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Abstract. With robotics technologies advancing rapidly, there are
many new robotics applications such as surveillance, mining tasks, search
and rescue, and autonomous armies. In this work, we focus on use of
robots for target searching. For example, a collection of Unmanned Aerial
Vehicle (UAV) could be sent to search for survivor targets in disaster
rescue missions. We assume that there are multiple targets. The moving
speeds and directions of the targets are unknown. Our objective is to min-
imize the searching latency which is critical in search and rescue appli-
cations. Our basic idea is to partition the search area into grid cells and
apply the divide-and-conquer approach. We propose two searching strate-
gies, namely, the circuit strategy and the rebound strategy. The robots
search the cells in a Hamiltonian circuit in the circuit strategy while they
backtrack in the rebound strategy. We prove that the expected searching
latency of the circuit strategy for a moving target is upper bounded by
3n2−4n+3

2n
where n is the number of grid cells of the search region. In case

of a static or suerfast target, we derive the expected searching latency of
the two strategies. Simulations are conducted and the results show that
the circuit strategy outperforms the rebound strategy.

Keywords: Robot search · Mobile target · Search planning and
analysis

1 Introduction

From small toasters to huge industrial machines, robots are already an indis-
pensable part of our daily lives. Automatic robots such as Unmanned Aerial
Vehicle (UAV) can now be bought in many shops and are easily affordable by
individuals. Some UAVs can be bought at several hundreds US dollars. It is not
surprise to see UAVs flying nowadays. Apart from aerial robots, there are also
other kinds of robots such as unmanned vehicles (e.g., Google driverless cars),
AUVs/UUVs (autonomous underwater vehicle/unmanned underwater vehicles),
and unmanned ships. The robots carry sensors such as accelerometers, infrared
detectors, microphones and cameras. They can be used in many applications
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including surveillance, search and rescue, payload delivery and military missions
[1,2].

In this paper, we focus on searching missions using robots [7,25]. Figure 1
shows an example of the searching mission, where several robots are deployed
to search for multiple targets in an area. In July 2018, a 44-year-old paraglider
was blown off course from Sunset Peak in Lantau South Country Park in Hong
Kong1. The missing person was believed to have fallen into the nearby jungle or
the sea. It is difficult and slow to deploy ground machines or human forces to
search in the jungle or the sea. The Hong Kong police considered searching for
the missing person using UAVs, which could be massively deployed to assist the
search at land, sea, and air at low visibilities. There could be multiple targets to
be rescued and they may move from time to time. For example, in the incident
of MH3702, there are over 200 people missing and they may move following the
ocean current. Using a large number of robots to assist in the search can increase
the chance of locating the targets in the huge search area and hence may save
more lives.

Robot Target
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Fig. 1. Robots searching for mobile targets in the search area

Although searching for mobile targets using robots is common in practice,
this topic has received little attention. To our best knowledge, we are the first
to study and analyze the strategies of robot-based mobile target searching. We
assume no information, such as speed and direction, about the target’s movement

1 https://www.hongkongfp.com/2018/07/27/hong-kong-paraglider-missing-since-sun
day-found-dead-lantau-island/.

2 https://www.usatoday.com/story/news/world/2014/03/07/malaysia-airlines-beijin
g-flight-missing/6187779/.

https://www.hongkongfp.com/2018/07/27/hong-kong-paraglider-missing-since-sunday-found-dead-lantau-island/
https://www.hongkongfp.com/2018/07/27/hong-kong-paraglider-missing-since-sunday-found-dead-lantau-island/
https://www.usatoday.com/story/news/world/2014/03/07/malaysia-airlines-beijing-flight-missing/6187779/
https://www.usatoday.com/story/news/world/2014/03/07/malaysia-airlines-beijing-flight-missing/6187779/
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is known. We use a divide and conquer approach to let the robots search in
different areas. Each robot searches its assigned area in a pre-set path. There
are two strategies: (1) Circuit strategy and (2) Rebound strategy. The search
strategies are divided into two phases. In the first phase, both strategies detect
every place in the map once to find the targets. However, as targets may move,
the robots may miss the targets in the first phase. Then, in the second phase,
the circuit strategy repeats the same path in the first phase until the robot
runs out of energy. In the rebound strategy, a robot backtracks (i.e., going back
along the path that it followed in the first phase) until its energy is depleted.
Interestingly, as we have proven in this paper, the circuit strategy has a lower
searching latency than the rebound strategy, i.e., the circuit strategy can find the
targets in a shorter time. We have also analyzed the expected searching latency
of our strategies. In specific, with n being the number of cells in the search area,
we proved the following:

1. The expected searching latency of the circuit strategy is upper bounded by
3n2−4n+3

2n .
2. The expected searching latency of both strategies is n+1

2 when the target is
static.

