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Abstract. In recent years, with the rapid growth of big data and computation,
high-performance computing and heterogeneous computing have been widely
concerned. In object detection algorithms, people tend to pay less attention to
training time, but more attention to algorithm running time, energy efficiency
ratio and processing delay. FPGA can achieve data parallel operation, low
power, low latency and reprogramming, providing powerful computing power
and enough flexibility. In this paper, SDAccel tool of Xilinx is used to imple-
ment a heterogeneous computing platform for face detection based on CPU
+FPGA, in which FPGA is used as a coprocessor to accelerate face detection
algorithm. A high-level synthesis (HLS) approach allows developers to focus
more on the architecture of the design and lowers the development threshold for
software developers. The implementation of Viola Jones face detection algo-
rithm on FPGA is taken as an example to demonstrate the development process
of SDAccel, and explore the potential parallelism of the algorithm, as well as
how to optimize the hardware circuit with high-level language. Our final design
is 70 times faster than a single-threaded CPU.

Keywords: FPGA � Heterogeneous � Face detection � Architecture �
High-level synthesis � SDAccel

1 Introduction

In the Internet industry, with the popularization of information technology, the
explosion of data makes people have a new requirement on storage space. At the same
time, the rise of machine learning, artificial intelligence, unmanned driving, industrial
simulation and other fields makes the general CPU encounter more and more perfor-
mance bottlenecks in processing massive computing, massive data and pictures, such as
low parallelism, insufficient bandwidth and high delay. In order to meet the demand of
diversified computing, more and more scenarios begin to introduce GPU, FPGA and
other hardware for acceleration, resulting in the emergence of heterogeneous com-
puting, which refers to the computing mode of a system composed of different types of
instruction sets and computing units of the system architecture.

Two common heterogeneous computing platforms are CPU+GPU or CPU+FPGA
architectures. The biggest advantage of these typical heterogeneous computing archi-
tectures is that they have higher efficiency and lower latency than traditional CPU
parallel computing. CPU belongs to general computing and is good at management and
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scheduling. Therefore, the algorithms-intensive part can be unloaded onto FPGA or
GPU for parallel calculation, so as to realize algorithm acceleration. FPGA has hard-
ware programmability, which means that FPGA can make customized design
according to algorithm, which increases the flexibility of FPGA and enables FPGA to
enter the market quickly. Compared with GPU, FPGA tends to show a better energy
efficiency ratio, and the processing delay is much lower than GPU. This paper uses
SDAccel to implement a heterogeneous computing platform for face detection based on
CPU+FPGA. CPU transmits data to FPGA through PCIe bus. The face detection
algorithm is accelerated by the FPGA. Finally, the results are transmitted back to CPU
from FPGA through PCIe bus, detection results and pictures display are performed on
CPU.

The SDAccel environment uses a standard programming language, providing a
framework for developing and delivering FPGA accelerated data center applications.
Nowadays, the application of FPGA has turned to the field of high-performance
heterogeneous computing and massive data processing, and the object of using FPGA
is not necessarily the traditional hardware engineer, it is likely that the programmer
who works for developing software. SDAccel enables application developers to use
familiar software programming workflows to accelerate with FPGA, even though there
has been little experience in FPGA or hardware design before. Programs running on
CPU are developed using c/c++ and opencl [1] APIs, while programs running on
hardware can be developed using c/c++, opencl or RTL. When we have finished our
design on SDAccel, we need to first carry out software simulation to verify the
functionality of the design, then carry out hardware simulation to see the rationality of
the resources and architecture needed for the design, and finally generate the FPGA
bitstream. The hardware program of this paper is synthesized by Vivado HLS with c/c+
+ high-level language. The benefit of this approach is that it shortens the development
cycle and allows developers to focus more on the architecture of the design.

The rest of the paper is organized as follows: Sect. 2 examines the related work;
Sect. 3 provides an overview of face detection based on the Viola Jones algorithm;
Sect. 4 describes the implementation of the real-time face detection system in an FPGA
and the optimization methods; Sect. 5 presents performance and area results, followed
by conclusions in Sect. 6.

2 Related Work

Face detection is the key technology of pattern recognition and computer vision. The
improvement of algorithm speed is often at the cost of increasing hardware resources or
power consumption. However, with the further development of face detection in var-
ious fields and the consideration of the trend of miniaturization and portability for
energy saving, the requirement of hardware and power consumption for face detection
has gradually become more and more important. Many researches are based on
hardware-accelerated face detection algorithms [4–7, 13–16]. Most of which use Viola
Jones face detection algorithm [3], because it not only has advantages in accuracy and
speed, but also is more suitable for hardware implementation. Lai et al. [4] proposed a
FPGA hardware architecture for face detection using feature cascade classifiers, which
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achieved the detection speed of 143 frames per second (FPS) at VGA (640 � 480)
resolution. But they only used 52 Haar feature classifiers, which greatly reduced the
accuracy of face detection and could not be used in actual detection tasks. Hiromoto [5]
made a thorough analysis of the algorithm, studied the effects of various parallel
schemes, different image downscaling methods and fixed-point on the detection speed
and resource consumption, and proposed a partial parallel face detection architecture.
This greatly reduced the total processing time without greatly increasing the circuit
area. Cho [6] used each detection window to generate integral image for face detection.
Instead of upscaling Haar features, they used image pyramid to detect faces. Kyrkou [7]
combined image downscaling and feature upscaling to realize viola jones face detection
algorithm.

