
A Reinforcement Learning Based Placement
Strategy in Datacenter Networks

Weihong Yang, Yang Qin(&), and ZhaoZheng Yang

Department of Computer Science, Harbin Institute of Technology (Shenzhen),
Shenzhen, China

csyqin@hit.edu.cn

Abstract. As the core infrastructure of cloud computing, the datacenter net-
works place heavy demands on efficient storage and management of massive
data. Data placement strategy, which decides how to assign data to nodes for
storage, has a significant impact on the performance of the datacenter. However,
most of the existing solutions cannot be better adaptive to the dynamics of the
network. Moreover, they focus on where to store the data (i.e., the selection of
storage node) but have not considered how to store them (i.e., the selection of
routing path). Since reinforcement learning (RL) has been developed as a
promising solution to address dynamic network issues, in this paper, we inte-
grate RL into the datacenter networks to deal with the data placement issue.
Considering the dynamics of resources, we propose a Q-learning based data
placement strategy for datacenter networks. By leveraging Q-learning, each
node can adaptively select next-hop based on the network information collected
from downstream, and forward the data toward the storage node that has ade-
quate capacity along the path with high available bandwidth. We evaluate our
proposal on the NS-3 simulator in terms of average delay, throughput, and load
balance. Simulation results show that the Q-learning placement strategy can
effectively reduce network delay and increase average throughout while
achieving load-balanced among servers.

Keywords: Datacenter networks � Placement strategy � Q-learning

1 Introduction

With the increasing scale of the Internet’s users and the emergence of large-scale
distributed technologies, the demand for massive data processing has promoted the
development of cloud-computing services. As the core infrastructure of cloud com-
puting, Datacenter provides vital support for growing Internet services and applica-
tions. There is an urgent need for datacenter networks to deal with massive data under
delay constraints [1]. The datacenter networks play a critical role in connecting large
and distributed datacenters, providing efficient management and transfer of large
amounts of data. Since the centralized placement of data suffers from scalability
problems and single point failure, it is necessary to disseminate data across the servers
in datacenters. Therefore, how to select suitable storage servers becomes a critical
issue.

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2020
Published by Springer Nature Switzerland AG 2020. All Rights Reserved
X. Chu et al. (Eds.): QShine 2019, LNICST 300, pp. 87–101, 2020.
https://doi.org/10.1007/978-3-030-38819-5_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38819-5_6&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38819-5_6&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38819-5_6&amp;domain=pdf
https://doi.org/10.1007/978-3-030-38819-5_6


There are many recent works proposed to deal with the issue of data placement
from different perspectives. For example, the random-based placement strategies are
simple and popular among several existing systems, such as the Google File System
(GFS) [2], Cassandra [3], and the Hadoop Distributed File System (HDFS) [4].
However, random-based placement is not robust to failure and may cause an imbal-
anced load. On the other hand, some works make placement decisions by considering
network resources and fault-tolerance, to reduce the access time and recovery time of
data [5–12]. For example, based on the available storage resource, an efficient data
placement strategy is proposed in [5] to achieve load balance and satisfy the fault-
tolerant requirements. Similar to the existing works mentioned above, we study the data
placement issue by considering the available network resource (i.e., bandwidth and
storage capacity) in this paper. Moreover, we not only focus on the selection of storage
nodes but also design a routing algorithm to find a suitable path to the storage node.

Due to the dynamics of the network, the data placement strategy should be adaptive
to the changes in datacenter networks such as the available resource and the occurrence
of faults. Reinforcement learning (RL) is agent-based learning that agents can learn by
interacting with their environments. RL can explore and learn the dynamics of network
and exploit limited resources based on limited knowledge. We leverage the RL method
and design a Q-learning based data placement strategy. Each node, including the switch
and server, is an agent that can make routing decisions toward the storage node based
on the feedback from the datacenter networks.

