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Abstract. Task offloading emerges as a promising solution in Mobile
Edge Computing (MEC) scenarios to not only incorporate more process-
ing capability but also save energy. There however exists a key conflict
between the heavy processing workloads of terminals and the limited wire-
less bandwidth, making it challenging to determine the computing place-
ment at the terminals or the remote servers. In this paper, we aim to
migrate the most suitable offloading tasks to fully obtain the benefits from
the resourceful cloud. The problem in this task offloading scenario is mod-
eled as an optimization problem. Therefore, a Genetic Algorithm is then
proposed to achieve maximal user selection and the most valuable task
offloading. Specifically, the cloud is pondered to provide computing ser-
vices for as many edge wireless terminals as possible under the limited wire-
less channels. The base stations (BSs) serve as the edge for task coordina-
tion. The tasks are jointly considered to minimize the computing overhead
and energy consumption, where the cost model of local devices is used as
one of the optimization objectives in thiswirelessmobile selective schedule.
We also establish the multi-devices task offloading scenario to further ver-
ify the efficiency of the proposed allocating schedule. Our extensive numer-
ical experiments demonstrate that our allocating scheme can effectively
take advantage of the cloud server and reduce the cost of end users.

Keywords: Mobile edge computing · Task offloading · Genetic
algorithm · Computing overhead · Allocating schedule

1 Introduction

The recent success of Internet-of-Things (IoT) [11,12,17] facilitates an explo-
sive increase of mobile devices as well as computing tasks. It is reported that
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more than 7 billion resource-limited devices are connected in the Internet of
Things (IoT) in 2018 [1]. These interconnected devices further integrate as an
intelligent information system and call for more smart applications [18]. Mobile
devices are usually assigned with a variety of computing tasks for processing,
while they mostly suffer from the constrained power supply and the limited
processing capabilities [22]. Edge-cloud computing provides a promising oppor-
tunity by offloading the computing tasks of mobile devices to nearby servers
to reduce the computation cost and save energy [14]. The limitation of shared
wireless bandwidth however restricts the entire task offloading, only allowing a
portion of tasks to move to the cloud servers [16]. The task offloading scheme
can effectively reduce the computational burden for end devices. However, how
to select an offloading task will affect the computing energy, the number of tasks,
and bandwidth utilization. Generally, given the diverse optimization objectives,
massive tasks and multiple constraints, such a resource allocation problem is
quite complicated. To this end, we introduce a genetic algorithm that considers
both the channel resource allocation and task cost to address this problem.

A 5G base station (BS) usually owns hundreds of ports, which can support
to send and receive signals from many users at once on the same frequency
[15]. The high density of users in the covered area of a BS will result in limited
data processing given the limited wireless bandwidth. Then, we maximize the
number of computation offloading tasks as well as tasks with a high cost in
a period. We thus propose a genetic algorithm, named computation offloading
with Genetic Algorithm (COGA), to solve the selected tasks of computation
offloading in MEC. It can achieve superior task selection, computing cost, and
energy efficiency during a period.

The contribution of this paper is summarized as follows. The paper models
the computation offloading problem in the MEC scenario as an optimization
problem. Energy consumption, computing latency and the number of tasks are
jointly considered in our design purpose. Therefore, we propose a genetic algo-
rithm COGA, which is based on a unified objective function to optimize mul-
tiple targets for concerned issues. We further propose Enhanced COGA, which
considers the features of the computation offloading scenario to achieve smart
offloading and energy saving. Numerical simulations demonstrate the superiority
of our solution.

The rest of the paper is organized as follows. We present the computation
offloading model in Sect. 2. Section 3 introduces the system model. Then, we
propose a genetic algorithm introduced in Sect. 4. In Sect. 5, we present the
numerical experiments and discuss the results to evaluate the performance. We
finally discuss the related work in Sect. 6, and conclude paper in Sect. 7.