There are many studies on high-level synthesis (HLS) tools [2, 8–12]. Srivastava
[13] explored how to implement viola jones face detection algorithm with high-level
synthesis method. They implemented their design with SDSOC and achieved a rate of
30 frames per second (FPS) at 320 � 240 resolution. In this paper, we implement a
face detection algorithm based on heterogeneous computing platform using high-level
synthesis method and SDAccel tool.

3 Face Detection Algorithm

Haar features is first proposed by Papageorgiou [17]. But it is too much calculation to
be applied. Later, Paul Viola and Michael Jones proposed a method of fast calculating
Haar features by using integral image in [3], three types and four forms of Haar features
are used. Haar-like features were widely used together with Adaboost algorithm.
Common Haar features are shown in the Fig. 1.

The haar features is calculated by the sum of pixels in the white rectangle by their
weight minus the sum of pixels in the black rectangle by their weight. Because of the
translation and enlargement of variety of Haar features in the picture, there will be a
huge number of single features. The numerical calculation of each feature involves the
sum of many pixel values. If the calculation is carried out directly, the amount of
calculation is very huge, which brings trouble to the practical application of Haar
features. In order to solve this problem, Paul Viola and Michal Jones put forward a fast
method of calculating Haar features by integral image. The pixel value of a point in the
integral image is equal to the sum of all the pixel values corresponding to the upper left

Fig. 1. Five common haar features
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of this point in the original image. As shown in Fig. 2, to calculate the total value of
pixels in area D, we only need to subtract the total value of pixels in the upper left of
point 2 and point 3 from point 4, and add the total value of pixels in the upper left of
point 1. The calculation process is expressed as sum (x4, y4) - sum (x3, y3) - sum (x2,
y2) + sum (x1, y1) by the pixel values in the integral image, where xi and yi represent
the horizontal and vertical coordinates of point i. Using the integral image, we can
quickly calculate the pixel values in any rectangular area of the image. A small
detection window contains tens of thousands of Haar features. It is impractical to
calculate all the Haar features by integral image. Moreover, not all Haar features can be
used as classifiers. In order to find the most suitable features for constructing classifiers
among the numerous Haar features and improve the accuracy of these classifiers, Haar
features are combined with Adaboost algorithm. Adaboost algorithm is a kind of
boosting algorithm, and boosting algorithm is an algorithm that upgrades weak learning
algorithm to strong learning algorithm. Adaboost algorithm was proposed by Freund
et al. [18] in 1995, namely, Adaptive Boosting learning. It can adjust the hypothesis
error rate adaptively according to the learning results of the weak learning algorithm, so
it does not need to get the lowest hypothesis error rate in advance. That is to say,
Adaboost does not need to know the performance of the weak classifier in advance like
other boosting algorithms, and the learning efficiency keeps the same as other boosting
algorithms. This is why Adaboost algorithm is widely used.

4 Implementation

4.1 Data Transmission

The image used for detection is transmitted to DDR on the FPGA through the PCIe
bus. The image pixel value needs to be extracted from DDR by AXI bus. In order to
reduce the time of data transmission, we should adopt burst transmission method to

Fig. 2. Integral image.

Accelerating Face Detection Algorithm on the FPGA Using SDAccel 157



extract data from DDR through AXI bus. Because the lowest bit width transmitted by
AXI bus is 32 bits in SDAccel, and the bit width of image pixel value is 8 bits, in order
to make full use of the data width of AXI, we can combine four pixels into a 32-bit
data. When the 32-bit data is transmitted to the FPGA chip, the data is divided into four
pixels. The data transmission process is shown in Fig. 3.

4.2 Image Storage

The module takes out the image transferred from PC to FPGA from DDR and stores it
into BRAM on chip. Then pass the image from BRAM to the image scaling module
and detection module. The advantage of storing images in BRAM is that the latency of
data transmission is small and the speed is fast. The image resolution used in this paper
is 320 � 240.

4.3 Image Scaling Module

When the sliding window method is used for face detection, in order to detect faces
with different scales in the image, it is usually necessary to constantly expand the
window size or reduce the image, and the scaling factor is usually 1.2 or 1.25. This
paper uses the method of image pyramid, and scaling method is the nearest neighbor,
the scaling factor is 1.25 (Fig. 4). This module is pipelined by adding a #pragma HLS
pipeline instruction, which greatly speeds up image scaling.

