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Abstract. Cloud containers represent a new, light-weight alternative to
virtual machines in cloud computing. A user job may be described by
a container graph that specifies the resource profile of each container
and container dependence relations. This work is the first in the cloud
computing literature that designs efficient market mechanisms for con-
tainer based cloud jobs. Our design targets simultaneously incentive com-
patibility, computational efficiency, and economic efficiency. It further
adapts the idea of batch online optimization into the paradigm of mech-
anism design, leveraging agile creation of cloud containers and exploit-
ing delay tolerance of elastic cloud jobs. The new and classic techniques
we employ include: (i) compact exponential optimization for express-
ing and handling non-traditional constraints that arise from container
dependence and job deadlines; (ii) the primal-dual schema for designing
efficient approximation algorithms for social welfare maximization; and
(iii) posted price mechanisms for batch decision making and truthful pay-
ment design. Theoretical analysis and trace-driven empirical evaluation
verify the efficacy of our container auction algorithms.

Keywords: Cloud container · Online auction

1 Introduction

Cloud computing offers cloud users with utility-like computing services in a pay-
as-you-go fashion. Computing resources including CPU, RAM, disk storage and
bandwidth can be leased in custom packages with minimal management over-
head. Virtualization technologies help cloud providers pack cloud resources into
a functional package for serving user jobs. Such packages used to be dominantly
virtual machines (VMs), until the recent emergence of cloud containers, e.g.,
Google Container Engine (largest Linux container) [6], Amazon EC2 Container
Service (ECS) [2], Aliyun Container Service [1], Azure Container Service [3],
and IBM Containers. Compared with general-purpose VMs, containers are more
flexible and lightweight, enabling efficient and agile resource management. Appli-
cations are encapsulated inside the containers without running in a dedicated
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operating system [25]. A representative cloud container is only megabytes in size
and takes seconds to start [23,25], while launching a VM may take minutes. In
the era of using VMs, VMs remain open throughout the life of the job. Because
of the transient nature of a container, jobs could be separated into several con-
tainers, and resource allocation is more convenient.

A complex cloud job in practice is often composed of sub-tasks. For exam-
ple, a social game server [19] typically consists of a front-end web server tier, a
load balancing tier and a back-end data storage tier; a network security appli-
cation may consist of an intrusion detection system (IDS), a firewall, and a load
balancer. Different sub-tasks require different configurations of CPU, RAM, disk
storage and bandwidth resources. Each sub-task can be served by a custom-made
container following the resource profile defined by the cloud user [14]. Some cloud
containers are to be launched after others finish execution, following the input-
output relation of their corresponding tasks. Such a dependence relation among
containers is captured by a container (dependence) graph. For example, in Ama-
zon ECS, a cloud user submits a job definition including resource requirements,
type of docker image, a container graph, and environment variables. ECS then
provisions the containers on a shared operating system, instead of running VMs
with complete operating systems [22] (Fig. 1).
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Fig. 1. Batch auction of cloud jobs running on containers.

In the growing cloud marketplace (e.g., Amazon EC2 and ECS), fixed pricing
mechanisms and auctions complement each other. While the former is simple
to implement, the latter can automatically discover the market price of cloud
services, and allocate resources to cloud users who value them the most [28].
A series of recent cloud auction mechanisms implicitly aim at non-elastic cloud
jobs. These include both one-round cloud auctions [28] and online cloud auctions
[21,29]. In both cases, the provider processes each bid immediately and commits
to an irrevocable decision. Furthermore, even in the online auctions, users’ service
time window is predefined by start and finish times in the bid [21,29].
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A large fraction of cloud jobs are elastic in nature, as exemplified by big data
analytics and Google crawling data processing. They require a certain computing
job to be completed without demanding always-on computing service, and may
tolerate a certain level of delay in bid acceptance and in job completion. For
example, since Sanger et al. published the first complete genome sequence of
an organism in 1977, DNA sequencing algorithms around the globe currently
produce 15 billion gigabytes of data per annum, for cloud processing [9]. A
typical job of DNA testing takes 4 hours to complete, while the user is happy to
receive the final result anytime in a few days after job submission [17].

Given that bids from cloud users can tolerate a certain level of delay in bid
admission, it is natural to revise the common practice of immediate irrevocable
decision making in online cloud auctions. We can group bids from a common time
window into a batch, and apply batch bid processing to make more informed
decisions on all bids from the same batch simultaneously. Actually, if one consid-
ers only online optimization and not online auctions, then such batch processing
has already been studied in operations research, such as online scheduling to
minimize job completion time [8], and scheduling batch and heterogeneous jobs
with runtime elasticity in cloud computing platforms [16].

We study efficient auctions for cloud container services, where a bid sub-
mitted by a cloud user specifies: (i) the container dependence graph of the job;
(ii) the resource profile of each container; (iii) the deadline of the job; and (iv)
the willingness to pay (bidding price). Cloud containers can be agilely created
and dropped to handle dynamic sub-tasks in cloud jobs; it becomes practically
feasible to suspend and resume a sub-task. As long as a container is scheduled
to run for a sufficient number of time slots, its sub-task will finish.

