. 2, left). Similar to the notations
of Fig. 1, v1 and v2 are in the identical symmetrical positions, A and B stand for two
classes of nodes. Assume that the candidate anchor set includes a, a1, a2 and a3.
Firstly, we explain instability. If a is selected as the anchor, v1 and v2 can be distin-
guished by P-GNN, because the shortest path (v1, a) is different from (v2, a). Otherwise
if a1 or a2 or a3 is selected as the anchor, v1 and v2 wouldn’t be distinguished by P-
GNN, because the shortest path from v1 and v2 to the anchor are same. Therefore,
selecting a or a1 as anchor will lead two different results for P-GNN model. Secondly,
notice that anchor a is in a symmetrical structure, while anchors a1, a2 and a3 are not.
But P-GNN model adopts a strategy of randomly selecting anchors, which cannot
guarantee that at least one anchor is selected in each symmetric structure.

In this paper, we propose Anchors-aware Graph Neural Networks (A-GNN), which
use anchors to distinguish normal nodes with different importance. In the selection and
computation of anchor nodes, we consider the following two requirements to be met:
(1) Anchors should have strong information interaction with other nodes; (2) Anchors
could spread as widely as possible in the whole network. We combine the Greedy
Algorithm with the Minimum Point Cover Algorithm (GA-MPCA) to compute the
anchors. Furthermore, the greedy algorithm satisfies the first requirement, and the
minimum point cover algorithm satisfies the second one. Through combining with the
new anchors computation strategy, A-GNN model supports for incorporating the
structure information into the node vector. With the help of anchors, A-GNN learns a
non-linear aggregation scheme that combines node feature information from each
anchor-set and weighs it by the distance between the node and the anchors.

Overall, the main contributions of this paper are summarized as follows:

(1) We propose Anchors-aware Graph Neural Networks (A-GNN) for improving
node embedding, which incorporates the global structure information of a node
into its embedding vector with the help of anchors. In this case, nodes can be
classified, if they obviously are different in the aspect of position, although they
have similar neighborhood nodes.

(2) We propose a new algorithm to compute anchors. The anchors are selected
according to the importance of the positions in the whole network. Moreover, we

Fig. 2. An example of a large network containing a symmetrical structure.

A-GNN: Anchors-Aware Graph Neural Networks for Node Embedding 143

apply the anchors to the learning of node embedding, which could greatly
improves existed GNN architectures.

(3) We evaluate the performance of our A-GNN model for link prediction tasks and
pairwise node classification tasks on eight different datasets. The experimental
results show that our A-GNN model has significant improvements compared to
baselines on both tasks.

The rest of the paper is organized as follows. Section 2 gives a brief review of
related works. Section 3 describes the framework of our model. Section 4 reveals our
proposed model in detail. In Sect. 5, we introduce the dataset, experiment settings,
baseline models, experimental results and discussion. The last section is a conclusion of
this paper.

2 Related Work

Anchors are the nodes with the important positions, having a lot of information
interaction with other nodes. Our model A-GNN integrates the position information of
nodes into the vector representation of nodes by introducing anchors. So our model is
mainly related to two aspects, one is node importance evaluation, and the other is node
embedding.

2.1 Node Embedding

According to the category of fusion information, the node embedding related to our
work can be divided into three categories: (1) Embedding node’s neighbors;
(2) Embedding with node’s features; (3) Embedding with positional information.

Embedding with Node’s Network Neighbors. The existing GNN architectures use
different aggregation schemes for a node to aggregate its neighbors in the network. For
example, Graph Attention Networks aggregate neighborhood information according to
trainable attention weights [13]. Message Passing Neural Networks further incorporate
edge information when doing the aggregation [14]. However, as Fig. 1 shows, these
models cannot distinguish nodes which have similar network neighbors or at symmetric
positions in the network.

Embedding with Node’s Features. Kipf and et al. proposed a heuristics method that
alleviates the above issues include assigning an unique identifier to each node [12].
Hamilton and et al. proposed GraphSAGE to concatenate the node’s feature in addition to
mean/max/LSTM pooled neighborhood information [15]. Zhang and e al. used locally
assigned node identifiers plus pre-trained transductive node features [16]. However, these
models are not scalable and do not have generalization capabilities for unseen graphs.