2 Proposed Computation Offloading System Model

The computation offloading is a complex problem, and the considered factors are
inconsistent in different system models [5,13]. Given that those devices are all
connected to a BS, carrying out the offloading strategy at a BS is a simple way
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Fig. 1. The task offloading in multi-user MEC system

to reduce the terminal cost. We also consider the set U = {u1, u2, ..., ui, ..., uNt
}

as the covered terminals by a BS. And these devices belong to a BS B, which
provides the wireless channel to the set U . We assume that the set U will not be
changed during the offloading period T and each device has one task offloading
requirement. Generally, the number of devices and channel gain may be changed
due to the mobility of users covered by the base station. Each device in the sce-
nario owns more than one task for computation offloading and it will be further
discussed in future works. Therefore, the task set Ttask = {L1, L2, ..., Li, ..., LNt

},
where Li ∈ ui. Each covered device only has one task in the model and the task
of device is required to offload to the near cloud by centralized control of the
BS. As shown in Fig. 1, the task offloading scenario has four important parts,
the offloading tasks, the wireless channel, the local users and the remote cloud.

The communication mode, mobile device and cloud play as pivotal roles in
the MEC. These models are introduced in detail as follows.

2.1 Communication Model

In the OFDMA communication system, the total bandwidth is partitioned into
several sub-channels. The OFDMA-based cellular network can adopt the full-
duplex (FD) ratio technology and FD based BS supports multiple half-duplex
(HD) users [6]. The numerous subcarriers of each sub-channel can be assigned to
a user in a centralized model. If the g(i) represents the channel gain for mobile i,
the channel bandwidth is B, and the transmission power is SU . We unified
use N0 presents the average noise power, it is usually considered as Gaussian
channel noise. Then, the maximum transmission bit rate CU can be calculated
by equation
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CU = B ∗ log2(1 +
gUSU

N0
), (1)

where the CU represents the maximum data rate. It means the maximum data
transfer rate can be provided to BS covered users. But it is restrained by some
specific parameters of BS. In actual situations, the actual data transfer rate
CS(U) is very below the theoretical value of CU . Although there is data con-
flicting in the same spectrum, it can be improved by the physic layer channel
access schedule such as CS-MUD and SCMA [2,7]. From the Eq. (1), the limited
transfer data rate may not satisfy the ultra dense devices to offload to the cloud.
For the reason of task processing efficiency, the more tasks benefited from the
remote cloud, the better in MEC scenarios.

2.2 Mobile Device Computation Model in Task Computation
Offloading

The energy consumption and computing time in local device are frequently dis-
cussed [5,20], we assume that device i has only one task Li � (dai, f

l
i ), the f l

i

denotes the CPU cycles of mobile devices per second. Then the local computing
time can described as

tli =
di

f l
i

, (2)

where the tli can also be understood as execution time or the execution cost of
a terminal user. Then, the energy consumption can be described as

el
i = Jidi, (3)

where the Ji denotes the coefficient consumed energy per CPU cycle. If we
transform this problem as the energy consumed per bit of CPU processing, we
can describe the energy consumption as

ηl
i =

Piti
Di

, (4)

where the Pi represents the CPU power consumption. The ti denotes the pro-
cessing time of task Li and the Di represents the number of processing data for
the task Li. From the (3) and (4), the processed amount of data or the num-
ber of CPU cycles for the task are proportional to energy consumption. Note
that the CPU keeps the computing frequency in the processing period and it
is difficult to accurately calculate the energy consumption per cycle due to the
complicated work model of a CPU. Hence, the Ji can be understood as a coef-
ficient of energy computing. After we establish the computing time and energy
consumption model with (2) and (3), then the task cost of local user ui can be
defined as

Cl
i = λtt

l
i + λee

l
i, (5)
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where the λt and λe denote the weight parameters, which influence the opti-
mization target for the concerned network indicators. If the system cares about
the energy consumption, then it can set λt < λe and the λt, λe ∈ [0, 1]. It is the
common processing way in the weight method.

2.3 Cloud Computing Model

The remote cloud is to consider to have sufficiency computing ability, and the
computing energy has no constraint due to the power supply. Some studies focus
on the overall operation reaching a reasonable balanced state. For instance, the
task offloading need to satisfy Cl

i < Cc
i , where the Cc

i denotes the task computing
cost in the cloud [5]. Some other studies do not only consider the computing
capability of the remote cloud but also considers the capacity of the wireless
channel. As shown in Subsect. 2.1, the channel capacity is limited by CU and
there are M sub-channels. Their respective bandwidths make up the available
bandwidth B. To get the benefits of the cloud servers through the limited band-
width which is a challenging question.