This work advances the state-of-the-art in the literature of cloud auctions
along two directions. First , while batch algorithms have been extensively studied
in the field of online optimization, to the authors’ knowledge, this work is the first
that studies batch auctions in online auction design. Second , this work is the
first cloud auction mechanism designed for container services, with expressive
bids based on container graphs. Our mechanism design simultaneously targets
the following goals: (i) truthfulness, i.e., bidding true valuation for executing
its job on the cloud maximizes a user’s utility, regardless of how other users
bid; (ii) time efficiency, we require that all components of the auction run in
polynomial time, for practical implementation; (iii) expressiveness; the target
auction permits a user to specify its job deadlines, desired cloud containers, and
inter-container dependence relations; and (iv) social welfare maximization; i.e.,
the overall ‘happiness’ of the cloud-ecosystem is maximized.

Corresponding to the above goals, our auction design leverages the follow-
ing classic and new techniques in algorithm and mechanism design. For effec-
tively expressing and handling user bids that admit deadline specification and
container dependence graphs, we develop the technique of compact exponen-
tial Integer Linear Programs (ILPs). We transform a natural formulation of the
social welfare optimization ILP into a compact ILP with an exponential number
of variables corresponding to valid container schedules. Although such a reformu-
lation substantially inflates the ILP size, it lays the foundation for later efficient
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primal-dual approximation algorithm design, helping deal with non-conventional
constraints that arise from container dependence and job deadlines, whose dual
variables are hard to interpret and update directly. A combinatorial sub-routine
later helps identify good container schedules efficiently without exhaustively enu-
merating them.

Towards truthful batch auction design, we leverage the recent developments
in posted price auctions [26]. At a high level, such an auction maintains an
estimate of marginal resource prices for each resource type, based on expected
supply-demand. Then upon decision making of each batch of bids, it chooses
bids whose willingness to pay surpasses the estimated cost to serve them, based
on resource demand of the container graph and projected marginal prices of
resources. A winning user is charged with such estimated cost, which is indepen-
dent from its bidding price. Truthfulness is hence guaranteed based on Myerson’s
celebrated characterization of truthful mechanisms [18].

The social welfare maximization problem in our container auction is NP-hard
even in the offline setting, with all inputs given at once. A third key element of our
cloud container auction is the classic primal-dual schema for designing efficient
approximation algorithms, with rigorous guarantee on worst case performance.
This is further integrated with the posted price framework, in that the marginal
resource prices are associated with dual variables. The primal dual framework
relies on a sub-routine that computes the optimal schedule of a given container
graph, based on static resource prices (fixing dual variables, update primal solu-
tion). We apply dynamic programming [11] and graph traversal algorithms, for
designing the sub-routine for (i) service chain type jobs from network function
virtualization, and (ii) general jobs with arbitrary topologies in their container
graphs. We evaluate the effectiveness of our cloud container auction through
rigorous theoretical analysis and trace-driven simulation studies.

In the rest of the paper, we discuss related work in Sect. 2, and introduce
the auction model in Sect. 3. The container auction is presented and analyzed
in Sects. 4 and 5 separately. Section 6 presents simulation studies, and Sect. 7
concludes the paper.

2 Related Work

There exist a large body of studies in recent cloud computing literature on
cloud auction design. Shi et al. [20] studied online auctions where users bid for
heterogeneous types of VMs and proposed RSMOA, an online cloud auction for
dynamic resource provisioning. Zhang et al. [27] propose COCA, a framework for
truthfull online cloud auctions based on a monotonic payment rule and utility-
maximizing allocation rule. These auction mechanisms are all confined to the
solution space of immediately accepting or rejecting an arriving bid. To our
knowledge, this work is the first that designs batch-type online auctions, both in
the field of cloud computing and in the general literature of auction mechanism
design.

In terms of batch-type online algorithms, Bitton et al. [7] study online
scheduling in a batch processing system. Kumar et al. [16] design scheduling
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mechanisms for runtime elasticity of heterogeneous workloads. They propose
Delayed-LOS and Hybrid-LOS, two algorithms that improve an existing dynamic
programming based scheduler. These work possess a resemblance to ours in terms
of postponing immediate response for more informed decision making, although
they focus on algorithm design only and do not consider payments or incentive
compatibility.

Along the direction of posted price algorithms and mechanisms, Huang et
al. [15] study online combinatorial auctions with production costs. They show
that posted price mechanisms are incentive compatible and achieve optimal com-
petitive ratios. Etzion et al. [10] present a simulation model to extend previous
analytical framework, focusing on a firm selling consumer goods online using
posted price and auction at the same time. This work was inspired in part
by this line of recent developments on using posted prices to achieve effective
resource allocation and bid-independent charges.

3 The Cloud Container Auction Model

We consider a public cloud in which the cloud provider (auctioneer) manages a
pool of R types of resources, as exemplified by CPU, RAM, disk storage and
bandwidth, and the capacity of resource-r is Cr. Integer set {1, 2,..., X} is
denoted by [X]. There are I cloud users arriving in a large time span {1, 2,
..., T}, acting as bidders in the auction. Each user i submits a job bid that is
4-tuple:

Πi = {Wi, ti, di, Bi}. (1)

Here Wi is the workload of user i, ti is arrival time of user i, and its required
deadline for job completion is di. Bi is user i’s overall willingness-to-pay for
finishing its job by di (Fig. 2).
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Fig. 2. Container graphs for cloud jobs from [4].

According to users workload, the detailed information will be obtained by
cloud platform. Such as the number of sub-tasks of the job M, and each sub-
task requires a container to process, thus m is also the number of containers. The
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container graph Gi that describes the dependence among sub-tasks. The number
of requested time slots for each sub-task Nim. Each sub-task can be suspended
and resumed, as long as the total execution time accumulates to Nim. hr

im is the
resource configuration of containerm of user i.