Embedding with Positional Information. Jiaxuan and et al. proposed Position-aware
Graph Neural Network (P-GNN) to capture the position/location of a given node with
respect to some maker nodes generated randomly [11]. Although the model can
sometimes to distinguish nodes with similar neighbors, it still has unstable limitation,
due to its strategy of randomly selecting anchors.

144 C. Liu et al.

2.2 Node Importance Evaluation

There are some traditional methods to evaluate the importance of nodes [21], among
which some are based on node deletion, some are based on node affinity, and some are
based on shortest paths. Besides, There also are some up-to-date methods are proposed
to find important anchors, such as New metrics [22], proposing two type metrics
utilized to evaluate the node importance, and GENI [17] is proposed to deal with
distinctive challenges involved with predicting node importance in KGs based on
GNN. Inspired by these methods and in order to ensure the selected anchors can meet
the following two requirements: (1) Have strong information interaction with other
nodes; (2) Spread as widely as possible in the whole network. We use GA-MPCA to
compute the anchors, and combined with the new anchors calculation method, we
propose A-GNN model.

3 The A-GNN Framework

The purpose of node representation learning is to integrate all useful information
related to nodes into the vector representation of nodes. Thus, the high-quality node
vectors can achieve good effects in link prediction tasks and node classification tasks.
Our proposed A-GNN model can integrate useful information of nodes from three
aspects: (1) node’s neighborhood structure; (2) node’ s attributes; (3) network global
position information.

Fig. 3. The framework of A-GNN

A-GNN: Anchors-Aware Graph Neural Networks for Node Embedding 145

Figure 3 gives the framework of A-GNN. As Fig. 3 shows, the A-GNN model can
be divided into two mainly modules: (1) The upper layer is anchors selection module,
which use GA-MPCA to compute the anchors in the network. The distribution of
anchors selected is scattered and the selected anchors have strong information inter-
action with other nodes; (2) The lower layer is node embedding computation module.
The module is used to GNN encoder, for the purpose of to integrate the node’s attribute
information, neighborhood structure information and global position information into
the vector representation of the node.

The workflow of A-GNN model mainly includes the following steps:

• The First step is to input network datasets.
• The second step is to calculate anchors in the network by greedy algorithm and

Minimum point covering algorithm.
• The third step is to extract the attribute information, neighborhood structure

information contained in the path between anchors and the given node, and its
position information relative to the multi-anchors of each given node. Then encode
them to the low-dimensional space by GNN.

• The final step is the output the vector representation of each node, which integrates
neighborhoods, attributes and global position information.

Compared with the existing node embedding models, our A-GNN model incor-
porates the global position information of each node, with the help of anchors.
Therefore, The A-GNN model can distinguish nodes with similar neighbors or in
identical symmetrical positions.

4 Proposed Approach

In this section, we mainly illustrate three key aspects of A-GNN model. The first is the
strategy of selecting anchors. The second is the method mechanism of node embed-
ding. The last is the description of algorithm implementation.

4.1 The Strategy of Anchors Selection

Anchors are the nodes in the important positions with a lot of information interaction
with other nodes. Therefore, anchors have an important impact on the whole network,
and can be used to provide position information to other nodes. Based on the accuracy
position information provided by the anchors, A-GNN model can distinguish nodes,
which have similarities in some aspects, but are in different positions. Proper and
efficient selection of anchor set can provide high quality position information for nodes,
thus improving the accuracy of downstream tasks. Therefore, the selection strategy of
the anchor set is very crucial.

As Fig. 2 shows, the strategy of randomly selecting anchors do not satisfy two
conditions: (1) one is that the information interaction with other nodes should be rich
enough, and (2) the other is that the distribution should be scattered enough. The cal-
culation process of anchors should consider that the importance of each node in a complex
network is different. Inspired by previous approaches of evaluating the importance of

146 C. Liu et al.

nodes [31], our A-GNN model proposes a new method, called GA-MPCA to calculate
anchors. In terms of information interaction, GA-MPCAbelieves that the nodeswith high
degree have strong information communication with other nodes, and they can influence
other nodes through the shortest paths. Besides, GA-MPCA adopts first order minimum
point covering method to keep the anchors scattered enough.

The strategy of anchor set selection includes three simple steps:

(1) Given a network, we first select the node with the highest degree as the first
anchor, and mark it as “anchor” and its one-hop neighbors as “covered”. The step
belong to the greedy algorithm part.