3 Distributed Computation Offloading in a BS

The proposed computation offloading has been discussed in this section. As
represented in the prior section, a sub-channel is severed to user i. Therefore,
the channel capacity can reach the maximum data rate as follow:

Cs̄(i) = λγB̄ ∗ log2(1 +
giSi

N0
). (6)

The B̄ represents the bandwidth of a sub-channel and λγ can be understood
as channel utilization. Then we can formulated the channel data rate CU as
CU ≥

∑n
m=1 Lm(m)Cs̄(m), where m denotes the determined offloading tasks.

So the resource allocation problem under the constraints on the channel data
rate can be formulated as follows:

ZBm,Bc
=

⎛

⎝
max
Bm

f(Bm)

max
Bc

f(Bc)

⎞

⎠ =

⎛

⎝
max
Bm

∑n
m=1 Li(m) ∗ Cs̄(m)

max
Bc

∑n
m=1 Li(m) ∗ Cl

i(i)

⎞

⎠

s.t. CU ≥
n∑

m=1

Lm(m)Cs̄(m)

Li ≤ Nt, i ∈ Nt, Ci ≤ Cs̄(i)

(7)

The Eq. (7) describes the demand for task offloading, the purpose of the
scenario requires that maximum tasks need to offload to the cloud, but it should
face the limited bandwidth. And the compute offloading still needs to consider
the energy efficiency

∑m
i=1 el

i and the compute time t
∑m

i=1 tli. In the model, the
cloud computing capabilities are considered to be sufficient. Both the energy
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cost and computing time require the maximum value to reduce the burden of
end-users. Obviously, this is a multi-objective optimization problem. And unfor-
tunately, it is extremely challenging to obtain an optimal solution.

Then we need to make the decision of computation offloading. It can be con-
sidered that, which tasks should be selected to offloading. Similarly, the selected
tasks should have the maximum cost. This strategy will minimize the overall
burden of the terminals.

4 Task Computation Offloading Decision Based
on Genetic Algorithm

In this section, the proposed optimized problem is formulated as the Eq. (7),
and the offloading schedule is designed with a heuristic search method. To solve
this challenging problem, this genetic algorithm focuses on closing the optimal
performance.

4.1 Initialization Model

First, a matrix In is given to express the decision of computation offloading.
The number of rows in the matrix represents the number of offloading decision
combinations.

In =

⎡

⎢
⎢
⎣

δ1,1 δ1,2 ... δ1,Nt

δ2,1 δ2,2 ... δ2,Nt

... ... ... ...
δm,1 δm,2 ... δm,Nt

⎤

⎥
⎥
⎦ , (8)

where the δij means the task number j, the each matrix row represents the
offloading task order form set Ttask. The matrix is established by random way
at the beginning, each task index is unique and δij ∈ [1, Nt]. Besides, the initial
matrix is executed in each period tp. The size of the row is n = Nt, which denotes
the number of pending offloading tasks in the BS. And the fitness function
ψf (N̄t, Cl

i) need to be given according to the optimized object

ψf (N̄t, Cl
i) = λf

N̄t
M(N̄t) + λf

CM(Cl
i), (9)

where the λf

N̄t
and λf

C denotes the coefficient separately. The function of M() is
a mapping function, which can solve the problem of adding non-similar physical
dimensions. They are mapped in [0, δ], then it can be compared within a quan-
tified range. And the N̄t represents the determined offloading tasks, which are
taken values from the matrix row δi,.... Additional, the Cl

i means the cost value
of determined offloading tasks, which is described as the Eq. (5).

