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Abstract. Underwater acoustic channels are fragile. Reliable data transmission
in underwater acoustic networks (UANs) faces tough challenges. Digital
Fountain Code (DFC) is an efficient rateless error-correcting coding technique,
in which the redundancy is not fixed and can be decided on the fly as the channel
evolves. Thus, DFC is considered near-optimal for underwater acoustic chan-
nels. A recursive LT (RLT) code is a DFC tailored for underwater acoustic
networks, which allows for lightweight implementation of an encoder and a
decoder. Based on the analysis of the RLT algorithm, this paper proposes a
filtering dimension reduction (FDR) decoding algorithm for underwater acoustic
networks. The FDR decoding algorithm executes XOR operations on the
encoded packets in a strict short ring of a generating a matrix to reduce the
dimensions of the encoded packets, or generate 1-degree encoded packets. As a
result, the FDR algorithm can increase the number of 1-degree encoded packets
and reduce the decoding complexity. Moreover, the FDR algorithm can elimi-
nate the waiting time for a traditional decoding algorithm to receive the 1-degree
packets, and achieve fast decoding. Simulation results based on NS3 show that
the decoding success rate of the FDR algorithm is higher than that of the RLT
algorithm.

Keywords: Underwater acoustic network � Reliable transmission � Digital
fountain code � Recursive LT � Filtering dimension reduction

1 Introduction

With the development of the wireless sensor network technology and people’s
increasing attention to underwater resources, marine environment, marine rights and
interests, underwater acoustic networks (UANs) have attracted more and more research
attention in recent years [1–5]. UANs use acoustic communication, and an acoustic
channel is characterized by low bandwidth, long propagation delay, high error prob-
ability, Doppler effect and spatiotemporal variation, which make traditional transmis-
sion mechanisms inapplicable or inefficient in UANs. Therefore, UANs face great
challenges for reliable transmission and call for new reliable transmission mechanisms.
Digital fountain code (DFC) is of great significance to achieve reliable transmission in
UANs [6–9].
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DFC is an efficient rateless error-correcting coding technique. The redundancy of
DFC is not fixed and can be decided on the fly as the channel evolves. Thus, DFC is
considered near-optimal for underwater acoustic channels. A recursive LT (RLT) code
is a DFC tailored for underwater acoustic networks, which allows for lightweight
implementation of an encoder and a decoder [10]. Based on the analysis of the
encoding characteristics and shortcomings of the RLT algorithm, this paper proposes a
filtering dimension reduction (FDR) decoding algorithm, which can reduce the
decoding complexity, and eliminate the waiting time for a traditional decoding algo-
rithm to receive the 1-degree packets. Simulation results based on NS3 show that the
decoding success rate of the FDR algorithm is higher than that of the RLT algorithm.

The remainder of the paper is organized as follows. Related work is introduced in
Sect. 2. An FDR filtering dimension reduction decoding algorithm is presented in
Sect. 3. Simulation results are shown and analyzed in Sect. 4. Finally, the paper is
concluded in Sect. 5.