In this paper, we propose an adaptive Q-learning placement strategy, which consists
of the exploration and the exploitation phase. During the exploration phase, each node
calculates the Q-value based on the information piggybacked by packets from down-
stream; and in the exploitation phase, the node makes routing decisions based on the Q-
value. The information used for calculating Q-value consists of the available storage
capacity of the server and the available bandwidth of the routing path to this server. As
a result, the data can be routed along a suitable path toward the storage node. We use
the NS-3 simulator to evaluate the performance of our proposal by comparing it with
other placement strategies.

The rest of the paper is organized as follows. Section 2 introduces the recent works
related to our work. Section 3 presents the model and detailed design of the placement
strategy. The simulation results are shown in Sect. 4. Section 5 concludes this work.

2 Related Works

A simple and commonly used placement strategy is random placement, which places
the replicas randomly among servers in the datacenter [2, 3, 13]. The random strategy
can improve the speed of data repair; however, it is sensitive to multiple and concurrent
failures. The rack-aware placement strategy (used in HDFS [4]) places replicas on the
servers in both local and remote racks. Each data block is replicated at multiple servers
(typically three). In the case of three replicas, one of the replicas is placed on the server
of the local rack, and others are placed randomly on servers in the remote rack.

88 W. Yang et al.



Therefore, it lacks reliability and may cause an imbalance load among the servers of the
local and remote rack.

In order to balance and evenly distribute large amounts of the data block, Renuga
et al. [5] proposed an efficient data placement and replication scheme to calculate the
redundancy parameters accurately that satisfy fault-tolerant requirements. This scheme
can improve the utilization of storage space and network bandwidth, reducing data
access time and recovery time. Their work focuses on selecting nodes for storage;
however, the selection of routing paths to the storage node is not considered. Zaman
et al. [6] model the replica placement problem as an optimization problem that mini-
mizing the access time of all servers and objects, given the rate of requests and capacity
of servers. Then, a distributed approximation algorithm is proposed to solve the
optimization problem. However, the proposed algorithm cannot well suited for the
dynamic changes in the datacenter networks.

Rajalakshmi et al. [7] focus on designing an algorithm for optimal replica selection
and placement in order to increase the availability of data. The proposed algorithm
consists of the file application phase and the replication operation phase. Based on
multidimensional locality-preserving mappings, a novel data placement scheme is
proposed in [8], which aims at reducing access time of data by supporting dynamic
tags. However, it may introduce extra redundancy and has poor scalability in practice.
The proposal in [9] is based on the consideration of the availability and popularity of
the data. This approach can be tolerant of the occurrence of faults.

AutoPlacer [10] is a self-tuning data placement in a distributed key-value store,
which identifies top-k objects that generate most remote operations (i.e., hotspots) for
each node of the system, and optimizes the placement of hotspots to minimize the
communication between nodes. Lin et al. [11] present a novel placement algorithm that
locates the optimal nodes for placing replicas in order to achieve the load balance.
Moreover, they propose an algorithm to decide the minimum number of replicas.
However, the traffic pattern and locality demands must be known before making the
placement decision. Gao et al. [12] addressed the problem of energy cost reduction
under both server and network resource constraints within the datacenter and proposed
a placement strategy based on ant colony optimization incorporating network resource
factors with server resources. CRUSH [14] selects the candidate nodes for storage by
using a pseudo-random hashing function. CRUSH can support data placement in a
heterogeneous environment; however, the issue of how to route the data toward the
storage node is not studied.

3 Q-learning Based Placement

3.1 System Model

We use the Fat-tree network topology [15] as an illustrated example, as shown in
Fig. 1. Note that our proposal can be adopted in any topologies of datacenter networks.
Assume that the data block b 2 B to be placed can arrive at any server. B is the set of

A RL Based Placement Strategy in Datacenter Networks 89



data blocks, and each data block is divided into many data packets. The placement
strategy selects a storage server that the available capacity should not be less than mb,
where mb is the size of data block b. Moreover, the placement strategy finds a suitable
forwarding path p 2 Pðs; dÞ between server s and d, where Pðs; dÞ is the set of can-
didate paths between server s and d. The capacity of the path should not be less than rb,
where rb is the bandwidth requirement of block b. We assume that mb and rb are known
when the request for placement of data block b arrives. We leverage the reinforcement
learning to design distributed placement strategy. More specifically, each node (switch
or server) makes a routing decision for each data packet of data block based on the
information it learned from the network. We summarize the main notations used in this
paper in Table 1.