(2) In the unmarked node geometry, the node with the most connections to the
unmarked nodes is found as the next anchor, and mark it as “anchor” and its one-
hop neighbors as “covered”. This step still belong to the greedy algorithm part.

(3) Repeat (2), until all the nodes in the network are marked “covered” and “anchor”,
this step belong to minimum point covering algorithm part.

4.2 The Node Embedding Mechanism

This subsection mainly consists of two aspect of mechanisms. The one is to utilize GA-
MPCA to calculate anchors, the other is to utilize GNN encoder to incorporate the node’s
attributes, neighborhoods and global position information into the vector representation
of the node. It is responsible for the embedding computation process of nodes.

GA-MPCA. It is proposed to find anchors in network, which can satisfy the above two
requirements: discrete distributions and high interaction with other nodes. To elaborate
on the detail process of the algorithm, we use the example shown in Fig. 4. There are
totally eight nodes and seven edges, and the red color represents anchors, the light red
represents the one-hop neighbors of anchors. Given the network shown in Fig. 4, we
infer that nodes v7 and v8 are anchors finally through GA-MPCA.

Fig. 4. The explanation of GA-MPCA (Color figure online)

A-GNN: Anchors-Aware Graph Neural Networks for Node Embedding 147

For the example of Fig. 4, the steps of GA-MPCA are explained as follows:

(1) Given a network, we firstly use greedy algorithm to find node v7 with the highest
degree 4 as the first anchor, then mark it as “anchor” in red, next its one-hop
neighbors v1, v2, v3 and v4 are simultaneously marked as “covered” in light red.

(2) Due to there are three nodes still not marked, we continue to calculate the degrees.
As a result, the degree of v5 and v6 both are equal to 1, but v8’ degree is equal to 2.
So we choose v8 as the second anchor, then mark it as “anchor” in red, next its
one-hop neighbors v5 and v6 are marked as “covered” in light red.

(3) After the step (2) is completed, all nodes have been marked. So we could extract
nodes v7 and v8 as anchors a1 and a2.

Embedding Computation for Nodes. In this part, we use GNN encoder to merge the
node’s attributes, network neighborhood and position information into its vector rep-
resentation. The calculation process is shown in Fig. 5. In the i-th layer of GNN, the
input is a feature vector representation of node v. And ha1, …, han are the vector of
anchors. Function F1 combines the position information into node representation,
which is marked as A. Function AGGM is a trainable function that can transform
anchors’ features into the given node v, represented by M. Then, M1, …, Mn are joined
together getting M. We perform two-step operation for M. The one is applying function
AGGS to M, and getting the input vector of next layer. The other is the use of the
trainable vector w for projecting M to the output anchors-aware vector zv of node v.

4.3 Algorithm Implementation

In this part, we elaborate the algorithm of anchors selection and GNN encoder in detail.

Anchors Selection Algorithm (GA-MPCA). For Algorithm 1, the input can be one
or several networks, and the output is the anchors set. We use G ¼ V; Eð Þ to represent a
network, wherein V represents the node set, E represents the edge set. Firstly, we go
through all the nodes in the network to look for the one with the highest degree. Next,
mark it as “anchor” and its neighbors as “covered”. Besides, we add them to the set A.

Fig. 5. Embedding computation for node v

148 C. Liu et al.

Secondly, we still find the node with the highest degree in V but not in V, and mark it
and its neighbors as well. In addition, we add them to A. Moreover, we repeat step 2,
until all nodes in the network are marked. Finally, we go through the network, and add
all the nodes marked “anchor” to anchor set S = {a1, …}.

Algorithm 1 Anchors selection algorithm (GA-MPCA)
Input: Network
Output: Anchor set S = {α1, …}
while ≠ do

for v ∈ and v ∉ do
if v’ degree is the highest do

mark v “anchor” and its neighbors “covered”, and add them to the clique
End if

End for
End while
for v ∈ do

i = 1
if v is marked “anchor” do

αi ← v
i = i + 1

End if
End for

GNN Encoder to Calculate Node’s Embedding. In Algorithm 2, we also represent
network with G ¼ V; Eð Þ. Nodes features are represented by yv; . . .f g. There are L
layers for GNN, and Anchor set is represented by S = {a1, …, an}. Firstly, we assign
features vectors hz{1,…} to nodes hv{1,…}, and regard it as the initial node vector of the
first layer neural network. Secondly, we apply the function F1 to combine the given
node and anchors’ feature information with their network distance to produce A. In
Eq. (2), dqsp v; að Þ represents the shortest path distance between the given node v and
anchor a. Note that when the distance is over q, it won’t be included in the calculation.
Function s v; að Þ maps the distance to a (0,1) range.