3. The expected searching latency of any strategy is n when the target is super-
fast and can move to any location in the search area at any time.

The simulation results agree with our theoretical results and show that the
circuit strategy has the lowest searching latency.

2 Related Works

Motion control of robots was modeled in [3–5,10,22,28] and has been applied
in a number of applications, such as target searching [8,18,19] target track-
ing [16,23,24], formation of specific topologies and patterns [12,15,26], coverage
area maximization [6,14,21,27], vehicle behavior description [11,13], and net-
work connection maintenance [9,17,19]. We focus on the target searching liter-
ature as follows.

Several studies have examined searches for a single static target. Dimidov et
al. [8] analyzed the efficiency of two classes of random walk search strategies,
namely the correlated random walk and Lévy walk, for discovering a static tar-
get in either a bounded or open space. The search strategies were tested through
simulations that used up to 30 real robots (Kilobots). During the experiment,
communication between robots included sharing information about discovery of
the target. Sakthivelmurugan et al. [20] introduced a number of searching strate-
gies for the detection and retrieval of a static target, including the straight-line,
parallel-line, divider, expanding square, and parallel sweep approaches. Exper-
iments were conducted with up to four robots in an environment with known
boundaries and showed that a parallel sweep with the divider approach was the
most efficient strategy.

Searching for multiple targets was studied by Rango et al. [18]. They consid-
ered the mine detection problem using a modified ant colony algorithm. Given
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Table 1. A summary of differences between our work and current literature

Single/multiple targets Static/mobile targets

This paper Multiple targets Both static and mobile targets

[19] Single target Static target

[8] Single target Static target

[18] Multiple targets Static targets

multiple mines that were randomly distributed in an unexplored area, the prob-
lem is to use robots to explore the area and detect all of the mines in the minimum
time. During the searching process, the robots lay repelling anti-pheromones on
the explored area. When a robot decides for its next next movement, it per-
ceives pheromone information from their surroundings and travels to undetected
regions with the least pheromone intensity. Once one or more robots discovered
a mine, attractive pheromones were deposited to recruit other robots. After the
required number of robots were attracted to the mine location, they worked
cooperatively to disarm the mine.

Although the robot-based target searching has been studied, the previous
works focused on the static target. To the best of our knowledge, this paper
is the first one to consider mobile target searching using robots. In Table 1, we
summarize the differences between our work and current literature.

3 Problem Definition and System Models

There are M targets (e.g., missing persons). They are located within a rectangu-
lar search area of size w × �. They may move from time to time. The speed and
direction of the targets are unknown and they can change at any time. Targets
are assumed not to move outside the search area. There are N homogeneous
robots (e.g., UAVs). Each robot is given a unique integer 1 to N as its ID. Each
robot has a lifetime of L, representing the time it can spend to search for the
target, e.g., before the battery is empty. Each robot has sensing ability so that
it can detect a target within a small range. We define the searching latency of
i-th target, denoted as Ti, as the time to locate the target since the start of the
search. The problem is to design searching plans of the robots so that the chance
for the robots to find all targets is maximized and the average searching time
(

∑M
i=1 Ti

M ) is minimized.
First, we discretize the problem as following. The sensing range of each robot

is assumed to be a square3 of length k so that the robot can detect the target
if it is located in the square. We divide the search area into wc × �c cells where
wc = �w

k � and b = � �
k �. We write (x, y) as the coordinate of each cell. (1, 1)

represents the bottom left corner while (wc, �c) represents the upper right corner.
Let n = wc × �c be the total number of cells of the search area. In our system,
3 The actual sensing range could be a circle containing the square.
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Table 2. Important notations.