Fig. 3. Data transfer model
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4.4 Classification Module

Integral Image
In order to calculate the characteristic value of Haar quickly, we need to calculate the
integral image of the image first. The calculated Haar feature values often need to be
normalized by dividing the standard deviation of the pixels in the current window, so a
square integral image is needed. The square integral image is the sum of squares of all
the pixel values in the image. Taking the image of 320 � 240 resolution as an
example, if we want to store the whole integral image on the FPGA, the data bit width
of each storage unit of the integral graph is log2(320 � 240 � 255), at least 25 bits are
needed to store one data in the integral image, and the whole integral image needs
320 � 240 � 25bits, that is, 2 M storage unit. But in the process of each detection of
sliding window, only the data in the window is needed, every data in the integral image
is useless in most of the time. Moreover, with the improvement of image resolution, the
space occupied by the integral image will increase rapidly. Therefore, we used the
method of dynamically generating integral image, which only generates one integral
image of detecting window size at a time.

The integral image detection window in this paper consists of 25 � 25 registers,
each of which stores the integral values corresponding to each pixel position in the
detection window. The width of the register is 18 bits (log2(255 � 25 � 25)). The
reason why register is used instead of RAM or ROM is that the integral image data at
any position in the detection window can be accessed and updated at the same time, so
as to improve the detection efficiency. Because it only stores the integral image of the
current detection window, the consumption of hardware is not large. By taking
advantage of the relevance between adjacent windows and the read-on-call charac-
teristics of registers, we design a pipeline based quick update method of single clock
integral image. Only the first detection window requires several clock delays to fill the
empty integral image window. After that, only one clock can get the integral image of
adjacent window, and the data can be updated very quickly. The update of integral
image is divided into two parts: get the column integral value of the detection window,
and get the integral value of the whole window from the column integral value. Taking

Fig. 4. Image pyramid and sliding window
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3 � 3 window as an example, the updating process of integral image is shown in
Fig. 5. To compute the squared integral image, the same procedure is followed.

Classifier
The classifier used in this paper comes from opencv. This classifier is trained by
Adaboost algorithm with 24 � 24 frontal face, in which each haar feature is a weak
classifier, multiple weak classifiers are combined to form a strong classifier, and
multiple strong classifiers are cascade to form the final cascade classifier. The classifier
finally trained consists of 25 strong classifiers and 2913 weak classifiers, and its
specific components are shown in the Table 1.

Fig. 5. Illustration of the integral image computation and data movement

Table 1. Number of weak classifiers in each stage

Stage Classifier Stage Classifier Stage Classifier

0 9 9 91 18 169
1 16 10 99 19 196
2 27 11 115 20 197
3 32 12 127 21 181
4 52 13 135 22 199
5 53 14 136 23 211
6 62 15 137 24 200
7 72 16 159 Total 2913
8 83 17 155
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The formula for calculating the value of weak classifier is shown in (1).

FHaar ¼ E Rwhiteð Þ � E Rblackð Þ
w � h �
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can be converted to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w � h � sqsum� sum � sump
, sqsum is

expressed as the sum of squares of the pixels in the window, and sum is expressed as
the sum of the pixels in the window. These two values can be obtained by the square
integral image and the integral image respectively. Each weak classifier has a threshold,
a left value and a right value. If the Haar feature value is greater than the threshold, the
right value is output, otherwise the left value is output. The input of weak classifier
module has coordinate of the upper left corner of the rectangle, length, width, weight,
left and right values. Since these values are fixed and do not need to be changed, we
can store these values in each ROM of the FPGA according to the category, thus
eliminating the initialization time and extracting all attributes of a weak classifier in
parallel in one clock cycle. In SDAccel, we can define arrays through static int when
writing kernel code, and fill the values of various attributes of the weak classifier into
different arrays, so that vivado HLS will synthesize these arrays into ROM in FPGA
when compiling kernel code.

These weak classifiers will eventually form a strong classifier. Each strong classifier
also has a threshold, which we store in ROM. If the sum of the output of all weak
classifiers in the strong classifier is less than this threshold, the current detection
window is excluded, otherwise the current detection window is passed. These strong
classifiers are cascaded to form the final face detection classifier. The working mode of
the classifier is shown in the Fig. 6. We also store the number of weak classifiers in
each strong classifier in ROM. Thus, in SDAccel, we can complete the detection
module through two for loops. But it does not give full play to the characteristics of
FPGA parallel computing. We can make vivado HLS design this code into pipeline
mode on hardware by adding # pragma HLS pipeline instruction in the inner loop. By
pipelining 2913 weak classifiers, the speed of image detection is greatly accelerated.