A (container) schedule is a mapping from resources and time slots to cloud
containers, serving accepted cloud jobs to meet their deadlines. We postpone
immediate decision making on the bids, to judiciously exploit cloud jobs’ tolera-
ble delays in bid admission. We group bids from every θ time slots into a batch,
resulting in Q batches within the large time span T. Let ρq be the number of
users arriving within batch q ∈ Q. A binary variable xi indicates whether user i’s
bid is accepted (1) or not (0). Another binary variable zim(t) indicates whether
to execute user i’s sub-task m at time slot t (1) or not (0); it encodes a schedule
of user i’s job. The cloud provider further computes a payment Pi to charge for a
winning cloud user i. The holy grail of auction mechanism design is truthfulness,
the property that greatly simplifies bidder strategy space and analysis of the
auction mechanism (Table 1).

Table 1. List of notations

I # of users

T # of time slots

Cr capacity of type-r resource

M # of sub-tasks/containers of one job

Wi Workload of user i

Gi Dependence graph of user i’s sub-tasks

Nim # of time slots requested by user i’s container m

hr
im Demand of type-r resource by user i’s container m

ti User i’s arrival time

di Deadline of user i’s bid

Bi Bidding price of user i’s bid

xi Accept the user i’s bid(1) or not(0)

ρq # of users arriving within batch q

fS
ir(t) Total type-r resource occupation of schedule in Γi for slot t

θ # of time slots within one batch interval

zim(t) Allocated user i’s container m at time slot t(1) or not(0)

wr(t) Amount of allocated type-r resource at time t

yr(t) Availablity of type-r resource at time slot t

κr(t) Marginal price of type-r resource at time slot t

Fr Minimum value of user’s valuation per unit of type-r resource

Dr Maximum value of user’s valuation per unit of type-r resource

Γi The set of valid schedules for each user

ui User i’s utility
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Lemma 1. Let Pr(Bi) denote the probability of bidder i winning an auction
and B−i be the bidding price except i. A mechanism is truthful if and only if the
following hold for a fixed B−i [12]:

(1) Pr(Bi) is monotonically non-decreasing in Bi;
(2) bidder i is charged by BiPr(Bi) − ∫ Bi

0
Pr(Bi)dB.

Lemma 1 can be explained in this orientation: the payment charged to bidder
i for a fixed Bi is independent of Bi. We will use this mode to design a posted
price function in Sect. 4. Since we meet the challenge that when we consider
that online batch auction decisions are to be made based on hitherto information
only. If user i’s job is accepted, its utility is ui = υi − Pi, which equals ui =
Bi − Pi under truthful bidding. The cloud provider’s utility is

∑
i∈[I] Pi. The

social welfare that captures the overall utility of both the provider and the users
is (

∑
i∈[I] Bixi −

∑
i∈[I] Pi) + (

∑
i∈[I] Pi). With payments cancelling themselves,

the social welfare is simplified to
∑

i∈[I] Bixi.
Under the assumption of truthful bidding, the Social Welfare Maximization

problem in our cloud container auction can be formulated into the following
Integer Linear Program (ILP):

maximize
∑

i∈[I]

Bixi (2)

subject to:

θ� ti
θ

�xi ≤ tzim(t),∀t,∀m,∀i : ti ≤ t, (2a)

tzim(t) ≤ dixi,∀t,∀m,∀i : ti ≤ t, (2b)

tzim(t) ≤ t′zim′(t′), (2c)

∀t, t′,∀i : task m′ arrives later than task m,

Nimxi ≤
∑

t∈[T ]

zim(t),∀m,∀i, (2d)

∑

i∈[I]

∑

m∈[M ]

hr
imzim(t) ≤ Cr,∀r,∀t, (2e)

xi, zim(t) ∈ {0, 1},∀i,∀t,∀m. (2f)

Constraints (2a) and (2b) ensure that user i’s job is scheduled to execute only
between its start time and deadline. (2c) enforces inter-task dependence of user
i’s sub-tasks, and (2d) makes sure that the total number of allocated time slots
for each container is sufficient to finish the corresponding sub-task. Constraint
(2e) states that the total amount of type-r resource utilized at time slot t is
capped by system capacity.

Even in the offline setting with all inputs given, ILP (2) is still NP-hard.
This can be verified by observing that with constraints (2e) and (2f) alone, and
ILP (2) degrades into the classic knapsack problem known to be NP-hard. We
resort to the classic primal-dual schema [24] for efficient algorithm design. We
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first reformulate ILP (2) into an equivalent compact exponential version, to hide
the non-conventional constraints that arise from container dependence and job
deadlines, whose dual variables would be hard to interpret and to update:

maximize
∑

i∈[I]

∑

S∈Γi

BixiS (3)

subject to: ∑

i∈[I]

∑

S:t∈S

fS
ir(t)xiS ≤ Cr,∀r ∈ [R],∀t ∈ [T ], (3a)

∑

S∈Γi

xiS ≤ 1,∀i ∈ [I], (3b)

xiS ∈ {0, 1},∀i ∈ [I],∀S ∈ Γi. (3c)

In the compact exponential ILP above, Γi represents a set of valid schedules
for sub-tasks that meet constraints (2a), (2b), (2c) and (2d). BiS represents the
bidding price of user i for schedule S ∈ Γi. Since a time slot can serve two or
more containers, we let fS

ir(t) represent the total type-r resource occupation of
user i’s schedule S in t. Constraints (3a) and (3b) correspond to (2e) and (2f) in
ILP (2). We relax the integer constraints xi ∈ {0, 1} to xi ≥ 0, and introduce
dual variable vectors ui and κr(t) to constraints (3a) and (3b) respectively, to
formulate the dual of the LP relaxation of ILP (3).