Notation Definition

wc Number of cells in width of the search area

�c Number of cells in length of the search area

n Total number of cells of the search area, n = wc × �c

N Number of robots

M Number of targets

L Lifetime of the robots

Ti Searching latency of i-th target

t The current timeslot

we consider that n is significantly larger than number of robots N as the search
area in reality is normally very large. Time is also discretized (time-slotted).
We define 1 unit of timeslot as the time taken by the robot to move from a
cell to a neighboring cell (including diagonally) and perform the detection. In
others words, after a robot has finished the detection at a cell, it can move in 8
directions and reach the next cell to perform the detection. Each robot performs
the movement and detection for exactly 1 cell in 1 timeslot, i.e., the speed of the
robot is 1 (cell per timeslot). A target is always located in one of the n cells of the
search area. If a target and a robot are in the same cell at the same timeslot, the
target is detected. The problem now becomes to design search paths of robots
on the cells. Table 2 summarizes the major notations used in the paper.

4 Search Strategy of Robots

We use a two-phase search strategy as described below.

Phase 1: Explore all Cells Once. Without any information about the target’s
location, the first goal in the searching task is to check all the cells in the search
area once. We use a divide and conquer approach to let the robots search in
different regions at the same time. We take a side (width or length) of the search
area, and divide it into N strips along this side, as shown in Fig. 2. Each robot
is assigned a strip to search for targets and it visits every cell in the strip to find
the targets. The side is selected in order to minimize the difference between the
areas of the strips. Say for example, if wc is divisible by N , we divide the search
area along the width. Each strip is an equi-width rectangle of size wc

N × �. In
general, say we divide the search area along the width and let r = wc mod N .
For robots with ID ≤ r, each is assigned a strip of width �wc

N � and length �c. For
robots with ID > r, each is assigned a strip of width �wc

N � and length �c. Each
robot starts its search at the bottom left corner of its assigned strip at t = 1.

Phase 2: Re-visit Until All Targets are Found. If the targets are static, i.e.,
they do not move, it is guaranteed to find all targets in phase 1. Since the targets
may move, the robots may miss some targets. The robots repeat the search until
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Fig. 2. Searching area is divided into two strips for two robots
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Fig. 3. Search paths of the circuit strategy for different dimensions of the search area.

all targets are found. We consider the following two searching strategies for each
robot.

Circuit Strategy. Each robot travels in a Hamiltonian circuit to visit all
the cells in the assigned strip. After visiting all the cells once, the robot ends
at the staring location. It repeats the circuit again and again until all targets
are found. Hamiltonian circuit always exist when the width and length of the
strip are over 1. Figure 3 illustrates the search paths of the circuit strategy.
Rebound Strategy. Each robot travels in a Hamiltonian path. After it visits
all the cells once, it starts at the ending point and travels back the same
Hamiltonian path in the opposite direction. It repeats the path back and forth
until all targets are found. Hamiltonian path always exist. Figure 4 illustrates
the search path of the rebound strategy.

5 Analysis on Searching Latency

We analyze the searching latency of the proposed searching strategies theoreti-
cally. We assume there is one robot only in the search area. It is trivial to extend
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Fig. 4. Search path of the rebound strategy.

to the multi-robot case as each robot searches in a non-overlapping area. If the
targets are all independent, the expected searching latency of any of them is the
same. Our analysis focuses on the searching latency of j-th target, Tj . We divide
the analysis into three parts:

Static Target. The target does not move but its location is unknown.
Superfast Target. We consider the target’s speed v is over the size of the
search map, i.e., v ≥ max(wc, �c). The target can move from any cell to any
cell between any two timeslots. In this case, the locations of the target at two
consecutive timeslots are independent.
Mobile Target. The target may move and its speed v is smaller than the
size of the search map, i.e., v < max(wc, �c).

5.1 Analysis on Static Target

As the robot searches in all cells, it is guaranteed to find the target. In Theorem 1,
we show that both strategies have the same expected searching latency.

Theorem 1. If the target is static, then the expected searching latency of a robot
using either circuit strategy or rebound strategy is E(Tj) = n+1

2 , where n is the
number of cells of the search area.

Proof. Since there are n cells, the target must be found at or before t = n. There
is a probability of 1

n to find the target at t = i for i = 1 to n. We have

E(Tj) =
n∑

i=1

Pr(Target found at t = i) · i

=
1
n

n∑

i=1

i

=
1
n

· n(n + 1)
2

=
n + 1

2
�	
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5.2 Analysis on Superfast Target

In Theorem 2, we show that any strategy has the same expected searching
latency.