2 Related Work

Existing reliable transmission mechanisms for UANs can be divided into three cate-
gories: retransmission-based, forward error correction code (FEC)-based, and hybrid
approach-based. Digital fountain coding is a reliable coding technique based on for-
ward error correction coding. Early reliable coding techniques based on FEC usually
adopted network coding with multipath routing, as proposed by Guo et al. in [11].
However, multipath routing usually brings about collision and retransmission. In [12],
Liu and Garcin proposed a packet-level FEC reliable transmission mechanism. In a
packet-level FEC-based transmission mechanism, the redundancy transmitted is fixed
prior to transmission, which is not applicable in UANs. In [13] Peng et al. proposed a
reliable transmission mechanism SDRT for piecewise data. SDRT protocol adopts SVT
code to improve encoding/decoding efficiency. Nevertheless, after pumping the packets
within the window quickly into the channel, the sender sends the packets outside the
window at a very slow rate until receiving a positive feedback from the receiver, which
reduces channel utilization. The original ADELIN was proposed in [14], which
determines the appropriate FEC assemblage according to the distance between nodes,
and realizes reliable transmission for underwater data. In [15], Mo et al. put forward a
coding-based multi-hop coordinated reliable transmission mechanism. However, the
encoding vectors are generated randomly, and thus the success probability of recov-
ering data packets from encoded packets cannot be guaranteed, and its decoding
complexity is higher than other sparse codes. Furthermore, the multihop coordination
mechanism requires time synchronization and is restricted in a string topology, where
there is a single sender and a single receiver. In [10], Du et al. proposed a RLT
(recursive LT) code, which is applicable to dynamic UANs with limited transmission
time between two nodes. RLT reduces the overhead of encoding and decoding.
An RLT code is a DFC tailored for underwater acoustic networks, which allows for
lightweight implementation of an encoder and a decoder. In this paper, an FDR
decoding algorithm is proposed to overcome the shortcomings of the RLT algorithm.
Next we introduce the RLT algorithm in detail.
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For a given parameter k; d;X dð Þð Þ of an RLT algorithm, k is the number of original
packets, d d 2 1; 2; 3; 4; kf gð Þ denotes the degree value of an encoded packet, X dð Þ
is the degree distribution. The input packet is represented as S1; S2; . . .; Skf g, k input
packets composes a set D. The sequence of encoded packets is represented as
Y1; Y2; . . .; Yj; . . .; Yn

� �
n[ kð Þ. The RLT coding process is described as follows.

(1) From the set D, successively XOR the k input packets to generate one encoded
packet with degree k, and then duplicate the encoded packet to obtain
1=ð1� ppÞ
� �

copies. Here, pp denotes the error probability of a packet.
(2) From the set D, select m=ð1� ppÞ

� �
distinct packets randomly to constitute a seed

set U1 and generate m=ð1� ppÞ
� �

encoded packets with degree 1. Here, m is the
expected number of encoded packets received successfully with degree 1. In
reality, we can set 1�m�max k=4b c; 1ð Þ.

(3) Let U2 ¼ I � U1. From the set U2, select uniformly k= 2ð1� ppÞ
� �� �

input
packets at random, and do XOR operation respectively with one packet selected
randomly from the set U1. Thus, generate k= 2ð1� ppÞ

� �� �
encoded packets with

degree 2.
(4) Let U3 ¼ I � U1 � U2. If U3j j[ k= 6ð1� ppÞ

� �� �
, select k= 6ð1� ppÞ

� �� �
input

packets at random from the set U3; otherwise, from the set D, do XOR operation,
respectively, with one packet from the set U2 and another from the set U1 to
generate k= 6ð1� ppÞ

� �� �
encoded packets with degree 3.

(5) Let U4 ¼ I � U1 � U2 � U3. If U4j j[ nþ k=3� m� 1ð Þ= 1� pp
� �� �

, select
randomly ⌈ nþ k=3� m� 1ð Þ = 1� pp

� �
⌉ input packets from the set U4; other-

wise, from the set D, do XOR operation, respectively, with three packets from U1,
U2, U3 respectively, to generate ⌈ nþ k=3� m� 1ð Þ = 1� pp

� �
⌉ encoded packets

with degree 4.

3 FDR Decoding Algorithm

3.1 Analysis of RLT Coding

Consider a set of input (original) packets with each having the same number of bits.
The RLT encoder takes input packets and generates a potentially infinite sequence of
encoded packets. Each encoded packet is computed independent of others. More
precisely, given k input packets S1; S2; . . .; Skf g, a sequence of encoded packets
Y1; Y2; . . .; Yj; . . .; Yn

� �
are generated, where n[ k.

The generating matrix Gkn is a k � n� order binary matrix. Let Gkn ¼ g1; g2;½
g3; . . .� be the generating matrix with n column vectors, gm ¼ g1m; g2m; . . .; gkm½ �T ,
m ¼ 1; 2; 3; . . .n. The value of each vector member is 0 and 1. Thus,Gkn is expressed as
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S1
S2
S3
S4
S5
. . .
Sk�1

Sk

1 0 1 1 0 0 1 . . . 0 1
0 0 1 1 1 1 0 . . . 1 1
0 1 0 0 1 0 1 . . . 0 0
1 1 0 1 0 0 1 . . . 0 1
0 0 1 0 1 1 0 . . . 1 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1 1 0 0 1 0 1 . . . 1 0
1 0 1 1 1 1 0 . . . 0 0

2
66666666664

3
77777777775

Y1 Y2 Y3 Y4 Y5 Y6 Y7 . . . Yn�1 Yn

There may exist some “short rings” in the generating matrix of the RLT encoded
packets. The definition and properties of a “short ring” are given below.