F1 v; a; hv; hað Þ ¼ s v; að ÞConcat ðhv; haÞ ð1Þ

s v; að Þ ¼ 1
dqsp v; að Þþ 1

ð2Þ

Next, trainable aggregation function AGGM is applied to A. We transform anchors’
features to the given node, which is represented by M{1,…}. Then, we combine them
into the matrix M. Finally, we perform two operations on M. The one is using AGGs
message aggregation function to transform M to the next layer input vector hv. The
other is projecting M to the anchors-aware vector zv of node v by using the trainable
vector w.

A-GNN: Anchors-Aware Graph Neural Networks for Node Embedding 149

5 Experiments

The experiment section includes four parts. The first part introduces datasets used for
link prediction and node classification tasks. The second part presents the experimental
setup, containing inductive learning settings. The third part explains some baseline
models, and the last part analyzes the experiment results.

Algorithm 2 GNN encoder with anchors algorithm
Input: Network Node input features ; Layer Anchor set
S = {α1, …, αn}
Output: Anchors-aware embedding zv for every node
hv ← yv

for l = 1,…, L do
for v ∈ do

for i = 1…, n do
A ← {F1(v, α, hv, hα), ∀α ∈ Si}
Mi ← AGGM(A)

End for
zv ← σ(M • w)
hv ← AGGS({Mv[i], ∀i ∈ [1,n]})

end for
end for
zv ∈ Rn, ∀v ∈

∈

5.1 Datasets

We choose some typical synthetic and real datasets (Table 1) to perform our experi-
ments. Grid, Communities [18], and PPI [3] are used for link prediction task, while
Communities, Emails [19], and Protein [20] are used to node classification tasks.
Note that only nodes in dataset PPI, and Protein have attributes.

5.2 Experimental Setup

The proposed A-GNN model is evaluated by two variants. Their differences are
reflected in the path calculation of a given node and anchors. (1) P-GNN-F: the variant
of P-GNN using truncated 2-hop shortest path distance; (2) P-GNN-E: the variant of
P-GNN using exact shortest path distance.

Table 1. Statistics on the datasets.

Dataset Gj j Vj j Ej j #train #test

Grid 1 400 1216 973 243
Communities 1 400 6080 4864 1216
PPI 24 56658 1269770 1015816 253954
Email 7 920 14402 11522 2880
Protein 1113 17996 68632 54906 13726

150 C. Liu et al.

In the experiments of A-GNN model, 80% of the graphs are used to train our A-
GNN model and the remaining graphs for testing. For the pairwise node classification
task, whether a pair of nodes belongs to the same community is predicted by our
model. Note that a pair of nodes that do not belong to the same community are
negative.

5.3 Baseline Models

In order to prove the validity of our proposed A-GNN model, the classic GNN models
and P-GNN model are used as baseline for comparison. Therefore, all above model are
trained for the same number of epochs and are set to the same model parameters. The
experimental results on both link prediction and pairwise node classification tasks show
that our model is about 3% better than the state-of-art P-GNN model in many tasks.
Furthermore, in some datasets, the accuracy of our model achieves almost 100%.

GNN Related Classical Models. We consider four GNN related classical models,
including GCN [12], Graph-SAGE [15], Graph Attention Networks(GAT) [13], and
Position-aware Graph Neural Networks (P-GNN) [11].

A-GNN Model. Our model consider two variants of A-GNN: (1) A-GNN using
truncated 2-hop shortest path distance(A-GNN-F); (2) A-GNN using exactly shortest
path distance (A-GNN-E).

