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Abstract. The non-orthogonal multiple access technology has been considered
as one of potential technologies for the next generation wireless network. Spatial
modulation, which improves both spectral and energy efficiency at the same
time, has found its potentials in NOMA system. Spatial modulation, together
with multiple-input multiple-output technique, could maintain massive con-
nections and provide low latency at the same time. But it also puts forward
challenges for multi-user and signal detection. By exploiting the sparsity nature
of generalized spatial modulation system, we formulate the active antenna and
user signal detection into a general sparse linear-inverse problem. An approxi-
mate message passing based algorithm is proposed to detect the antenna activity
and transmitted signal simultaneously in the uplink grant-free NOMA scenario.
Expect maximum algorithm is utilized to learn the parameters of activity level
and noise variance. Simulation results show that proposed scheme outperforms
the CS based schemes over a wide range of SNR and sparsity level. Moreover,
proposed algorithm achieves convergency in 15 iterations which makes it very
practical.

Keywords: Spatial modulation � NOMA � Approximate message passing �
Compressive sensing

1 Introduction

Next generation wireless network is expected to provide low latency and support
massive connectivity with a large number of devices. To address these challenges,
nonorthogonal multiple access (NOMA), which was proposed to deal with these
challenges by efficiently using finite available bandwidth, has been regarded as one of
the most promising technologies for the 5G network [1].

In NOMA system, nonorthogonal resources are allocated to different users rather
than orthogonal resources distribution in conventional orthogonal multiple access.
Therefore, the base station is able to support much more users in resource limited
uplink scenario. So far, several NOMA schemes have been investigated. The power
domain NOMA utilizes superposition coding at the transmitter and successive
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interference cancellation at the receiver [2]. The code domain NOMA takes the forms
of low-density spreading CDMA (LDS-CDMA) [3], sparse code multiple access
(SCMA) [4] and so on. In order to reduce the control signaling overhead and latency,
the grant-free NOMA system where active users transmit data at synchronized time slot
without a complex request-grant procedure is investigated here.

Multiple-input multiple-output (MIMO) technology is getting increasing interests
by using antennas on the terminals to achieve a better performance. However, a key
challenge of future mobile communication network is to strike a compromise between
spectral efficiency (SE) and energy efficiency (EE). Fueled by this consideration, the
spatial modulation (SM) [5], which uses the spatial constellation to meet the demand of
SE and EE, has been established as a promising transmission concept [6]. Figure 1
shows the configuration of different multi-antenna systems. The main distinguishing
feature of SM is that it maps additional information on the SM constellation diagram.
The generalized SM is a generalization of SM by taking advantage of the whole antenna
array without the RF chain limitation. Therefore, the generalized SM fully uses the
available antennas to improve SE and EE [7]. This unique characteristic allows the
coexistence of high-rate devices and massive connections. Recent analytical and sim-
ulation studies have shown that SM outperforms many state-of-art MIMO schemes [8].

According to the statistics, the number of active users is usually much smaller than
the number of supported users even in rush hours [9]. This coincides with the sparsity
hypothesis of user activity in the NOMA system. Due to the sparsity nature of the SM
signals, compressive sensing (CS) based detectors [10, 11] become competitive solu-
tions with low complexity especially in the large-scale scenario.

Recently, approximate message passing (AMP) algorithm [12] was proposed by
Donoho to solve CS problems. Despite its low complexity, AMP performs exactly the
same as l1 – norm minimization and it admits rigorous analysis based on the state
evolution [13]. AMP has been extended to general linear mixing problems and widely
used in various scenarios [14, 15].

Starting from the analysis of generalized spatial modulation system, we develop an
AMP-based algorithm to detect the active antennas and the data modulated on each
active antenna. To learn the unknown parameters, we present a detailed derivation of
the expectation maximization (EM) algorithm iteratively. The simulation results show
the effectiveness of proposed algorithm and it performs better than existing CS
approaches and converges in 15 iterations.

Notation: Bold lower and upper-case symbols represent vectors and matrices,
respectively. The superscript ð�ÞT denotes the transpose operation and Nðx; h;/Þ
denotes that x is Gaussian distributed with mean h and variance /.