Definition 1. In the generating matrix, if there are two or more columns, of which the
values of corresponding two or more rows are all “1”, then the elements with value “1”
in these rows and corresponding columns constitute a closed ring, which is called
“short ring”.

If the number of rows satisfying the definition of a “short ring” is two, then the
short ring formed by these two rows is called 4� memberd ring. If the number of such
rows is three, then the short ring is a 6� membered ring, and so on. Assuming that the
number of rows satisfying the definition of a “short ring” is k

0
2� k

0
\k

� �
, the short

rings formed by them are 2k
0 � membered ring. Here, the definition of “short ring” is

introduced to explain the phenomenon of decoding termination existed in the RLT
algorithm, which is shown in Fig. 1.

In Fig. 1, it is seen that Y1 ¼ S2, Y2 ¼ S2 � S3 � S4, Y3 ¼ S1 � S2 � S3, and
Y4 ¼ S1 � S2 � S3 � S4. According to the RLT decoding rules, we firstly find out the
1-degree encoded packet Y1, then decode it to obtain S2. Thus the line connecting Y1
and S2 can be removed. Next XOR operations for Y2; Y3; Y4f g and S2 are performed.
After that, the lines connecting Y2; Y3; Y4f g and S2 are removed respectively. At this
moment, the degree values of the remaining encoded packets Y2; Y3; Y4 are 2, 2, 3.
Without any 1-degree encoded packet, the decoding process of RLT is forced to
terminate. The corresponding generating matrix of Y2; Y3; Y4 is shown in Fig. 2.

S1 S2 S3 S4

Y1 Y2 Y3 Y4

1 0 0 1

S1 S2 S3 S4

Y1 Y2 Y3 Y4

1 0 0 1

1
S1 S2 S3 S4

Y1 Y2 Y3 Y4

1 1 1 0

1

Original packets  Encoded packets

Fig. 1. Decoding termination of RLT code
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In Fig. 2, the generating matrix contains two 4� memberd short rings. The values
of both Y3 and Y4 columns are “1” in the first row as well as the third row. Similarly, the
values of both Y2 and Y4 columns are “1” in the third row as well as the fourth row.
Given n; k;Xxð Þ of RLT, k is the number of original packets, n denotes the number of
encoded packets. The proportion of column vectors with weight i of the generating
matrix k � n� order G to the total column vectors is Xi. Thus, the probability of a
column vector with weight i in G can be calculated as

Pi ¼ Xi=
k
i

� 	
ð1Þ

The probability that a column vector with weight j and a column vector with weight
i constitute a 4� memberd short ring is given by

Pr�4 i; jð Þ ¼ XiXj
k � 2
j� 2

� 	
=

k
k � j

� 	
k
j

� 	� 	
ð2Þ

Next we give the definition of a “strict short ring”.

Definition 2. In the generating matrix, if there are two columns, of which the values
are all “1” in two or more corresponding rows, and the values are all “0” in other rows,
then these rows and the corresponding columns constitute a closed ring, which is called
“strict short ring”. Assuming that there are k0ð2� k0\kÞ rows satisfying the definition
of a “strict short ring”, the short rings formed by them are strict ð2k0Þ � membered
rings.