Theorem 2. If the target is mobile with speed ≥ max(wc, �c), then the expected
searching latency of a robot using any strategy is E(Tj) = n, where n is the
number of cells of the search area.

Proof. The probability of the target appearing in any cell at any time t = i is the
same, i.e., Pr(Robot meets target at t = i) = 1

n . Note that the above probability
is the same regardless of which strategy is used. The expected latency is

E(Tj) =
1

Pr(Robot meets target at t = i)
= n

�	

5.3 Analysis on Mobile Target

Every time a robot explores a cell and cannot find the target there, we can
conclude that the target must be in one of the remaining cells. We model the
target’s movement as a probabilistic model where the target may stay at the
same cell in the next timeslot with a probability p or may move to a neighboring
cell with even probability. We can estimate the probability of finding the target
at different cells using the following.

Let x be a cell in the search area and Nx be the set of reachable cells of x.
Let P

(x)
i be the probability of the target being located at cell x at t = i. Assume

the robot does not explore x at t = i + 1. We have

P
(x)
i+1 =P

(x)
i × Pr(the target stays at x) +

∑

y∈Nx

P
(y)
i × Pr(the targets leaves y)

× Pr(the target moves to x | the targets leaves y)

=pP
(x)
i + (1 − p)

∑

y∈Nx

P
(y)
i

|Ny| (1)

At t = i + 1, the robot explores one of the cells say z. Suppose the target is

not found at z. Let P̂
(x)
i+1 be the probability of the target being located at cell x

at t = i + 1 given that the target is not found at z. We have P̂
(z)
i+1 = 0 and

P̂
(x)
i+1 =

P
(x)
i+1

1 − P
(z)
i+1

(2)

We use the special case where wc = �c = 2 to illustrate the idea, i.e., the
search area has four cells in total. |Nx| = 3 for all cells x. Suppose p = 0.5.
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Figure 5 illustrates how the probabilities of finding the target at different cells
change over time. Initially, at t = 1, each of the three unexplored cells has the
same probability (13 ) to find the target. At t = 2, we calculate the probabilities

according to Eqs. 1 and 2. P
(1,1)
2 = 0.5( 13 )+0.5(

1
3+

1
3+0

3 ) = 5
18 = 0.278. Similarly,

P
(2,1)
2 = 5

18 = 0.278. Since the robot explored (1, 1) and the target is not found,
̂
P

(1,1)
2 = 0 (lower left cell). We have ̂

P
(2,1)
2 =

5
18

1− 5
18

= 5
13 = 0.385 (lower right

cell).

Fig. 5. Illustration of the probability of finding the target at different locations in a
2× 2 search area from t = 1 to 4, given the target is not found. p = 0.5. Δ denotes the
location explored by the robot at that timeslot.

Observe that the probability to find the target is not even at all the cells. A
cell that is explored recently has the lowest probability to find the target. This
probability increases as time goes until it is explored again. The same can be
observed in the general case. From Eq. 1, P

(x)
i+1 is the smallest when the robot

has explored x at t = i, i.e., P
(x)
i = 0. Assume |Nx| = |Ny| for any cells x and y.

The change in P
(x)
i , denoted as ΔP

(x)
i , can be calculated as

ΔP
(x)
i = P

(x)
i+1 − P

(x)
i = (1 − p)(P (y)

i − P
(x)
i ) (3)

where P
(y)
i =

∑
y∈Nx

P
(y)
i

|Nx| denotes the average of P
(y)
i for y ∈ Nx. When P

(x)
i is

small, ΔP
(x)
i is large. As P

(x)
i gets larger, ΔP

(x)
i decreases, until P

(x)
i approaches

the average of P
(y)
i of the neighboring cells.

Summary. To maximize the chance to find the target, it is preferred to explore
the cells that are not explored for the longest time at each timeslot. In the first
phase of the search, both the circuit strategy and the rebound strategy visit
the unexplored cells once. This matches the principle above. At the beginning
of the second phase, the circuit strategy and the rebound strategy restart the
search at different routes. The circuit strategy explores the cells that have not
been detected for a longer time. The rebound strategy, in contrast, visits the
cells that are just visited not long ago. The circuit strategy is expected to have a
better chance to find the target during this period. The rebound strategy leaves
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the cells around the starting point of the search path to be explored later. This
increases the time gap between two detections on the same cell. However, as we
have discussed in Eq. 3, the gain in the probability to find the target is marginal.
Thus, we expect the circuit strategy to outperform rebound strategy.