Table 1. The main notations used in this paper.

Parameter Definition

b A data block
B The set of data block
mb The size of data block b
p A forwarding path
Pðs; iÞ The set of paths from node s to node i
rb The bandwidth requirement of block b
SsT The total storage capacity of server s
SsO The used storage capacity of server s

Cl
T The total bandwidth of link l

Cl
O The used bandwidth of link l

s1

n1

s10

a
b

Fig. 1. Fat-tree topology.

90 W. Yang et al.



3.2 Modeling of Placement Strategy

The goal for each node is to select the next-hop node that jointly maximizes the
available storage capacity and bandwidth with constraints. Therefore, we model the
placement decision problem for node i when forwarding data block b in datacenter
networks as follow:

max
s2D

a
SsT � SsO

SsT
þð1� aÞ max

p2pði;sÞ
min
l2p

Cl
T � Cl

O

s:t: SsT � SsO�mb

Cl
T � Cl

O� rb

ð1Þ

where s denotes the candidate server for storage, pði; sÞ is the set of paths from node i to s,
and theremay exitsmultiple paths from server i to s.We use p to represent a route between
two nodes, p is consists of multiple links. SsT is the total storage capacity of the candidate
server, SsO is the used storage capacity of the candidate server.Cl

T is the bandwidth of link
l, and Cl

O is the used bandwidth of link l. The first constraint indicates that the size of the
data being placed cannot exceed the remaining capacity of server s. The second constraint
indicates that the available bandwidth of every single link must meet the bandwidth
requirement of block b. The problem (1) can be interpreted as node i attempts to forward
the data block to the next-hop, which has the maximum objective value and satisfies the
capacity and bandwidth requirement of the data block. In this hop-by-hop forwarding
manner, the data packet can be forwarded toward a suitable storage server along the path
with maximum available bandwidth.

3.3 Markov Decision Process and Q-learning

A fundamental assumption based on most reinforcement learning problems is that the
interaction process between agent and environment can be regarded as a Markov
Decision Process. The Q-learning placement algorithm is based on Markov Decision
Process (MDP) for analysis and design [16]. We can use a four-tuple to represent a
finite MDP:

Si;Ai;Pi;Rih ijNji¼1 ð2Þ

S is a state space of node i. At time step t, the state is denoted by siðtÞ ¼ ðk1i ðtÞ; . . .;
kjnhji ðtÞÞ, where kki ðtÞ is the information of minimum bandwidth and remaining storage
capacity received via interface k of node i, and jnhj is the number of next-hops. Ai is a
finite set of actions performed by node i. The action of node i at time step t is aiðtÞ,
which means node i forwards the packet to the selected next-hop at time t. Pi is the
transition probability from state s to state s0 by performing action a. Ri is the immediate
reward received by node i. The reward is defined as the objective function in

A RL Based Placement Strategy in Datacenter Networks 91



optimization problem (1) if the constraints of (1) are not violated. We set the reward to
zero if the next-hop cannot meet bandwidth and storage capacity.

The dynamic information of the network (state S) can be learned to make routing
and placement decision (action A). The available bandwidth of the routing path and the
remaining storage capacity of the server are then used as reward R to train the model.