The probability that a column vector with weight jðj[ 2Þ and a column vector with
weight 2 constitute a strict 4� membered short ring can be calculated as

Pstrict r�4ð Þ 2; jð Þ ¼ X2Xj
k � 2
j� 2

� 	
=

k
k � j

� 	
k
2

� 	� 	
ð3Þ

Accordingly, the probability that a column vector with weight j and a column vector
with weight m m\jð Þ constitute a strict 2m� membered short ring can be calculated as

0

0 0 0

1 1

1 1 1

1 0 1

Y2 Y3 Y4

S1

S2

S3

S4

Y
S

Fig. 2. An example of short rings
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Pstrict r�2mð Þ m; jð Þ ¼ XmXj
k � m
j� m

� 	
=

k
k � j

� 	
k
m

� 	� 	
ð4Þ

Then the probability of a strict 4� memberd short ring in the order-generating
matrix is given by

Pstrict r�4ð Þ ¼ n
2

� 	XXk

j¼2
X2Xj

k � 2
j� 2

� 	
=

k
k � j

� 	
k
2

� 	
ð5Þ

Accordingly, the probability of a strict 2m� memberd short ring in the generating
matrix can be approximately expressed as

Pstrict r�2mð Þ ¼ n
2

� 	XXk�1

m¼2

XXk

j¼3
XmXj

k � m
j� m

� 	
=

k
k � j

� 	
k
m

� 	� 	
ð6Þ

3.2 FDR Decoding Algorithm

In Fig. 1, the generating matrix contains two 4� memberd strict short rings.
Accordingly, we analyze the original packet set. The set of the original packets cor-
responding to Y2 is S3; S4f g. The set of the original packets corresponding to Y3 is
S1; S3f g. The set of the original packets corresponding to Y4 is S1; S3; S4f g. The above

three sets have the following inclusion relationships: S3; S4f g ⊊ S1; S3; S4f g and
S1; S3f g ⊊ S1; S3; S4f g. Here, S1 ¼ Y2 � Y4 can be obtained by XOR operation of Y2

and Y4. S4 can be obtained by XOR operation of Y3 and Y4. S3 can be obtained by XOR
operation of Y3 and S1. According to the RLT decoding rules, decoding operations of
S2 is CS2 = 1, while the decoding operations of S1, S3, S4 is infinite, which can be
defined as CS1;CS3;CS4 ! 1. Therefore, the decoding operations of all original
packets are Call ¼ CS1 þCS2 þCS3 þCS4 ! 1. But through XOR operations between
the decoded packets S1, S3, S4 can be decoded. The decoding operations of S1, S2, S3,
S4 are C

0
S1 ¼ 1, C

0
S2 ¼ 1, C

0
S3 ¼ 2, C

0
S4 ¼ 1. The decoding operations of all original

packets are C
0
all ¼ C

0
S1 þC

0
S2 þC

0
S3 þC

0
S4 ¼ 5 � Call.

A strict short-ring seems to be worthless for the traditional decoding technique.
However, if the decoding algorithm is changed, the strict short-ring can play an active
role in the decoding process and the contribution of a strict short-ring would not be
ignored. What’s more, a strict short-ring may even become the key to decoding the
remaining packets in the “stop set”.

Conclusion 1. If the two columns constituting a short ring have different degrees, and
the values of the column with a smaller degree in other rows are all “0”, then the two
encoded packets corresponding to the short-ring can be XOR operated, and the gen-
erated encoded packet, which is called quadratic encoded packet, has a degree equal to
the degree-difference of the two packets involving XOR operation. Thus, the degrees of
packets are filtered and reduced by FDR decoding. If the degree-difference is 1, the
degree of quadratic encoded packets is 1 and an original packet is recovered.

A Filtering Dimension Reduction Decoding Algorithm 281



In RLT, a receiving node starts a decoding process after receiving a certain number
of encoded packets. FDR eliminates the waiting time of the RLT algorithm, and thus
achieves fast decoding. After encoding, the 1-degree encoded packets are sent first, and
the FDR decoder starts immediately the decoding process upon receiving a packet no
matter whether the degree value of the encoded packet is 1 or not. As in Fig. 1, after
receiving two encoded packets, Y4 and Y3, the receiver compares the original packet ID
sets. If one set is another set’s subset, the receiver also starts the decoding process and
decodes the two encoded packets. Therefore, we obtain the following conclusion.

Conclusion 2. When an FDR receiver receives encoded packets, it can start the
decoding process as long as there exists a true inclusion relationship between the two
sets of original packets. It does not have to wait for the encoded packet with 1-degree,
which reduces the decoding time to some extent.