5.4 Results and Analysis

Link Prediction. Link prediction is intended to predict the missing edges in the graph.
If two nodes in a low-dimensional vector space are close, they are generally more likely
to be linked by an edge. The performance of baseline models and A-GNN model are
summarized in Table 2 on link prediction tasks. It can be seen that our A-GNN model
achieves better results than any other baseline model of the link prediction tasks.
Comparing the datasets, the effect of our model on their improvement is different,
ranging from 1% to 4%. The improvements are minimal for both communities and Grid
datasets, while obvious for PPI dataset. The reason is that both communities and Grid

Table 2. AUC value for link prediction.

Grid Communities PPI

GCN
GraphSAGE
GAT
GIN
P-GNN-F
P-GNN-E

0.456 ± 0.037
0.532 ± 0.050
0.566 ± 0.052
0.499 ± 0.054
0.694 ± 0.066
0.940 ± 0.027

0.512 ± 0.008
0.516 ± 0.010
0.618 ± 0.025
0.692 ± 0.049
0.991 ± 0.003
0.985 ± 0.008

0.769 ± 0.002
0.803 ± 0.005
0.783 ± 0.004
0.782 ± 0.010
0.805 ± 0.003
0.808 ± 0.003

P-GNN-F (repetition)
P-GNN-E (repetition)

0.685 ± 0.029
0.932 ± 0.031

0.980 ± 0.007
0.973 ± 0.000

0.786 ± 0.006
0.793 ± 0.005

A-GNN-F
A-GNN-E

0.736 ± 0.066
0.969 – 0.005

0.988 ± 0.006
0.993 – 0.000

0.818 ± 0.005
0.820 – 0.003

A-GNN: Anchors-Aware Graph Neural Networks for Node Embedding 151

are small graphs with only 400 network nodes. Therefore, the nodes with similar
network neighbors or at symmetric positions can be distinguished by a few makers
instead of anchors. However, since each graph in PPI is a large graph, which has about
3000 nodes and 50000 edges on average, and have a lot of symmetrical structures.
Thus, anchors can better help A-GNN model to distinguish nodes with similar local
structures, compared to randomly selected makers.

Pairwise Node Classification. In pairwise node classification tasks, we predict whe-
ther a pair of nodes belongs to the same community/class. In this case, a pair of nodes
that do not belong to the same community are a negative example. The performance of
baseline models and A-GNN model are summarized in Table 3 on pairwise node
classification tasks. Our A-GNN model achieves the best experimental results in all
datasets. Because GNNs focus on learning structure-aware embeddings, these models
cannot perform well in distinguishing nodes belonging to different communities but
have similar neighbourhood structures. Furthermore, the results of GNNs are about
30% lower than the other two models. A-GNN results are better than P-GNN’s,
indicating that the anchors adopted by our model are more efficient than randomly
generated makers.

6 Conclusion

We propose A-GNN model, a new class of GNNs for incorporating the global structure
information into the node vector, and utilize node features. We show that A-GNN
consistently outperform existing baselines in link prediction and pairwise node clas-
sification tasks and both synthetic and real datasets.

Acknowledgements. This work was supported in part by the National Key R&D Program of
China (Grant No. 2018YFB1004600), the National Science and Technology Major Project of
China (Grant No. 2017ZX05036-001) and the National Natural Science Foundation of China
(NSFC) (Grant No. 61972365, 61772480, 61672474, 61673354, 61501412).

Table 3. AUC value for pairwise node classification.

Communities Email Protein

GCN
GraphSAGE
GAT
GIN
P-GNN-F
P-GNN-E

0.520 ± 0.025
0.514 ± 0.028
0.620 ± 0.022
0.620 ± 0.102
0.997 ± 0.006
1.0 ± 0.001

0.515 ± 0.019
0.511 ± 0.016
0.502 ± 0.015
0.545 ± 0.012
0.640 ± 0.037
0.640 ± 0.029

0.515 ± 0.002
0.520 ± 0.003
0.528 ± 0.011
0.523 ± 0.002
0.729 ± 0.176
0.631 ± 0.175

P-GNN-F(repetition)
P-GNN-E(repetition)

0.987 ± 0.002
0.988 ± 0.005

0.676 ± 0.050
0.668 ± 0.021

0.675 ± 0.001
0.512 ± 0.000

A-GNN-F
A-GNN-E

0.988 ± 0.006
1.0 – 0.002

0.754 – 0.002
0.721 ± 0.009

0.708 – 0.003
0.633 ± 0.002

152 C. Liu et al.

References

1. Damian, S., John, H., Helen, C.: quality-controlled protein–protein association networks,
made broadly accessible. Nucleic Acid Res., 937 (2016)