minimize
∑

i∈[I]

ui +
∑

t∈[T ]

∑

r∈[R]

Crκr(t) (4)

subject to:
ui ≥ Bi −

∑

r∈[R]

∑

t∈S

fS
ir(t)κr(t),∀i ∈ [I],∀S ∈ Γi, (4a)

κr(t), ui ≥ 0,∀i ∈ [I],∀r ∈ [R],∀t ∈ [T ]. (4b)

While the reformulated ILP (3) is compact in its form, it has an exponential
number of variables that arise from the exponential number of feasible job sched-
ules. Correspondingly, the dual problem (4) has an exponential number of con-
straints. Even there are exponential number of schedule options are available, we
only select polynomial number of them to compute the approximately optimal
objective through a sub-algorithm (Sect. 4.2). We next design an efficient auction
algorithm that efficiently solves the primal and dual compact exponential ILPs
simultaneously, pursuing social welfare maximization (in the primal solution)
while computing payments (in the dual solution).

4 Batch Auction Algorithm for Social Welfare
Maximization

4.1 The Batch Algorithm

Departing from traditional online auctions that make immediate and irrevocable
decisions, our auction mechanism takes a batch processing approach to handle



126 Y. He et al.

user bids. In each batch, we aim to choose a subset of bids to accept, and to
dynamically provision containers, through choosing a feasible assignment of the
primal variable xiS . We let xiS = 1, if user i’s bid with schedule S is accepted,
then allocate time slots according to the schedule, and update the amount of
resources occupied.

We now focus on batch bid processing and container provisioning for social
welfare maximization. A set of dual constraints exists for each primal variable
xiS . We minimize the increase of the dual objective and maintain dual feasibility
(4a) by leveraging complementary slackness. Once the dual constraint (4a) is
tight with user i’s schedule S (KKT conditions [29]), the primal variable xiS is
updated to 1. According to constraint (4b), the dual variable ui ≥ 0. Therefore,
we let ui be the maximum of 0 and the RHS of (4a). If ui = 0, the bid is rejected.

ui = max{0,max
s∈Γi

(Bi −
∑

r∈[R]

∑

t∈S

fS
ir(t)κr(t))},∀i ∈ ρq (5)

κr(t) can be viewed as the marginal price per unit of type-r resource at t. Conse-
quently,

∑
r∈[R]

∑
t∈S fS

ir(t)κr(t)) represents the cost of serving user i by schedule
S, and {Bi − ∑

r∈[R]

∑
t∈S fS

ir(t)κr(t)} is the utility of user i’s bid. The above
assignment (5) chooses the schedule which can maximize the job’s utility.

Our auction strives to reserve a certain amount of resource for potential high-
value bids in the future. Careful implementation of such an intuition through
dual price design is crucial in guaranteeing a good competitive ratio of the auc-
tion.

Let Dr and Fr represent the maximum and minimum user valuation per
unit of type-r resource respectively. wr(t) denotes the amount of allocated type-
r resource at t. We define the marginal price κr(t) to be an increasing function
of wr(t):

κr(wr(t)) =
σFr

k
(
kDr

σFr
)

wr(t)
Cr (6)

where Dr = max
i∈[I]

Bi∑

m∈[M ]

Nimhr
im

;Fr = min
i∈[I]

Bi∑

m∈[M ]

Nimhr
im

.

The initial price of each type-r resource should be low enough such that
any user’s bid can be accepted; otherwise there might be a large amount of
idle resource. Thus we decrease the starting price by a coefficient k, satisfying:
k − 1 = maxr∈[R] ln(kDr

σFr
) and k > 1. The detailed explanation of k is given

in Theorem 5. For all wr(t) < Cr, κr(t) < Dr, and it will reach Dr when
wr(t) = Cr. In that case, the cloud provider will not further allocate any type-r
resource. The parameter is defined as the minimum occupation rate of all kinds
of resources within slots T, i.e.,

σ = min
r∈R

∑
i∈[I]

∑
m∈[M ] h

r
imNimxi

CrT

We assume that there are enough cloud users to potentially exhaust resources
within each slot. Thus the resource occupation rate σ is close to 1.
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We design a batch auction algorithm Abatch in Algorithm 1 with container
scheduling algorithm Asub in Algorithm 2 or Algorithm 3, which can select opti-
mal container scheduling under different circumstances. Abatch defines the posted
price function and initializes the primal and dual variables in line 1. Upon
the arrival of ρq users within batch q, we first select the schedule that maxi-
mize users’ utility through the dual oracle (lines 4–6).

∑
r∈[R]

∑
t∈[si]

fs
ir(t)κr(t)

in line 7 is viewed as the weighted total resource demand by user i, thus
Bi∑

r∈[R]
∑

t∈[si]
fs
ir(t)κr(t)

can be interpreted as the value for a unit resource of

user i, and we select the bid μ with the maximum unit resource value. If user
μ obtains positive utility, we update the primal variable xμ and dual variable
κr(t) according to μ’s schedule sμ (lines 9–16).