Based on the above two conclusions, this paper proposes a filtering dimension
reduction decoding algorithm (FDR), and introduces the design and decoding process
of the FDR decoder. Firstly, we define some parameters used in the FDR decoding
algorithm.

Definition 3. The encoder takes k original packets S : S ¼ S1; S2; . . .; Skf g and gen-
erates n encoded packets Y : Y ¼ Y1; Y2; . . .; Yi. . .; Ynf g. k original packets are encoded
into n encoded packets Y . The degree of encoded packet Yi is defined as d Yið Þ.
The FDR algorithm divides the encoded packets into two types, the encoded packets
generated by the sender and the quadratic packets generated by XOR operations
between encoded packets. Quadratic packets is defined as Ysec.T represents the set of
original packets that generate an encoded packet.

According to the degree of encoded packets, we adopt the idea of layering to design
the decoder. There are five degree values of the encoded packets, which are d ¼ 1,
d ¼ 2, d ¼ 3, d ¼ 4, d ¼ k. Respectively, the decoder is designed into five layers, l1,
l2, l3, l4, lk which is illustrated in Fig. 3.

lk

l4

l2

l3

l1

Flow direction of 
encoded packets

Flow direction of  
quadratic encoded 

packets

encoded packets 
with d (4,k]

4-degree encoded 
packets

3-degree encoded 
packets

2-degree encoded 
packets

original packets

Entry

Fig. 3. Design of decoder
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Each layer of the decoder stores encoded packets with a degree value equal to the
value of the layer. It should be noted that the encoded packets at the layer include not
only the encoded packets from the senders, but also the quadratic encoded packets
generated by XOR operation from the decoder of the receiving node. For example, l2
stores all 2-degree encoded packets. One packet in l2 may be the 2-degree encoded
packets received from the sender, or a 2-degree quadratic packet generated by the XOR
operation at a higher layer. In addition, it should be noted that lk stores all encoded
packets with d-degree value, where d 2 ð4; k�. The encoded packets are stored in the
form of key� value. key represents the set T , the IDs of input packets, and value
corresponds to the encoded packet. For example, Yi ¼ S1 � S2 � S3, and the ID of
S1; S2; S3 are known to be 0; 1; 2f g � Yi. Therefore, the key� value stored is as
0; 1; 2f g � Yi. The encoded packets go downstairs through the decoder. Once it sat-

isfies the XOR condition with a certain packet at one of the layers, or in other words,
once all the original packets that participate in the lower-degree encoded packet are also
involved in the higher-degree encoded packet, they do XOR operations. In this way,
the encoded packet with a higher degree value is updated to the quadratic packet, and
its degree value is reduced. By filtering high-degree encoded packets and reducing their
degree values, FDR speeds up the decoding process to a certain extent. It is not difficult
to imagine that the encoded packets with higher or lower degree values have a higher
probability to do XOR operations with other encoded packets. Theoretically, it is
impossible for the key value of each layer to have a true inclusion relationship with one
key value at the lower layer except l1. The FDR decoder is in the decoding state from
the receipt of the first encoded packet until the l1 layer contains all the original packets.

4 Numerical Results

In this section, we evaluate the performance of the FDR decoding algorithm through
numerical results. In order to eliminate the impact of packet loss and packet collision
on the decoding success probability as much as possible, we focus on single-hop
communication between a source node and a destination node. Through NS3 simu-
lations and MATLAB experiments, we compare the FDR algorithm and the RLT
algorithm in terms of the successful decoding probability, and demonstrate the stability
of the FDR algorithm.

4.1 Simulation Settings and Parameters

In this section, we evaluate the performance of the FDR decoding algorithm through
simulation experiments. All simulations are performed using Network Simulator 3, and a
two-dimensional regular hexagonal topology of seven nodes is used, as shown in Fig. 4.

In Fig. 4, six nodes are located at the vertex of hexagonal network topology as
source nodes. The remaining one is located at the center of the network as a sink node.
The direction of data flow is from a source node to the sink node. The communication
between a source node and the sink node is single-hop and the transmission range is r.
In order to eliminate the packet collision, we control the six source nodes to send
packets to the sink node at different time by setting different packet interval.