2. Ying, R., He, R., Chen, K.: Graph convolutional neural networks for web-scale
recommender systems. In: 2018 International Proceedings on ACM SIGKDD Knowledge
Discovery and Data Mining, pp. 1576–1585 (2018)

3. Zitnik, M., Leskovec, J.: Predicting multicellular function through multi-layer tissue
networks. Bioinformatics 33(14), i190–i198 (2017)

4. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks.
In: 2017 International Proceedings on Learning Representation (2017)

5. Grover, A., Leskovec, J.: node2vec: Scalable feature learning for networks. In: 22th
International Proceedings on ACM SIGKDD, pp. 855–864 (2016)

6. Sun, G., Zhang, X.: A novel framework for node/edge attributed graph embedding. In: Yang,
Q., Zhou, Z.-H., Gong, Z., Zhang, M.-L., Huang, S.-J. (eds.) PAKDD 2019. LNCS (LNAI),
vol. 11441, pp. 169–182. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16142-
2_14

7. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph neural
network model. IEEE Trans. Neural Netw. 20(1), 61–80 (2009)

8. Sun, M., Tang, J., Li, H.: Data poisoning attack against unsupervised node embedding
methods. arXiv preprint arXiv:1810.12881 (2018)

9. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: 22nd
International Proceedings on ACM SIGKDD Knowledge Discovery and Data Mining,
pp. 855–864 (2016)

10. Cheng, Y., Zhi, L., Deli, Z.: Network representation learning with rich text information. In:
2015 International Proceedings on IJCAI (2015)

11. Jiaxuan, Y., Rex, Y., Jure, L.: Position-aware graph neural networks. In: 36th International
Proceedings on International Conference on Machine Learning (2019)

12. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks.
In: 2017 International Proceedings on International Conference Learning Representations,
pp. 1–14 (2017)

13. Velickovic, P., Cucurull, G., Casanova, A.: Graph attention networks (2018)
14. Battaglia, P.W., Hamrick, J.B., Bapst, V.: Relational inductive biases, deep learning, and

graph networks. arXiv preprint arXiv:1806.01261 (2018)
15. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In:

Advances in Neural Information Processing Systems, pp. 1024–1034 (2017)
16. Zhang, M., Chen, Y.: Link prediction based on graph neural networks. Advances in Neural

Information Processing Systems (2018)
17. Qin, Q., Wang, D.: Evaluation method for node importance in complex networks based on

eccentricity of node. In: Advances in Neural Information Processing Systems, pp. 1324–
1334 (2019)

18. Watts, D.J.: Networks, dynamics, and the small-world phenomenon. Am. J. Sociol. 105(2),
493–527 (1999)

19. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph evolution: densification and shrinking
diameters. ACM Trans. Knowl. Discov. Data (TKDD) 1(1), 2 (2007)

20. Borgwardt, K.M., Ong, C.S., Schonauer, S.: Protein function prediction via graph kernels.
Bioinformatics 21(suppl 1), i47–i56 (2005)

21. Xiqing, S., Shoukui, S.: Complex Network Algorithms and Applications, 2nd edn. National
Defense Industry Press (2016)

22. Xinbo, A.: New metrics for node importance evaluation in occupational injury network.
IEEE Access 7, 61874–61882 (2019)

A-GNN: Anchors-Aware Graph Neural Networks for Node Embedding 153

http://dx.doi.org/10.1007/978-3-030-16142-2_14
http://dx.doi.org/10.1007/978-3-030-16142-2_14
http://arxiv.org/abs/1810.12881
http://arxiv.org/abs/1806.01261

	A-GNN: Anchors-Aware Graph Neural Networks for Node Embedding
	Abstract
	1 Introduction
	2 Related Work
	2.1 Node Embedding
	2.2 Node Importance Evaluation

	3 The A-GNN Framework
	4 Proposed Approach
	4.1 The Strategy of Anchors Selection
	4.2 The Node Embedding Mechanism
	4.3 Algorithm Implementation

	5 Experiments
	5.1 Datasets
	5.2 Experimental Setup
	5.3 Baseline Models
	5.4 Results and Analysis

	6 Conclusion
	Acknowledgements
	References