Upper Bound of Expected Latency of the Circuit Strategy. The circuit
strategy and the rebound strategy are simple and intuitive. They are similar in
the sense that they travel through all the cells repeatedly to find the targets.
However, as we have showed, circuit strategy has a smaller expected searching
latency than rebound strategy. Circuit strategy is suggested in practice. In The-
orem 3, we provide an upper bound of the expected searching latency of the
circuit strategy.

Theorem 3. The expected searching latency of the circuit strategy E(Tj) is
upper bounded by 3n2−4n+3

2n searching a mobile target in a search area of n cells.

Proof. The search path of the robot is static. Say, the path in Fig. 3(b) is used.
Suppose now the target is at (1, 1) at t = i and the robot is not here. We know
that the robot cannot be at (1, 2) at t = i + 1. The probability of being found
at t = i + 1 if the target moves to (1, 2) is 0. We call this location the blind
spot. The robot may appear in any of the remaining n − 1 cells at t = i + 1. Let
C be the set of candidate locations that the target may move to at t = i + 1.
The target moves to any one of the locations in C with even probability. Let
p be the probability of the target being found at t = i + 1. If the blind spot
is in C, we have p =

∑|C|−1
i=1

1
|C| · 1

n−1 = m−1
m(n−1) . p is the smallest when |C| is

the smallest with the blind spot being one of the candidates in C. This happens
when the target is moving at the speed of 1 cell per timeslot and is located at
the corner, say (1, 1). There are only 3 candidate locations in this scenario: (1, 2)
(blind spot), (2, 1), (2, 2). We denote the smallest of p, pmin = 2

3(n−1) .
E(Tj) is the largest (the upper bound) when the probability to find the

target at any time is pmin . We denote it as Emax (Tj). We calculate Emax (Tj) as
following.

Let Ei be the event of the target being found at t = i and Si be E1 ∧ E2 ∧
. . . ∧ Ei. At t = 1, the target is located at a random position. Pr(E1) = 1

n . At
t = 2, as we discussed above, Pr(Ei|Si−1) = pmin for i > 1. We have Pr(Si) =
n−1

n · (1 − pmin)i−1 for i ≥ 1.

Emax (Tj) = Pr(E1) · 1 +
∞∑

i=2

Pr(Si−1) · Pr(Ei|Si−1) · i

=
1
n

+
∞∑

i=2

n − 1
n

· (
3n − 5
3n − 3

)i−2 · 2
3(n − 1)

· i

=
1
n

+
2
3n

∞∑

i=2

(
3n − 5
3n − 3

)i−2 · i



Search Planning and Analysis for Mobile Targets with Robots 13

The term X =
∑∞

i=2(
3n−5
3n−3 )i−2 · i is an arithmetico-geometric sequence. Let

q = 3n−5
3n−3 and so 1 − q = 2

3n−3 . We have

X =
∞∑

i=2

qi−2i (4)

and

qX =
∞∑

i=2

qi−1i =
∞∑

i=3

qi−2(i − 1) (5)

By subtracting Eq. 5 from Eq. 4, we have

X − qX =
∞∑

i=2

qi−2i −
∞∑

i=3

qi−2(i − 1)

(1 − q)X = q2−2(2) +
∞∑

i=3

qi−2i − qi−2(i − 1)

(1 − q)X = 2 +
∞∑

i=3

qi−2

(1 − q)X = 2 +
q

1 − q

2
3n − 3

X = 2 +
( 3n−5
3n−3 )

2
3n−3

X =
3(3n2 − 4n + 1)

4

Substitute X into Emax (Tj), we have

Emax (Tj) =
1
n

+
2
3n

· 3(3n2 − 4n + 1)
4

=
3n2 − 4n + 3

2n

�	

6 Simulation

In this section, we present our simulation study to evaluate our search strategies:
‘circuit’ and ‘rebound’. The purposes of the simulation are: (i) to verify our
theoretical results; and (ii) to evaluate the performance of different strategies
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in practice. A ‘random’ strategy [8] is implemented as the baseline method for
comparisons. In the random strategy, each robot randomly goes to a neighboring
cell and detects the target. All simulations are performed on a computer with i5
3.4 GHz CPU and 8 GB memory. The experimental platform is Matlab R2018b.
All results are averaged over 10000 independently simulation executions.