In order to solve a specific problem, we define an objective function V whose
maximum value corresponds to the optimal strategy we want to obtain. We denote a
strategy by p. We hope that the system can get the optimal strategy p� through
reinforcement learning, which is a series of action-state transition sequences, which
corresponds to the largest converted cumulative return value. Note that there might be
more than one value function, so there may be multiple solutions to the problem. The
maximum value of the calculated value function can get the optimal strategy. The
optimal value function is defined as:

V�ðsÞ ¼ max
p

Ep
X1

t¼0 c
trtþ 1

h i
; 8s 2 S; ð3Þ

where c 2 ð0; 1Þ is the discount factor, rt is the reward at time t, Ep �½ � denotes the
expectation value under strategy p. According to the dynamic programming, we have
the following Bellman equation:

V�ðsÞ ¼ max
a

Raþ cE V�ðs0Þ½ �� �
: ð4Þ

In Q-learning, the Q function is defined as follow:

Q�ðs; aÞ ¼ max
p

Qpðs; aÞ; 8s 2 S; a 2 AðsÞ ð5Þ

3.4 Q-learning Based Placement Algorithm

Due to the dynamic changes of the network, the self-optimization of the placement
strategy is needed in the datacenter networks. The placement strategy is supposed to
learn from the environment and adjust its strategy by trial and error. Q-learning can
achieve good learning performance in a complex and dynamic system by learning the
optimal policy without prior knowledge. The maximum value of the objective function
in (1) can be obtained by the iterative method; therefore, it can be solved by Q-learning
based algorithm.

A node in the datacenter networks acts as an agent and learns strategy based on the
information piggybacked by the ACK packet from the downstream. The information
consists of two parts: the available storage capacity of the server (the first term in the
objective function of (1)), and the available bandwidth of downstream path (the second
term in the objective function of (1)). The weight a adjusts the importance of band-
width and storage capacity when making a placement decision.

92 W. Yang et al.



Updating of Q-value and Stop Condition. Each node i with data packets to send
takes action ai at state si based on the strategy piðtÞ at the beginning of the time step t.
Then, the Q-value for the next time step is updated as follow:

Qtþ 1
i ðsi; aiÞ  ð1� bÞQt

iðsi; aiÞ
þ bða S

s
T � SsO
SsT

þð1� aÞ max
p2pði;sÞ

min
l2p
ðCl

T � Cl
OÞþ cmax

a
Qt

iðstþ 1
i ; aÞÞ ð6Þ

The calculation of Q-value stops when the following stop condition is met:

Q0i � Qi

�� ��\ eð1� cÞ
2

ð7Þ

where e is a positive number. If the difference between the two Q-values is small
enough, the updating of Q-value stops.

The Detail of Q-learning based Placement. The Q-learning based placement algo-
rithm is presented in Algorithm 1. According to (6), the calculation of Q-value needs
the information from the downstream of the routing path. Therefore, we divide the
placement strategy into two phases: exploration and exploitation phase.

We augment the ACK with two additional fields: RemainCapacity and MinBand-
with. RemainCapacity field is used to record the remaining capacity of the candidate
server for storage, and MinBandwith records the minimum bandwidth of the routing
path. Based on the information in these two fields, a node only forwards the data packet
to the next-hop that does not violate the constraints in (1).

Exploration (Line 2–18 in Algorithm 1): In this phase, each node will have to
calculate the Q-value locally. Each node sends the request rq for updating Q-value to its
next-hops (Line 3–5). Upon receiving the request rq, the server responds by sending
back the ACK (Line 6–8). Then, the node uses the information piggybacked by the
ACKs to update its local Q-values (Line 11). In this hop-by-hop manner, the Q-values
along the routing path are updated. The above steps are repeated until the stop con-
dition (7) is met, and then the phase is transited to exploitation (Line 12–14). Two
conditions can trigger the algorithm to be in the Exploration phase: the change of
network resources or the initialization of the network. The first condition indicates the
algorithm is transited from the Exploitation to the Exploration phase due to the vio-
lation of stop condition. In this case, only the node whose Q-value is changed has to
issue the request rq. The second condition indicates that the network is initializing, and
there is no Q-value that has been calculated at each node. Therefore, every node has to
issue the Q-value updating request rq.