Algorithm 1. A Primal-dual Posted Price Auction Abatch

1: Initialize xi = 0, zim(t) = 0, wr(t) = 0, ui = 0, κr(t) = σFr
k

, ∀i ∈ [I], r ∈ [R], t ∈
[T ], S ∈ Γi, ψ = ∅;

2: Group a set of ρq users within θ time slots;
3: while ψ �= ρq do
4: for all i ∈ ρq \ ψ do
5: (ui,Si,costi,{fS

ir(t)})=Asub({Πi},{Cr},{wr(t)}, {κr(t)});
6: end for

7: μ = argmaxi∈ρq\ψ{ Bi∑
r∈[R]

∑
t∈[si]

fs
ir(t)κr(t)

};

8: if uμ > 0 then
9: xμ = 1;

10: Accept user μ’s bid, allocate resources according to Si, and charge costi for
user i;

11: update: ψ = ψ
⋃{μ};

12: for all t ∈ Sμ do
13: wr(t) = wr(t) + fS

μr(t);

14: κr(t) = σFr
k

( kDr
σFr

)
wr(t)
Cr , ∀r ∈ [R];

15: end for
16: else
17: Reject user μ’s bid, and delete user μ from the set ρq.
18: end if
19: end while

4.2 Sub-algorithm of Auction Mechanism

Our container scheduling algorithms Asub only selects utility-maximizing sched-
ules for each job, rather than an exponential number of schedules. Therefore, we
compute a schedule that minimizes the cost of serving the job.

In our auction mechanism, dependence graph of user tasks is complicated to
handle. We first focus on a relatively small, yet representative case of jobs from
Network Function Virtualization [13], where each container graph is a service
chain. We exploit the sequential chain structure to design Asub1 Algorithm 2



128 Y. He et al.

with polynomial time complexity, based on dynamic programming. By choosing
time slots that can ensure right operating sequence and minimum payment for
each sub-task, the first two nested for loops select minimum-cost schedule for
containers (lines 3–10). Then the second for loop updates the cost and schedule
for each container m (lines 11–15); line 17 updates the cost and utility of user
i’s schedule Si at the end.

Container graphs in practice can be more complex than a chain structure. For
general jobs with arbitrary container graph topology, the container scheduling
problem is NP-hard, as proven in Theorem1; we design Asub2 in Algorithm 3
to solve the optimization. Lines 2–8 in Algorithm 3 sort available time slots by
cm(t). Then Asub2 employs Depth-First Search (DFS) (line 9). We adapt the DFS
procedure with improvements to select available time slots with minimum cost
in a recursive process that decides a container schedule. Truthfulness requires
solving the problem exactly, and our algorithm runs in exponential time to the
number of sub-tasks in a job, which is mostly small and can be viewed as a
constant in practice.

Algorithm 2. Asub1: Container Graph Scheduling - Service Chains
Input: bidding language {Πi}, {Cr},{κr(t)}, {wr(t)};
Output: ui; Si, costi, {fS

ir(t)};
1: Initialize Si = ∅; fS

ir(t) = 0, ∀t ∈ [T ];
2: for all m ∈ [M ] do
3: for all ts ∈ [θ� ti

θ
� +

∑m−1
1 Nim, di − ∑M

m Nim] do

4: for all te ∈ [ts + Nim, di − ∑M
m+1 Nim] do

5: cm(t) =
∑

r∈[R] h
r
imκr(t), ∀t ∈ [ts, te];

6: Select Nim slots with minimum cm(t) and wr(t) + hr
im ≤ Cr, ∀r ∈ [R] to

τm;
7: Δm = [Δm τm];
8: pm(ts, te)=

∑
t∈τm

cm(t);
9: end for

10: end for
11: for all ts ∈ [θ� ti

θ
� +

∑m−1
1 Nim, di − ∑M

m Nim] do
12: pay = minte<ts{pm−1(:, te)}, τm ∈ [Δm];
13: pm(ts, te) = pm(ts, te) + pay;
14: Si = [Si τm], fS

ir(t) = fS
ir(t) + hr

im;
15: end for
16: end for
17: Update: costi = mints,te(pm(ts, te)); ui = Bi − costi;

Theorem 1. In each batch of container based auction, given fixed resource
prices, choosing the schedule of sub-tasks with minimum cost with a general
container graph is NP-hard.

Proof: We construct a polynomial-time reduction to sub-task scheduling from
the classic NP-hard problem subset sum: maxxi

∑n
i=1 cixi, subject to

∑n
i=1 ci

xi ≤ V, xi ∈ {0, 1}.
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Given a set {c1, c2, ..., cn} and a objective V, our problem reduces to an
instance of K = (|M | = n, hr

im = ci, Cr = V ), in which each user’s job has
M types of containers with 1 slot requirement, and the resource pool contains
one type of resource. We should put as many containers in one slot with lowest
price as possible. If a polynomial-time algorithm solves the capacitated container
scheduling problem K, it will solve the corresponding subset sum problem as
well, and vice versa. Consequently, the subset sum problem can be viewed as
a special case of the sub-task scheduling problem, which must be NP-hard as
well. �	

5 Analysis of Auction Mechanism

5.1 Truthfulness of the Batch Algorithm

Theorem 2. The batch auction in Algorithm 1 that computes resource alloca-
tion and payment is truthful.