AMP Inspired Antenna Activity and Signal Detection Algorithm 263



2 System Model

Here we consider an uplink grant-free NOMA system with one base station and K users
of which S are active within one transmission slot. As shown in Fig. 2, the base station
is equipped with M antennas and all antennas are set to spatial modulation mode. For
simplicity, we assume each user has nt antennas, however, our algorithm can be easily
extended to a more general case. Then the total antenna at the user side is N ¼ K � nt.
The uplink NOMA system can be modelled as

y ¼
XK
k¼1

Gkxk þw ð1Þ

where y 2 C
M�1 is the receive signal at the base station and Gk 2 C

M�nt is the channel
response matrix of user k. Here we assume the channel is quasi-static, i.e., the coef-
ficients keep constant during one transmission slot. xk 2 C

M�1 represents the trans-
mitted symbols of user k. Additive white gaussian noise (AWGN) vector
w 2 C

M�V �CN 0; r2IMð Þ with IM being the identity matrix of size M �M. Then
Eq. (1) can be rewritten as

y ¼ Hxþw ð2Þ

where H ¼ ½G1 G1 . . . GK � denotes the equivalent channel matrix. In the generalized
spatial modulated NOMA scenario, transmitted signal x is generated by users and their
antennas, which is defined as

x ¼ ½x1 x2 . . . xK �T ð3Þ

Generally, not all the antennas are active at the same time. We assume na 2 0; nt½ �
antennas are activated randomly at one time slot, then xi can be expressed as

xi ¼ 0; xp1 ; 0; . . .; xpna ; . . .; 0
� � ð4Þ
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Fig. 1. Illustration of multiple antenna configurations: (a) beam forming (b) spatial multiplex
(c) transmit diversity (d) spatial modulation
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where pj 2 1; nt½ � is the index of active antenna and j 2 1; na½ �. xpj represents the
symbol transmitted on the pj th antenna which is chosen from a constellation set
H ¼ H1;H2; . . .;HQ

� �
, such as PSK or QAM. Then the sum rate is defined as bit per

user.

R ¼ log2
nt
na

� �
þ na � log2 Hk k0 ð5Þ

According to [9], only a small number of users are active simultaneously and their
antennas are activated randomly during transmission. We denote 0 for the antenna
which is inactive. Then x takes the following form

x ¼ . . .; 0; . . .; 0;|fflfflfflffl{zfflfflfflffl}
inactive user

. . .; xp1 ; 0; . . .; xpna|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
active user

; . . .

2
64

3
75
T

ð6Þ

For a more general case, users have different number of antennas and the number of
active antennas is different for each user. Apart from that fact, users may change their
spatial constellations between each transmission, so block-sparse hypothesis will not
always hold. Active entries are not clustered either, so nearest neighbor sparsity
methods do not work well. Therefore, the problem should be modeled as the typical
sparse linear inverse problem naturally.

In the uplink grant-free NOMA, BS needs to know the antenna activity before
decoding. Therefore, our goal is to estimate the support and value of nonzero element
of x from y. The sparsity level of each antenna is also unknown a prior. Without loss of
generality, we assume the prior on each antenna is i.i.d, i.e., having the following
marginal pdf

base
station

user 1 (active)

user 2 (inactive)

user K (active)

Fig. 2. Generalized spatial modulation in grant-free uplink NOMA system
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pðxÞ ¼
YN
n¼1

p xnð Þ ¼
YN
n¼1

1� knð Þd xnð Þþ knf xnð Þ½ � ð7Þ

where kn 2 ð0; 1Þ is the sparsity level, d xnð Þ is the Dirac delta function. It is worth
noting that we specify an individual ratio for each antenna rather than a common one.
This is one key feature for reconstruction in proposed algorithm. Transmitted symbols
on each active antenna are chosen from the modulation constellation set H. Let pn;q
represents the probability of transmitting Hq of the nth user, then the distribution of
nonzero entries can be written as

f xnð Þ ¼
XQ
q¼1

pn;qd xn �Hq
	 
 ð8Þ

The system considered here is assumed to be well synchronized in each transmission
slot and inter-symbol interference is ignored.

3 Proposed Algorithm

3.1 AMP Algorithm

Inspired by approximate message passing algorithms and MAP inference, we detail the
proposed detection in Algorithm I. Based on message passing algorithm, we decouple
the estimation problem in Eq. (2) into scalar problems:

y ¼ zþw

z ¼ Hx

(
!