6.1 Simulation Setup

We consider a 2D search area with size 40 × 40. The search area is divided into
cells, each with size 1 × 1, i.e., there are 160 cells in total. There are three types
of the targets as discussed in Sect. 5: (i) static target; (ii) mobile target; and (iii)
superfast target. For type (ii) mobile targets, each target is assumed to move
randomly. At each timeslot, it goes to a random direction at a random speed
bounded by vmax , a preset maximum speed. In our simulation, we tested vmax

in {0.25, 0.5, 0.75, 1}.
We tested the strategies in two scenarios: (i) single target; and (ii) multiple

targets. All strategies were evaluated using the following performance metrics:

1. Achievement ratio: the ratio of simulation runs that find all targets within
robots’ lifetime.

2. Average latency: the average searching latency to find all targets upon a
successful search.

6.2 Simulation Results on Single Target Searching

We performed the simulation for searching a single target varying the number
of robots from 4 to 10. Figures 6 and 7 show the achievement ratios and average
latency of different strategies in our simulations.

We make the following observations from the simulation results:

1. The circuit strategy has the same performance as rebound strategy for static
and superfast targets while the circuit strategy is slightly better than the
rebound strategy for mobile targets in all speeds. The circuit strategy is the
best among the three in all scenarios.

2. The random strategy is the worst in all scenarios. The gap is significantly
large except for superfast target (in which any strategy has the same chance
to find the target for superfast target, as discussed in Theorem 2).

3. As the number of robots increases, the achievement ratio of the three strate-
gies increases and the average latency decreases.

4. When the number of robots is 10, the achievement ratio of the circuit strategy
and the rebound strategy is very close to 1.

6.3 Simulation Results on Multiple Targets Searching

In this scenario, the number of robots is fixed to be 10. We performed the
simulation for searching for 2 to 6 targets. The targets move independently.
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(a) Static target
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(b) Mobile target with vmax = 0.25
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(c) Mobile target with vmax = 0.5
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(d) Mobile target with vmax = 0.75
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(e) Mobile target with vmax = 1
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Fig. 6. Achievement ratio of different strategies varying number of robots.

Figures 8 and 9 show the achievement ratios and average latency of different
strategies in our simulations.

We make the following observations from the simulation results:

1. Similar to single target searching, the circuit strategy is the best among the
three strategies. The circuit strategy and the rebound strategy have almost
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(b) Mobile target with vmax = 0.25
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(c) Mobile target with vmax = 0.5
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(d) Mobile target with vmax = 0.75
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(e) Mobile target with vmax = 1
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Fig. 7. Average latency of different strategies varying number of robots.

the same achievement ratio. Yet, the average latency of the circuit strategy
is smaller than the rebound strategy for mobile targets (except for the case
vmax = 0.25).

2. The average latency is not affected by number of targets. This is expected as
the targets are independent.
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(a) Static targets
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(b) Mobile targets with vmax = 0.25
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(c) Mobile targets with vmax = 0.5
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(d) Mobile targets with vmax = 0.75
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Fig. 8. Achievement ratio of different strategies varying number of targets.

3. The random strategy is significantly worse than the circuit strategy and the
rebound strategy in terms of both achievement ratio and average latency,
except for case of superfast targets.
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(b) Mobile targets with vmax = 0.25
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(c) Mobile targets with vmax = 0.5
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(d) Mobile targets with vmax = 0.75
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(e) Mobile targets with vmax = 1
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Fig. 9. Average latency of different strategies varying number of targets.

4. As the number of targets increases, the achievement ratio of the random
strategy drops significantly. The achievement ratios of the circuit strategy
and the rebound strategy remain steady.
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6.4 Discussions

All simulation results agree with our theoretical analysis. The reuslts show that
the circuit strategy is the best in terms of achievement ratio and average latency.
The performance of the rebound strategy is close to the circuit strategy but never
outperforms the circuit strategy. The circuit strategy is suggested in practice for
searching. In contrast, the random strategy is the worst and its performance is
significantly worse than the other two strategies. This highlight the importance
of picking the right strategy for searching in a disaster rescue mission.