Proof: In Algorithm 1, upon the arrival of user i and our posted price mechanism,
the payment Pi that user i needs to pay to the cloud provider (if its bid is
accepted) depends only on the amount of resources that has been allocated and
user i’s demand. Which means, user i’s bidding price does not affect its payment.
Therefore, leveraging Lemma 1, our online batch auction is truthful. �	

Algorithm 3. Asub2: Container Graph Scheduling - General Topology
Input: bidding language {Πi}, {Cr},{κr(t)}, {wr(t)};
Output: ui; Si, {fS

ir(t)}, costi;
1: Initialize Si = ∅; fS

ir(t) = 0, ∀t ∈ [T ]; cmin=INF;
2: for all m ∈ [M ] do
3: for all t ∈ [θ� ti

θ
�, di] do

4: cm(t) =
∑

r∈[R] h
r
imκr(t), ∀t ∈ [θ� ti

θ
�, di];

5: Sort slots with wr(t) + hr
im ≤ Cr, ∀r ∈ [R] according to cm(t) to τm;

6: pm(ts, te)=
∑

t∈τm
cm(t);

7: end for
8: end for
9: Calling Depth-First Search(m) to find the container schedule Si and resource

allocaton {fS
ir(t)} with minimum cost cmin;

10: Update: costi = cmin;ui = Bi − costi;

5.2 Solution Feasibility of the Batch Algorithm

Theorem 3. Algorithm 1 computes a feasible solution to ILP (2).

Proof: xi is initialized to 0 and updated to 1 only (line 10 in Algorithm Abatch),
so the solution of our algorithm is binary valued, and satisfies constraint (2f).
Container scheduling algorithms Asub1 and Asub2 guarantee that the schedule S
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for each user’s bid satisfies constraints (2a), (2b), (2c) and (2d). For container
provisioning and scheduling, both Asub1 and Asub2 select time slots satisfying
resource capacity limits, fS

ir(t) + wr(t) ≤ Cr,∃t ∈ [T ]. Hence constraints (2e) is
satisfied. In summary, the solution we obtain is feasible for ILP (2). �	
Theorem 4. The computational complexity of Batch Algorithm 1 to ILP (2) is
polynomial time.

Proof: We first consider the case of service chains (Asub = Asub1). Line 1 in
Algorithm 1 takes linear time to initialize the price function, primal and dual
variables. According to user arrivals, the while loop iterates ρq times to find
user μ with maximum unit resource value, then updates the primal and dual
variables in linear time. In the for loop (lines 4–6), Algorithm Asub1 iterates
ρ2q times to select the best schedule of users with maximum utility. Then each
Asub1 in Algorithm 2 takes η = (di − ts − ∑

m∈[M ] Nim)2 steps to compute the
price of each time slot and examine resource capacity limits for each container.
Thus it takes O(Mη2) to choose the utility maximization schedule for user i. In
summary, the running time of Abatch with Asub1 is O(Mη2ρ2q). We next consider
the case of general container graphs (Asub = Asub2). The complexity of Asub2 is
exponential to the number of containers in the container graph, which is mostly
small and an be viewed as a constant. �	

5.3 Competitive Ratio of the Batch Algorithm

The competitive ratio is an upper-bound ratio of the optimal social welfare
achieved by ILP (2) to the social welfare achieved by our batch algorithm. The
primal-dual framework in our batch algorithm design enables a competitive ratio
analysis based on LP duality theory [24]. Let Pi and Di be the primal objective
value (3) and dual objective value (4) after accepting user i’s job, respectively.
Then we let P0 and D0 be the initial objective values of primal (3) and dual
(4) programs, and P0 = 0. PI and DI are the final primal and dual objective
values achieved by our algorithm Abatch. Let OPT1 and OPT2 be the optimal
objective values of (2) and (3), respectively. Since the compact exponential ILP
is equivalent to the original ILP, we have OPT1 = OPT2, which is hereafter
referred to as OPT .

Lemma 2. According to the initial marginal price of each time slot, the initial
dual objective value D0 is at most 1

kOPT.

Proof: We first show a lower bound on the optimal social welfare:

OPT ≥ σ
∑

r∈[R]

∑

t∈[T ]
FrCr.

Recall that we let σ denote the minimum resource occupation rate within slots
T. Fr can be interpreted as the minimum social welfare generated by a job per
unit of type-r resource and per unit of time. Therefore, σ

∑
r∈[R]

∑
t∈[T ] FrCr is

the minimum social welfare generated by all users.
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According to dual (4) and marginal price function (6):

D0 =
∑

t∈[T ]

∑

r∈[R]
Crκr(0) =

∑

t∈[T ]

∑

r∈[R]
Cr(

σFr

k
)

=
1
k

∑

t∈[T ]

∑

r∈[R]
FrCrσ ≤ 1

k
OPT

Therefore, the initial dual objective value D0 is bounded by 1
kOPT. �	

Lemma 3. If there is a constant α > 1, and the primal and dual objective values
increased by handling each user i’s job satisfy Pi − Pi−1 ≥ 1

α (Di − Di−1), then
the batch algorithm is k

k−1α-competitive.

Proof: Since the inequality is satisfied for all users, we sum up the inequality of
each user i:

PI =
∑

i
(Pi − Pi−1) ≥ 1

α

∑

i

(Di − Di−1) =
1
α

(DI − D0).

According to weak duality and Lemma 2, DI ≥ OPT and D0 ≥ 1
kOPT. There-

fore,

PI ≥ k − 1
kα

OPT1 =
k − 1
kα

OPT2,

with the fact that P0 = 0. Our batch algorithm is k
k−1α-competitive. �	

Next we will define an Allocation Price Relation to identify this α. If the
Allocation Price Relation is satisfied by α, the objective values achieved by our
algorithm Abatch guarantee the inequality in Lemma 3.