Fig. 6. Illustration of the Classification process
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4.5 Optimization

There are many factors that affect the speed of face detection, such as image scaling
factor, sliding window step size, initial sliding window size and so on. Although the
values of these factors can be changed, they can only be changed in a certain range,
otherwise, the accuracy of face detection will be affected. The image scaling factor used
in this paper is 1.25, the sliding window step is 1, and the window size is 24 � 24. For
a 320 � 240 resolution image, a total of 157433 detection windows can be generated.
In the worst case, each detection window will be detected by 2913 classifiers, which
shows that the computation of the detection algorithm is very large. However, except
for the target area in the image, very few areas will be detected by all the classifiers,
most of which are usually excluded in the first few layers of the cascade classifier. This
is also the advantage of cascaded classifiers. If we want to speed up the algorithm, we
usually use hardware area in exchange for time. In VJ face detection algorithm, the
most extreme example is to parallelize all weak classification detection. But this
approach requires a lot of hardware resources, increases power consumption and
increases the cost of products. We made a compromise between area and speed. Since
most of the detection windows are excluded by the first three layers of cascade clas-
sifier, we only expand the first three layers of cascade classifier. The latter 22-layer
classifier still adopts pipeline parallel method and achieves good results. In order to
expand the first three layers of strong classifiers, the 12 coordinate values required by
weak classifiers should be written into the code manually when writing the kernel code
in SDAccel, rather than from ROM. Because ROM can only read two values in one
clock cycle at most, it is obviously not able to fully expand a strong classifier.

We should also note the various floating-point operations in fpga. Because FPGA is
not suitable for floating-point operation, we should convert floating-point into fixed-
point as much as possible, such as the weights and thresholds of classifiers. This saves
hardware resources and speeds up computing.

When writing software algorithms, we are often used to defining integer variables
as int types. When we want to implement an algorithm on hardware, we should try to
be as accurate as possible about the bit width of the data. Vivado HLS provides ap_ [u]
int, ap_[u]fixed type so that we can accurately declare the data bit width. For example,
in our algorithm, we use an integral image of 25 � 25, which has a bit width of 18bits
(log2 (25 � 25 � 255)), much less than 32bits. This saves hardware resources,
improves clock frequency, speeds up algorithms, and makes vivado easier to route.

In addition to the hardware architecture, we can also consider increasing the speed
of the algorithm by changing the algorithm. Variance is the necessary data for VJ face
detection algorithm. Through the variance statistics of face frontal images, we find that
the variance of face is mostly in the range of 200 to 6000. So we also put the variance
as a strong classifier into the first layer of the cascade classifier. Since the variance
calculation does not need to consume extra time to calculate, and the classification
process is only compared with the threshold value, this method speeds up the face
detection algorithm. The speed comparison between adding variance classifier and not
adding variance classifier will be given in the results section.
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5 Experimental Results

Our design is implemented on inrel i7-8700 CPU and KCU1500 FPGA. The software
environment is SDAccel 2018.2. SDAccel generates kernel programs by calling
Vivado HLS 2018.2, and develops host programs by calling opencl API. We designed
a single thread cpu-based face detection algorithm for comparison with our hardware
implementation. We tested the performance of the software algorithm on the Intel i7-
8700 CPU, and the hardware performance was tested at the clock frequency of
100 MHz.

Table 2 shows the performance of the implemented face detection algorithm in
software and hardware. It can be seen that CPUs based single thread face detection
algorithm is extremely time consuming, with a speed of less than one frame per second.
After acceleration by FPGA, the speed can be increased 70 times to 58 frames per
second (FPS), which meets the demand of video real-time processing. We can also see
that when adding variance classifier, our speed can be increased by at least 10%, and in
some cases, the variance classifier can achieve quite better performance. Table 3 shows
the resource utilization of the system.

6 Conclusions

In this paper, we implement VJ face detection algorithm by using SDAccel, and
implement a heterogeneous computing platform of CPU+FPGA. We discuss the par-
allelism of the algorithm and the hardware architecture, and try some optimization
methods. According to the experimental results, our design can meet the requirements
of real-time face detection. We demonstrate the efficiency of SDAccel, and it is clear

Table 2. Performance of proposed face detection system

Resolution Variance classifier(No) Variance classifier(Yes)

SW Classifier 320 � 240 0.78fps(1279 ms) –

HW Classifier 320 � 240 58.8fps(17 ms) 66.6fps(15 ms)

Table 3. Resource Utilization of our proposed face detection system

Logic Total used Total available Utilization (%)

LUT 84137 663360 12
FF 52735 1326720 3
DSP48E 68 5520 1
BRAM_18K 194 4320 4
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that SDAccel’s products are of good quality and greatly reduce the development cycle
of FPGA products. But there is still room for improvement in the synthesized fine
control of design.
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