A RL Based Placement Strategy in Datacenter Networks 93



Exploitation: In this phase, when receiving the request rd of data block replacement,
the switch selects the next-hop p that has the highest Q-value and satisfies the band-
width and capacity requirement (Line 21–22). The switch also records the next-hop p
for this request in the routing table (Line 23), and then the subsequent data packets can
be routed to the storage server based on the routing table. When the server receives a
placement request rd , it sends back an ACK tagged with the available capacity (Line
25–27). The algorithm remains in the exploitation phase until the stop condition is
violated; then, the phase is transited back to exploration (Line 34–36 and Line 42–44).
This condition indicates that the available resource has changed, and the Q-values have
to be updated. Note that when a request for data block placement arrives during the
exploration phase, the request will still be forwarded to the next-hop that has the
highest Q-value, even though the Q-learning based algorithm does not converge.

As a result, the data block will be routed to the storage node along the path that
maximizes the objective function in (1), i.e., the selected storage node has maximum
available capacity, and the routing path has maximum available bandwidth.

We here use an example to illustrate how the proposed Q-learning based placement
works. When the request for data replacement arrives at the server (e.g., server s1 in
Fig. 1), a request of the data block will be forwarded into the network via switch n1.
This request carries information about block size mb and bandwidth requirement rb.
Switch n1 will have to decide to which next-hop the request should be forwarded by
looking up an Augmented Q-Table (AQT). The main format of AQT is shown in
Table 2. Without violating any constraints, the interface with the largest Q-value is
selected, and MinBandwith is updated by subtracting rb from the current MinBandwith.
Moreover, the routing table will be updated: the outgoing interface of the request is
recorded. Then, this request is forwarded to the suitable storage server (e.g., server
s10). Then, s10 sends an ACK tagged with current remaining capacity S10T � S10O � mb.
Upon receiving the ACK, the node updates the local Q-value and RemainCapacity
value in the AQT. When an ACK reaches server s1, the AQTs of all the nodes along
the routing path are updated, then the data packet of this data block will be forwarded,
taking the same path as the request.

Table 2. Augmented Q-Table.

Interface RemainCapacity MinBandwith Q-value

a RCa MBa Qa

b RCb MBb Qb

94 W. Yang et al.



Algorithm 1 Q-learning Placement Algorithm
Input: parameter , discount factor , learning rate , data block 
placement requests dr , size of data block bm , bandwidth require-
ment br , the weight 
Output: placement decision

1. phase Exploration;
2. while phase == Exploration do
3. for each node i do
4. Send request qr for calculating Q-value;
5. end for
6. while server receives qr do
7. Send ACK;
8. end while 
9. while node i receives ACK do

10. Record RC and MB ;
11. Updated Q-value by (6);
12. if ( , ) ( , ) (1 ) 2i i i i i iQ s a Q s a do
13. phase Exploitation;
14. end if
15. Tag ACK packet with information;
16. Send ACK;
17. end while
18. end while
19. while node i receiving placement request dr do
20. if node i is switch do
21. Select next-hop p that has the highest Q-value and satisfies the

bandwidth and capacity requirements
22. Send dr to the next-hop p;
23. Add next-hop p to routing table;
24. else //node i is the server
25. Calculate available storage capacity;
26. Tag ACK packet with available storage capacity;
27. Send ACK;
28. end if
29. end while
30. while node i receiving ACK do
31. Get information from ACK;
32. Calculate Q-value by (6);
33. Record RC and MB ;
34. if ( , ) ( , ) (1 ) 2i i i i i iQ s a Q s a and phase == Exploitation

do
35. phase Exploration;

A RL Based Placement Strategy in Datacenter Networks 95



36. end if;
37. Send ACK;
38. end while
39. while node i receiving data do
40. if node i is switch do
41. Send data to the next-hop based on routing table;
42. if ( , ) ( , ) (1 ) 2i i i i i iQ s a Q s a do
43. phase Exploration;
44. end if
45. else //node i is the server
46. Store the data;
47. end if
48. end while