Definition 1. The Allocation Price Relation for α ≥ 1 is that κi−1
r (t)(wi

r(t) −
wi−1

r (t)) ≥ 1
αCr(κi

r(t) − κi−1
r (t)),∀i ∈ [I],∀r ∈ [R],∀t ∈ [s], where κi

r(t) repre-
sents the price of type-r resource after processing user i’s job. wi

r(t) is the total
amount of allocated type-r resource after accepting user i.

Lemma 4. For a given α ≥ 1, if the price function κr(t) satisfies
κi−1

r (t)(wi
r(t) − wi−1

r (t)) ≥ 1
αCr(κi

r(t) − κi−1
r (t)),∀i ∈ [I],∀r ∈ [R],∀t ∈ [l],

then Algorithm Abatch Pi − Pi−1 ≥ 1
α (Di − Di−1),∀i ∈ [I].

Proof: If bid i is rejected, Pi − Pi−1 = Di − Di−1 = 0. Then we assume that bid
i is accepted and let s be the job schedule of user i. Knowing that our algorithm
accepts a bid when constraint (4a) is tight, Bis = ui+

∑
r∈[R]

∑
t∈s fs

ir(t)κ
i−1
r (t).

So the increase of primal objective is:

Pi − Pi−1 = ui +
∑

r∈[R]

∑

t∈s
κi−1

r (t)(wi
r(t) − wi−1

r (t))

According to dual (4), the increase of dual objective is:

Di − Di−1 = ui +
∑

r∈[R]

∑

t∈s
Cr(κi

r(t) − κi−1
r (t))
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Since we have ui ≥ 0, α ≥ 1 and κi−1
r (t)(wi

r(t) − wi−1
r (t)) ≥ 1

αCr(κi
r(t) −

κi−1
r (t)):

Pi − Pi−1 = ui +
∑

r∈[R]

∑

t∈s

κi−1
r (t)(wi

r(t) − wi−1
r (t))

≥ ui +
1
α

∑

r∈[R]

∑

t∈s
Cr(κi

r(t) − κi−1
r (t))

≥ 1
α

(ui +
∑

r∈[R]

∑

t∈s
Cr(κi

r(t) − κi−1
r (t)))

=
1
α

(Di − Di−1)

�	
We next try to find the αr for type-r resource that satisfies the Allocation

Price Relationship. Thus the α is the maximum value among all αr. Since the
capacity of type-r resource is larger than a user demand, we let dwr(t) denote
wi

r(t) − wi−1
r (t). We first prepare with the following definition.

Definition 2. The Differential Allocation Price Relation for Abatch with a given
parameter αr ≥ 1 κr(t)dwr(t) ≥ 1

αr
Crdκr(t),∀i ∈ [I],∀r ∈ [R],∀t ∈ [s].

Lemma 5. The marginal price defined in (5) satisfies the Differential Allocation
Price Relation, and we can get αr = ln(kDr

σFr
).

Proof: The derivative of the marginal price function is:

dκr(t) = κ
′
r(wr(t))dwr(t) =

σFr

k
(
kDr

σFr
)

wr(t)
Cr

1
Cr

ln(
kDr

σFr
)dwr(t).

Therefore:
σFr

k
(
kDr

σFr
)

wr(t)
Cr ≥ Cr

αr

σFr

k
(
kDr

σFr
)

wr(t)
Cr

1
Cr

ln(
kDr

σFr
)

≥ 1
αr

(
σFr

k
(
kDr

σFr
)

wr(t)
Cr ln(

kDr

σFr
)),⇒ αr ≥ ln(

kDr

σFr
)

Thus we can obtain αr = ln(kDr

σFr
). �	

Lemma 6. The batch auction Algorithm Abatch is k
k−1α-competitive in social

welfare with α = maxr∈[R]ln(kDr

σFr
).

Proof: Lemma 5 implies that α = maxr∈[R]ln(kDr

σFr
) satisfies the Differential

Allocation Price Relation of all kinds of resources. Since the above mentioned,
dwr(t) = wi

r(t) − wi−1
r (t),

dκr(t) = κ
′
r(wr(t))dwr(t) = κ

′
r(wr(t))(wi

r(t) − wi−1
r (t))

= κi
r(t) − κi−1

r (t).

Thus, we can obtain α = maxr∈[R]ln(kDr

σFr
) due to the Allocation Price Relation-

ship. �	
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Theorem 5. If k satisfies k − 1 = maxr∈[R] ln(kDr

σFr
) and k > 1, the competitive

ratio of batch auction algorithm is minimum, and is equal to k.

Proof: We assumpt that � = maxr∈[R]( Dr

σFr
). By Lemma 5, the competitive

ratio of our batch algorithm is k
k−1α = k

k−1 ln(kDr∗
σFr∗ ) = k

k−1 ln(k�), thus the
competitive ratio is a function of k. Differentiating k

k−1 ln(k�) on k is:

(
k

k − 1
ln(k�))

′
=

k − 1 − ln(k�)
(k − 1)2

It suffices to show that (k−1−ln(k�)
(k−1)2 )

′
is positive as k ∈ [1,∝]. When k satisfies

k − 1 = ln(k�) and k > 1, we can obtain the minimum competitive ratio:

k

k − 1
ln(k�) =

k

ln(k�)
ln(k�) = k.

If we consider the case that competition for resource is intense, the σ is close
to 1. When Dr/Fr is 2, the competitive ratio is close to 2.85, as illustrated in
Fig. 3. �	
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Fig. 3. Theoretical competitive ratio.