4.2 The Selection Processing of COGA

After the COGA establishes the matrix with random values. Then, the COGA
will consist of four phases of operation: roulette algorithm, elite retention strat-
egy, cross operation, and mutation operation.
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Roulette Algorithm (RA): In RA, there are three steps for matrix reorga-
nization. First, the fitness value of matrix In should be calculated as the set
fv(i = 1, 2, 3...,m). Second, the survival probability pr(ri) is calculated by

pr(ri) =
fv(ri)∑m

j=1 fv(rj)
. (10)

Third, pr(ri) is used to establish the array, then the m times selecting operations
will establish a new matrix Inr.

Elite Retention Strategy (ERS): The ERS just selected a maximum fitness
value of a row in Inr, the best row is kept as the m+1 row. Thus, a new matrix
Ine is established.

Cross Operation (CO): COGA randomly selects two rows of Ine (except the
m + 1 row) for crossing operation. And it generates an index p, and p ∈ {p ∈
N |1 ≤ p ≤ Nt}, then the two rows will change the values before δp,... between the
two rows with distance one or two position. In addition, a crossing probability
Pc, which is introduced in [3], can be described as

Pc =

{
max(Pc) − max(Pc)−min(Pc)∗(α−β)

δ′−β , α > β,

max(Pc) , α ≤ β
(11)

where max(Pc) denote the maximum cross probability, and the min(Pc) means
the minimum cross probability. α represents the maximum fitness value of the
two selected rows (the two orders of offloading decisions). β denotes the average
of calculated fitness value for the whole matrix, and the δ′ denotes the maximum
calculated fitness value for the matrix Ine. If a randomly variable seed Sd < Pc,
after CO, the new matrix Inc is established. It should be noted here that the task
index should be unique in each row after CO. It can be achieved by traversing
the task index.

Mutation Operation (MO): After the CO, we can get the new matrix Inc. The
COGA operates the MO for each row of matrix Inc. First of all, the mutation
probability Pm can be described as [3]

Pm =

{
max(Pm) − max(Pm)−min(Pm)∗(α−β)

δ′−β , α > β,

max(Pm) , α ≤ β
(12)

The variables is similar to the Eq. (11). The max(Pm) represents the maximum
mutation probability and the min(Pm represents the minimum mutation proba-
bility. The max(Pc), min(Pc) is set as 0.9% and 0.6%, respectively. At the same
time, max(Pm), min(Pm is set as 0.9 percent and 0.6%, respectively. Each row
of inm will process the MO by the probability Pm. If a row is determined to be
mutated, randomly swap the positions of the two index in the row. Such a MO
iterates through the first m rows of the entire matrix Inc.

After the MO, the row with the lowest fitness value will be deleted. Then,
the new matrix Inm becomes m ∗ Nt. The COGA will iterate until the fitness
value is stable.
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In the computation offloading scenario, the number of tasks may be relatively
high in a BS covered area. The searching process will be lengthy. Therefore, the
CO stage is redesigned to strengthen the dramatic changes in each row. In the
CO stage of COGA, the cross operation just runs at once and it is regardless of
the number of initial tasks. Hence, the CO times φ(m) is designed as

φ(m) =
m

λb + λgδ
. (13)

where the λb and the λg are constant coefficients, the value of φ(m) is positively
related to m. The δ represents a random seed. Then, the more dramatic CO
leads to less convergence consumption times.

Fig. 2. Algorithm convergence under different task numbers

5 Simulation Results

We completed the proposed scenario and the COGA algorithm. Then, several
simulation results are presented for evaluating the performance of the COGA
strategy. In actual situations, mobile computing tasks vary in data size. The
channel capacity of BS is also related to its own model. From the design principle
of the algorithm, the size, number of tasks and the assumption of BS bandwidth
do not affect the effectiveness of the proposed algorithm.

There are up to 60 mobile devices in a BS covered area, the channel gain is
not considered in this scenario due to the principle of algorithm. The channel
bandwidth CŪ = 5 MHz, the transmission power Si = 100 mw and the noise
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Fig. 3. The comparison of channel average remaining capacity and maximum remaining
capacity

Fig. 4. The number of offloading task in different task density

N0 = −100 dbm [5]. In this scenario, each device owns a task for offloading
computing requirements, the Ji = 8.9 ∗ 10−12 J/cycle. The amount of offloading
data size is randomly generated in the range of (0.125∗105, 0.175∗105) bit/s. The
coefficient λt and λe are set as 0.3, 0.7, separately. Since the task data is randomly
generated, the COGA runs to select offloading tasks. To verify the validity of
the method, each experiment is carried out five times. The performance should
be tracked at four aspects in different task density: the convergence status, the
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remaining capacity of the channel, the offloading tasks and offloading cost of
proposed GA algorithms.