7 Conclusions and Future Work

In this paper, we study the problem of mobile target searching using robots.
No information about the targets is known. We propose a divide-and-conquer
approach to divide the search areas into strips and let each robot search in one
strip. We study two searching strategies, namely circuit strategy and rebound
strategy. We theoretically analyze the searching latency in the strategies under
different scenarios and conclude that the circuit strategy is better. The results are
verified with extensive simulations. In the future, we plan to extend the model to
allow the robots to communicate with each other during the search. This allows
a more intelligent search strategy at the cost of increased communication cost
and reduced lifetime of robots.
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11. Fredette, D., Őzguner, U.: Swarm-inspired modeling of a highway system with sta-
bility analysis. IEEE Trans. Intell. Transp. Syst. 18(6), 1371–1379 (2017). https://
doi.org/10.1109/TITS.2016.2619266

12. de Marina, H.G., Jayawardhana, B., Cao, M.: Distributed rotational and transla-
tional maneuvering of rigid formations and their applications. IEEE Trans. Robot.
32(3), 684–697 (2016). https://doi.org/10.1109/TRO.2016.2559511

13. Han, T., Ge, S.S.: Styled-velocity flocking of autonomous vehicles: a systematic
design. IEEE Trans. Autom. Control 60(8), 2015–2030 (2015). https://doi.org/10.
1109/TAC.2015.2400664

14. Liu, H., Chu, X., Leung, Y.W., Du, R.: Simple movement control algorithm for
bi-connectivity in robotic sensor networks. IEEE J. Sel. Areas Commun. 28(7),
994–1005 (2010)

15. Michael, R., Alejandro, C., Radhika, N.: Robotics. Programmable self-assembly in
a thousand-robot swarm. Science 345(6198), 795–9 (2014)

16. Olfati-Saber, R., Jalalkamali, P.: Coupled distributed estimation and control for
mobile sensor networks. IEEE Trans. Autom. Control 57(10), 2609–2614 (2012).
https://doi.org/10.1109/TAC.2012.2190184

17. Qiang, W., Li, W., Cao, X., Meng, Y.: Distributed flocking with biconnected topol-
ogy for multi-agent systems. In: International Conference on Human System Inter-
actions (2016)

18. Rango, F.D., Palmieri, N., Yang, X., Marano, S.: Swarm robotics in wireless dis-
tributed protocol design for coordinating robots involved in cooperative tasks. Soft.
Comput. 22(13), 4251–4266 (2018)

19. Sabattini, L., Chopra, N., Secchi, C.: Decentralized connectivity maintenance for
cooperative control of mobile robotic systems. Int. J. Robot. Res. 32(12), 1411–
1423 (2013)

20. Sakthivelmurugan, E., Senthilkumar, G., Prithiviraj, K., Devraj, K.T.: Foraging
behavior analysis of swarm robotics system. In: MATEC Web of Conferences, vol.
144, p. 01013. EDP Sciences (2018)

21. Semnani, S.H., Basir, O.A.: Semi-flocking algorithm for motion control of mobile
sensors in large-scale surveillance systems. IEEE Trans. Cybern. 45(1), 129–137
(2015). https://doi.org/10.1109/TCYB.2014.2328659

22. Szwaykowska, K., Romero, L.M., Schwartz, I.B.: Collective motions of heteroge-
neous swarms. IEEE Trans. Autom. Sci. Eng. 12(3), 810–818 (2015). https://doi.
org/10.1109/TASE.2015.2403253

https://doi.org/10.1007/978-3-319-44427-7_16
https://doi.org/10.1109/TCYB.2016.2537307
https://doi.org/10.1109/TCYB.2016.2537307
https://doi.org/10.1109/TITS.2016.2619266
https://doi.org/10.1109/TITS.2016.2619266
https://doi.org/10.1109/TRO.2016.2559511
https://doi.org/10.1109/TAC.2015.2400664
https://doi.org/10.1109/TAC.2015.2400664
https://doi.org/10.1109/TAC.2012.2190184
https://doi.org/10.1109/TCYB.2014.2328659
https://doi.org/10.1109/TASE.2015.2403253
https://doi.org/10.1109/TASE.2015.2403253


Search Planning and Analysis for Mobile Targets with Robots 21

23. Vásárhelyi, G., et al.: Outdoor flocking and formation flight with autonomous
aerial robots. In: 2014 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pp. 3866–3873, September 2014. https://doi.org/10.1109/IROS.2014.
6943105
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