5.4 Setting the Batch Interval θ

In our batch auction, the more jobs we handle in a batch, the more information
we have for social welfare maximization. Nonetheless, we can’t over-extend the
length of a batch given that cloud jobs have deadlines to meet. Precise optimiza-
tion of the job interval length is left as future research, and we provide here a
brief discussion only. Let Wi be the time required to execute a job i, and ρ be
the expected number of user arrivals per slot. In general, an appropriate length
of a batch round depends on values of Wi, deadline di and arrival time ti of user
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i, i ∈ [I]. We can set a target threshold on the job loss rate (e.g., 10%), the ratio
of jobs who cannot meet their deadlines due to delayed bid admission.

Assume that job processing time and di − ti are normally distributed, by
N(a1, b

2
1) and N(a2, b

2
2), respectively. The max waiting time for each user equals

di − ti − Wi, and is also normally distributed as N(a1 − a2, b
2
1 + b22). If user i’s

maximum waiting time θi < θ, we will lose this job. Thus the length of batch
interval θ can be set by (for ≤ 10% job loss):

{max θ, s.t.
∑θ

t=1
F (θ) ≤ 0.1, θ ∈ {1, 2, 3, 4, ...}.}

where F (θ) is the Normal cumulative distribution function of θ.

6 Performance Evaluation

We evaluate our batch auction algorithm Abatch and its sub-algorithms by trace-
driven simulation studies. We leverage Google cluster data [5], which captures
rich information on user jobs, including start time, resource demand (CPU, RAM
and Disk), and duration. We translate cloud job requests into bids, arriving in a
one month time window. We assume that each sub-task consumes [1, 10] slots,
and each time slot is one hour. Job deadlines are set randomly between the
arrival time and system end time. The demand of resources (CPU, RAM and
Disk) is set randomly between [0, 1], with the resource capacity set to 50. We
use user density to express the number of users in one batch interval, arriving
as a Poisson process.

A. Comparison with Classic Online Auctions
We compare our batch auction with a traditional online auction in terms of social
welfare, as shown in Fig. 4. Under the same simulation settings, we compare
the two algorithms in 10 different sets of simulation studies. Our batch auction
achieves a higher social welfare in all of them. Intuitively, the online auction pro-
cesses bids in a FCFS fashion, while the batch auction considers most attractive
bids first in each batch. Figure 5 shows another set of comparisons. The superi-
ority of batch auction remains clear, with different number of time slots and user
density. Social welfare fluctuates with the increase of the number of users and
user density. The batch auction performs better with higher user density. The
influence of different batch interval θ for the batch performance is illustrated in
Fig. 6. As θ grows, the cloud social welfare initially grows as well. However, when
θ is too large so that more bids are lost due to delays, as we can see in Fig. 6,
a gradual decrease in the percentage of winners leads to a decreasing trend in
social welfare. Recall that in the analysis of θ in the previous section, a too large
θ is not suitable for our batch auction.



Batch Auction Design for Cloud Container Services 135

Number of Experiments
1 2 3 4 5 6 7 8 9 10

S
oc

ia
l W

el
fa

re
×104

1.7

1.8

1.9

2

2.1

2.2

2.3
Batch
Online

Fig. 4. Social welfare, batch vs. online
auctions.

600 800 1000 1200 1400 1600
Number of Time Slots

0.5

1

1.5

2

S
oc

ia
l W

el
fa

re

×107

Poisson coefficient=3
Online(P=3)
Poisson coefficient=8
Online(P=8)

Fig. 5. Social welfare achieved by
Abatch.

0 10 20 30 40
Batch Interval θ

1.22

1.31

1.4

1.49

1.58

1.67

S
oc

ia
l W

el
fa

re

×106

30

40

50

60

70

80
P

er
ce

nt
ag

e 
of

 W
in

ne
r

Social Welfare
Percentage of Winners
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of winners, varying batch length.
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algorithm Abatch.

B. Competitive Ratio of the Batch auction
Next we study the competitive ratio achieved by our batch auction. As we proved
in Theorem 6, the competitive ratio depends on Dr/σFr. Figure 7 shows that the
competitive ratio grows as Dr/σFr increases. The observed competitive ratio is
much better than the theoretical bound and remains smaller than 2; this can be
partly explained by the fact that the theoretical bound is a pessimistic worst case
scenario uncommon in practice. The ratio fluctuates with user population and
sightly decreases with as Dr/σFr decreases. The batch auction favors intensive
user arrivals.

C. Performance of Abatch: The Role of System Parameters
We next examine the resource occupation ratio σ (defined in Sect. 3) of our
batch auction. As we can see in Fig. 8, under different numbers of time slots and
user density, the resource occupation ratio of the batch auction mechanism is
constantly beyond 90% and often close to 1. Figure 9 demonstrates the variation
of social welfare with different number of users. The social welfare grows mildly
but steadily as the number of users and the number of time slots grow.
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7 Conclusion

This work is the first in the cloud computing literature that studies efficient auc-
tion algorithm design for container services. It is also the first that designs batch
online auctions, aiming at more informed decision making through exploiting the
elastic nature of cloud jobs. We combined techniques from compact exponential
optimization, posted price mechanisms, and primal-dual algorithms for designing
a cloud container auction that is incentive compatible, computationally efficient,
and economically efficient. As future directions, it will be interesting to study (i)
cloud jobs that cannot be suspended and resumed; (ii) pre-processing of cloud
jobs with tight deadlines to choose between immediate acceptance or delayed
processing of their bids; and (iii) cloud container auctions that make revoca-
ble decisions, where a partially executed cloud job may or may not contribute
towards social welfare of the cloud.
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