To observe the convergence of the COGA, the fitness calculation process of
twelve different number of task offloading scenarios are shown in Fig. 2. All of
them can effective converge after a number of iterations. Besides, the more tasks
have required the computation offloading, the more iterations are needed.

Figure 3 displays the average remaining capacity and maximum remaining
capacity in different task density. When the limited channel capacity is calcu-
lated for 5 tasks, there is more capacity left due to the small data offloading
requirements. From the results, the remaining capacity waves in a small range
when the number of tasks increases. In the scene of intensive tasks, the remain-
ing space is very small, therefore, it shows the effectiveness of residual capability
control. If the channel capacity that can be used for task offloading is too small
and the rate of all pending tasks are big sizes, then the remaining channel capac-
ity will not change too much. We also give the results of the number of offloading
tasks in different task density with the box figure.

Fig. 5. The cost of offloading task in different task density

From the Fig. 4, the top horizontal line and the bottom horizontal line rep-
resents the maximum and minimum of 5 time’s result, separately. The cycle
denotes the average value, and the middle horizontal line means the medium
number of tasks. The results are stable in the relatively intensive task scenes.
It indicates that it near the best-optimized result in the current bandwidth sit-
uation. Similarly to the results in Fig. 4, the cost value of the proposed cost
model also maintains a relatively high level in intensive task scenes. It presents
that COGA has an outstanding optimization effect on the aspects of energy and
computing time. However, both the task transmitting rate and the remaining
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bandwidth determine how many tasks are offloaded. The fewer the number of
offloading tasks, the less the cost on the end-users must be reduced (Fig. 5).

6 Related Work

In the research areas of computation offloading, the proposed approaches aim to
energy [8], latency [4] and joint consideration [9]. Zhao et al. [21] discussed the
task scheduling based on the consideration of computing limitation in the edge
cloud. The task offloading strategy aims to reduce task latency by coordinating
the heterogeneous cloud model. Li et al. [10] aim to optimize the formulated cost
model in multi-users scenarios by deep reinforcement learning (DRL) method
[19]. The results also achieve the proposed design purpose. The resource alloca-
tion approach in MEC is one of the key questions, and there are more studies
for whole network performance progress. You et al. [20] concentrate on energy
consumption and computation latency at multi-user scenarios. The proposed
algorithm was designed based on priority policy to reduce the search cost. In
similar task offloading scenarios, Chen et al. [5] formulate the several computa-
tion decision making among devices as a game in MEC.

From some of the recent researches above, the computation offloading is a
complex problem. Each method focuses on the different aspects of MEC systems.
The optimized problem ignores the task numbers and decreases the maximum
cost of terminal devices which are covered in the communication area of BS.
Then we proposed the COGA to optimize the number of offloading tasks and
computing cost in MEC.

7 Conclusion

The computation offloading is still a hot issue in MEC, and it is hard to determine
the importance of the tasks in the absence of a specific scenario. With the rapid
expansion of mobile applications, more and more small computing tasks will
appear in the future. It is reasonably prophesied that task computation offload-
ing will become more and more important in the ultra dense network. Therefore,
we proposed the COGA computation offloading approach based on the genetic
algorithm, which decides the task offloading and adjusts the mobile terminal
cost for energy efficiency and computing resource under limited channel capac-
ity. Then, we consider the intensive tasks in BS scenarios, then we redesigned
the cross operation for more rapid convergence. After plenty of simulations, sev-
eral results indicated that the proposed algorithm can effectively determine the
offloading tasks. The method has the flexibility for optimized targets, it still has
some aspects that have not yet been discussed. For some instances, To make
the offloading decision in the continuous-time slot, or some tasks with a large
amount of data can not be treated fairly. The valuable problems deserve further
discussions in future work.
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