4 Simulation

4.1 Setup

We use the NS-3 simulator to perform the evaluation. We adopt Fat-tree as the network
topology. The topology is divided into four layers. The upper layer is the core routers,
followed by the aggregation routers. The following are edge routers, each of which is
directly connected to two server nodes. Each group of aggregation routers, edge rou-
ters, and corresponding server nodes is called a Pod. In a k-pod Fat-tree, each pod has
two layers of routers (aggregation and edge routers, respectively), each layer has k=2
routers, and each edge router connects to k=2 servers. We vary the value of k from 4 to
24 in this simulation. The bandwidth of each link is 1000 Mbps. The arrival rate of the
data packet is 1 Mbps. The processing delay is 0.001 ms. The size of each data packet
is 1 KB. We set the storage capacity to 10 GB for each server. Each data block consists
of 1000 data packets. We compare our proposal with the random strategy and CRUSH
[14] strategy in terms of delay, throughput, and server load. For the random and
CRUSH strategy, we use a modified Nix-Vector algorithm that implemented in NS-3.
The discount factor c is set to 0.7, and the learning rate b is set to 0.5.

4.2 Results and Analysis

Figures 2 and 3 describe the results of the average delay of three placement algorithms.
The simulation time is the running time of the simulator. Figure 4 shows the perfor-
mance of the three algorithms in terms of average throughput. From Figs. 2 and 3, we

96 W. Yang et al.



can see that when simulation time increases, the Q-learning strategy performs well
comparing with the other two strategies. At the beginning of the simulation, the random
strategy has a low delay because it does not need to obtain the system information to
make the decision. In the meantime, the Q-learning strategy will have to collect
information and calculate the Q-value during its exploration phase. In this case, the
delay of the Q-learning strategy can be close to or even higher than the random
strategy. Later, the Q-learning strategy performs better when the calculation of Q-value
converges. CRUSH strategy needs to generate the corresponding distribution function
according to the system condition, and the distribution function is fixed. In the data-
center where the network traffic changes dynamically, its performance of average delay
is not good. The Nix-Vector is an on-demand routing strategy that calculates the
routing path on the arrival of requests. To reduce the routing overhead, we record the
routing information in the routing table. Then, when the subsequent request arrives, the
Nix-Vector will not have to calculate the routing path again. In this case, the delay of
random and CRUSH strategy drops over time.

0.064
0.066
0.068
0.07

0.072
0.074
0.076
0.078
0.08

0 20 40 60 80 100 120

A
ve

ra
ge

 d
el

ay
 (s

)

Simualtion time (s)

random scheme Q-learning scheme CRUSH scheme

Fig. 2. Average delay vs time (k = 4).

A RL Based Placement Strategy in Datacenter Networks 97



Figure 4 shows the average throughput of different strategies under different values
of k. The simulation runs for 100 s. From the figure, we can see that the Q-learning
strategy has a slight advantage in terms of average throughput when the system runs
long enough. This is because the Q-learning strategy approaches convergence and
tends to the optimal solution. During the time of calculating Q-value, we consider the
average bandwidth of the path and ensure that loads of each link are balanced.
However, the advantage of the Q-learning algorithm in terms of average throughput is
not obvious compared with the other two algorithms. This is because the Q-learning
algorithm is not optimal in searching for the global optimal Q-value.

In the datacenter networks with unknown network conditions, when the system
runs for a short time, the Q-learning method does not fully form a stable Q-value, so the
performance of the algorithm on average delay is not good. When the running time is
increasing, the Q-learning placement algorithm has a lower average delay because the
Q-value in the routing table is gradually stabilized, and the algorithm can be found
more accurately.

0.063

0.064

0.065

0.066

0.067

0.068

0.069

0 20 40 60 80 100 120

A
ve

ra
ge

 d
el

ay
 (s

)

Simualtion time (s)

random scheme Q-learning scheme CRUSH scheme

Fig. 3. Average delay vs time (k = 8).