A Filtering Dimension Reduction Decoding Algorithm 283



The parameters used in the simulation experiment have a big impact on the
experimental results. The values of parameters such as “simulation time, bandwidth,
transmission power and receiving power” are given in Table 1. The data generated at
the application layer by a source node is divided into several blocks, each block
composed of about k data packets (here k = 60). Each data packet consists of three
parts: head fields, load and FCS check.

4.2 Simulation Results

The successful decoding probability is defined in formula (7), where Ntotal�trans rep-
resents the total number of times that a source node sends data packets to the sink node,
and Nretrans denotes the number of times that the sink node restores the original data
packets successfully. The difference between Ntotal�trans and Nretrans is None�time�succ,
which represents the number of times that the sink node decodes successfully at the
first time. The successful decoding probability of one single hop is defined as
None�time�succ divided by Ntotal�trans.

Sink

    Source Node

r

    Source NodeSource Node

Source Node     Source Node

Source Node

Fig. 4. Hexagonal network topology

Table 1. Experimental parameters.

Parameters Value

Simulation time/s 6000
Size of data block/B 2975–8955
Length of load/B 200
Bandwidth/kbps 10
Route protocol LB-AGR
MAC protocol RCHF
Transmitting power/W 2
Receiving power/W 0.75
Range/m 1500
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PDec�succ�hop ¼ NTotal�trans � Nretrans

NTotal�trans
¼ None�time�succ

NTotal�trans
ð7Þ

The simulation results are shown in Fig. 5. The horizontal axis of Fig. 5 represents
the number of encoded packets sent out by a source node each time, and the vertical
axis represents the successful decoding probability of one transmission. In the exper-
iment, 4 � 4 sets of experimental data using the FDR algorithm with different k values
are also counted in Ntotal�trans and Nretrans, as shown in Fig. 6(a), (b), (c), and (d).
Figure 5 shows the successful decoding probability of one transmission with the FDR
algorithm and the RLT algorithm, respectively.

It can be seen that the successful decoding probability with the FDR algorithm is
generally higher than that with the RLT algorithm. When the number of encoded
packets is small, such as n = 20, the successful decoding probability with the two
decoding algorithms is almost equal, e.g., RLT reaches 92% and FDR can reach 93%.
The mutation occurs at n = 25, where the successful decoding probability with FDR is
90%, slightly lower than that with RLT, which is 92%. When n = 30, the performance
of the FDR algorithm is significantly better than that of RLT, i.e., the former is 95%
and the latter 89%. When the number of encoded packets exceeds 40, the successful
decoding probability with the RLT algorithm is basically 86%, while that with the FDR
algorithm is about 89%. Generally speaking, the performance of the FDR algorithm is
better than that of the RLT algorithm.

Figure 6(a) shows four groups of experimental data when the number of original
packets k is 25 and the number of encoded packets n is 32. Take group 3 experiment as
an example. The total number of times that a source node sends data packets to the sink
node is 143, but only 10 of them are the number of times with secondary successful
decoding.

Figure 6(b) shows four groups of experimental data when the number of original
packets is 30 and the number of encoded packets is 38. Figure 6(c) shows four groups
of experimental data when the number of original packets is 35 and the number of
encoded packets is 44. Figure 6(d) shows four groups of experimental data when the
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Fig. 5. Comparison in terms of the successful decoding probability

A Filtering Dimension Reduction Decoding Algorithm 285



number of original packets is 40 and the number of encoded packets is 50. The
statistical data are consistent with the trend of the successful decoding probability in
Fig. 5.

5 Conclusions

In this paper, we proposed a filtering dimension reduction (FDR) decoding algorithm
for underwater acoustic networks (UANs), which is more suitable for reliable trans-
mission of underwater communication. The FDR algorithm executes XOR operations
on the encoded packets to reduce the dimensions of the encoded packets or directly
generate some 1-degree packets. As a result, the FDR algorithm can increase the
number of 1-degree encoded packets and reduce the decoding complexity. Moreover,
the FDR algorithm can eliminate the waiting time for a traditional decoding algorithm
to receive the 1-degree packets, and achieve fast decoding. The simulation results show
that the successful decoding probability with the FDR algorithms is higher than that
with the FDR algorithm.
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