98 W. Yang et al.



Figures 5 and 6 illustrate loads of each server after applying a random strategy and
Q-learning strategy, respectively. The initial load of the server node is empty. Then, we
apply different placement algorithms to place 10000 data blocks into the network. We
set k to 8, and there are a total of 432 server nodes.

Random placement strategy randomly selects a server for storing data blocks
without assessing the remaining storage capacity, which leads to uneven load among
servers and unstable performance. CRUSH strategy generates a hash function based on
global network information, but the hash function is relatively fixed once generated.
Therefore, its performance is similar to the random placement strategy. The Q-learning
strategy considers the remaining storage load of the server and the average bandwidth
of path when calculating Q-value; therefore, it can avoid placing data block at a storage
node with smaller bandwidth on the selected path.

90
95

100
105
110
115
120
125
130
135

4 6 8 10 12 14

A
ve

ra
ge

 th
ro

ug
hp

ut
 (M

bp
s)

k

random scheme Q-learning scheme CRUSH scheme

Fig. 4. Average throughput vs. k.

A RL Based Placement Strategy in Datacenter Networks 99



5 Conclusion

In this paper, we propose a reinforcement learning-based data placement strategy for
the datacenter networks. The proposed strategy is adaptive to the network dynamic and
adjusts the routing and placement decisions based on the available resource. We first
model the placement problem as an optimization problem with constraints. Then, we
present the detailed design of the Q-learning based data placement strategy, which
consists of the exploration and exploitation phase. We perform the simulation to
evaluate the performance of our proposal. The simulation results show that the pro-
posed algorithm can effectively balance the load of nodes and improve the average
throughput of the system while reducing the average delay.

0
5

10
15
20
25
30
35
40
45

1 51 10
1

15
1

20
1

25
1

30
1

35
1

40
1

N
um

be
r o

f d
at

a 
bl

oc
k 

Node

Fig. 5. Load of each node (k = 8, n = 432).

0

5

10

15

20

25

30

35

40

1 51 10
1

15
1

20
1

25
1

30
1

35
1

40
1N

um
be

r o
f d

at
a 

bl
oc

k

Node

Fig. 6. Load of each node (k = 8, n = 432).

100 W. Yang et al.



References

1. Xia, W., Zhao, P., Wen, Y., Xie, H.: A survey on data center networking (DCN):
infrastructure and operations. IEEE Commun. Surv. Tutor. 19, 640–656 (2017). https://doi.
org/10.1109/COMST.2016.2626784

2. Ghemawat, S., Gobioff, H., Leung, S.-T.: The Google file system. In: Proceedings of the 19th
ACM Symposium on Operating Systems Principles, Bolton Landing, NY, pp. 20–43 (2003)

3. Lakshman, A., Malik, P.: Cassandra: a decentralized structured storage system. SIGOPS
Oper. Syst. Rev. 44, 35–40 (2010). https://doi.org/10.1145/1773912.1773922

4. Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The hadoop distributed file system. In:
2010 IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST), pp. 1–10
(2010). https://doi.org/10.1109/MSST.2010.5496972

5. Renuga, K., Tan, S.S., Zhu, Y.Q., Low, T.C., Wang, Y.H.: Balanced and efficient data
placement and replication strategy for distributed backup storage systems. In: 2009
International Conference on Computational Science and Engineering, pp. 87–94 (2009).
https://doi.org/10.1109/CSE.2009.27

6. Zaman, S., Grosu, D.: A distributed algorithm for the replica placement problem. IEEE
Trans. Parallel Distrib. Syst. 22, 1455–1468 (2011). https://doi.org/10.1109/TPDS.2011.27

7. Rajalakshmi, A., Vijayakumar, D., Srinivasagan, K.G.: An improved dynamic data replica
selection and placement in cloud. In: 2014 International Conference on Recent Trends in
Information Technology, pp. 1–6 (2014). https://doi.org/10.1109/ICRTIT.2014.6996180

8. Vilaça, R., Oliveira, R., Pereira, J.: A correlation-aware data placement strategy for key-
value stores. In: Felber, P., Rouvoy, R. (eds.) DAIS 2011. LNCS, vol. 6723, pp. 214–227.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21387-8_17

9. Meroufel, B., Belalem, G.: Dynamic replication based on availability and popularity in the
presence of failures. J. Inf. Process. Syst. 8, 263–278 (2012)

10. Paiva, J., Ruivo, P., Romano, P., Rodrigues, L.: AutoPlacer: scalable self-tuning data
placement in distributed key-value stores. ACM Trans. Auton. Adapt. Syst. (TAAS) 9, 19
(2015)

11. Wu, J.-J., Lin, Y.-F., Liu, P.: Optimal replica placement in hierarchical Data Grids with
locality assurance. J. Parallel Distrib. Comput. 68, 1517–1538 (2008)

12. Gao, C., Wang, H., Zhai, L., Gao, Y., Yi, S.: An energy-aware ant colony algorithm for
network-aware virtual machine placement in cloud computing. In: 2016 IEEE 22nd
International Conference on Parallel and Distributed Systems (ICPADS), pp. 669–676. IEEE
(2016)

13. Lian, Q., Chen, W., Zhang, Z.: On the impact of replica placement to the reliability of
distributed brick storage systems. In: 25th IEEE International Conference on Distributed
Computing Systems (ICDCS 2005), pp. 187–196 (2005). https://doi.org/10.1109/ICDCS.
2005.56

14. Weil, S.A., Brandt, S.A., Miller, E.L., Maltzahn, C.: CRUSH: controlled, scalable,
decentralized placement of replicated data. In: Proceedings of the 2006 ACM/IEEE
Conference on Supercomputing, SC 2006, p. 31 (2006). https://doi.org/10.1109/SC.2006.19

15. Al-Fares, M., Loukissas, A., Vahdat, A.: A scalable, commodity data center network
architecture. In: Proceedings of the ACM SIGCOMM 2008 Conference on Data
Communication, pp. 63–74. ACM, New York (2008). https://doi.org/10.1145/1402958.
1402967

16. Doltsinis, S., Ferreira, P., Lohse, N.: An MDP model-based reinforcement learning approach
for production station ramp-up optimization: q-learning analysis. IEEE Trans. Syst. Man
Cybern.: Syst. 44, 1125–1138 (2014). https://doi.org/10.1109/TSMC.2013.2294155

A RL Based Placement Strategy in Datacenter Networks 101

http://dx.doi.org/10.1109/COMST.2016.2626784
http://dx.doi.org/10.1109/COMST.2016.2626784
http://dx.doi.org/10.1145/1773912.1773922
http://dx.doi.org/10.1109/MSST.2010.5496972
http://dx.doi.org/10.1109/CSE.2009.27
http://dx.doi.org/10.1109/TPDS.2011.27
http://dx.doi.org/10.1109/ICRTIT.2014.6996180
http://dx.doi.org/10.1007/978-3-642-21387-8_17
http://dx.doi.org/10.1109/ICDCS.2005.56
http://dx.doi.org/10.1109/ICDCS.2005.56
http://dx.doi.org/10.1109/SC.2006.19
http://dx.doi.org/10.1145/1402958.1402967
http://dx.doi.org/10.1145/1402958.1402967
http://dx.doi.org/10.1109/TSMC.2013.2294155

	A Reinforcement Learning Based Placement Strategy in Datacenter Networks
	Abstract
	1 Introduction
	2 Related Works
	3 Q-learning Based Placement
	3.1 System Model
	3.2 Modeling of Placement Strategy
	3.3 Markov Decision Process and Q-learning
	3.4 Q-learning Based Placement Algorithm

	4 Simulation
	4.1 Setup
	4.2 Results and Analysis

	5 Conclusion
	References