c1 ¼ x1 þw1

� � �
cN ¼ xN þwN

8<
: ð9Þ

where the equivalent noise wn asymptotically follows CN wn; 0;/nð Þ. The value of c1
and /n are updated in each iteration. The posterior distribution of xn is defined as

p xnjcn;/nð Þ ¼ 1
Z cn;/nð Þ p xnð ÞCN xn; cn;/nð Þ ð10Þ

where

Z cn;/nð Þ ¼
X

xn2fH;0g
p xnð ÞCN xn; cn;/nð Þ ð11Þ

is the normalizing factor and

p xnð Þ ¼ 1� knð Þd xnð Þþ kn
XQ
q¼1

pn;qd xn �Hq
	 
 ð12Þ
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From above, the estimates of mean and variance of xn are

x̂n ¼
P

xn2fH;0g
xnp xnjcn;/nð Þ

vn ¼
P

xn2fH;0g
xnj j2p xnjcn;/nð Þ � x̂nj j2 ð13Þ

AMP Inspired Antenna Activity and Signal Detection Algorithm 267



The term Vt
m

ym�Zt�1
m

r2 þVt�1
m

in decoupling step is known as the Onsager correction which is

the heart of the AMP [12]. Under large i.i.d. sub-Gaussian channel matrix configura-
tion, Onsager correction ensures that the input of the denoiser can be modeled as

Z ¼ xþ n; where n�CN 0;
IN
M

Vk k22
� �

ð14Þ

The gaussian distribution enables the denoiser to work efficiently.
From the detail implement of AMP, full knowledge of prior distribution and noise

variance are needed, which is an impractical assumption. Therefore, we resort to EM
algorithm to learn the unknown parameters. The EM algorithm we adopt here is an
increment update rule [16], i.e., updating one element at a time while others remain
fixed. EM increases the likelihood probability at each iteration, guaranteeing conver-
gence to at least local maximum of the likelihood function p yjkk; r2ð Þ.

3.2 kk Update

Now we resort to EM algorithm to learn the user activity kn. Since user may change
their spatial modulation at each transmission slot, we estimate kn element-wisely.
Denoting the estimate parameters by ktn at t

th iteration, EM updates can be expressed as

ktþ 1
k ¼ argmax

kkk2½0;1�
E ln p xtnjktn

	 
jy� � ð15Þ

where Ef�g denotes expectation conditioned on observation y and parameter ktk. In
order to obtain the maximum value, we differentiate Eq. (15) with respect to ktk . and set
it to zero:

X
xnfH;0g

p xtnjy
	 
 d

dktn
ln p xtnjktn
	 
 ð16Þ

where

p xtnjy
	 
 ¼ p xtnjctn;/t

n

	 

d
dktn

ln p xtnjktn
	 
 ¼

PQ
q¼1

pn;qd xtn�Hqð Þ�d xtnð Þ

1�ktnð Þd xtnð Þþ ktt
PQ
q¼1

pn;qd xtn�Hqð Þ

¼
1

ktn�1 xtn 62 H
1
ktn

xtn 2 H

(
ð17Þ
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Then ktþ 1
n can be obtained in a direct form

ktþ 1
n ¼

X
xn2H

p xtn ctn;/
t
n

��	 
 ð18Þ

3.3 r2 Update

Then we derive the update rule for r2 given previous parameters. Note that w is
independent of x and i.i.d, the joint pdf decouples into

pðx;wÞ ¼
YN
n¼1

p wm; r
2	 
 ð19Þ

so

r2
	 
tþ 1¼ argmax

r2 [ 0

XN
n¼1

E ln p wm; r
2	 


y; htj� � ð20Þ

The maximizing value of r2 can be obtained by zeroing the derivative, i.e.,

XN
n¼1

Z
r2

p r2jy; ht	 
 d
dr2

ln p wm; r
2	 
 ¼ 0 ð21Þ

where

d
dr2

ln p wm; r
2	 
 ¼ 1

2
wmð Þ2
r2ð Þ2 � 1

r2

 !
ð22Þ

From (21) and (22), we have

r2
	 
tþ 1¼ 1

N

XN
n¼1

Z
wm

wmj j2p r2 y; htj	 
 ð23Þ

since wm ¼ ym � zm, we have

r2
	 
tþ 1¼ 1

N

XN
n¼1

Z
wm

yn � ẑnj j2p r2jy; ht	 


¼ 1
N

XN
n¼1

yn � ẑnj j2�lzm
� 
 ð24Þ
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Above ẑn and l2m are the posterior mean and variance, which can be calculated by

zm ¼
XN
n¼1

Hmnxnlzm

¼
XN
n¼1

Hmnj j2cn
ð25Þ

3.4 CFAR Threshold

After several iterations, based on the estimated mean and variance, we design an
adaptable threshold xTH to detect the support of r with constant false alarm rate
(CFAR)g. Support detection can be seen as the final layer. From Eq. (2) we have

r ¼ xþw ð26Þ

wherew�CN 0; c�1
1T I

	 

, and r�CV x; c�1

1T I
	 


. For a givenCFAR g, xTH can be derived as

xTH ¼ ffiffiffiffiffiffiffi
c1T

p
U�1 gþ 1

2

� �
ð27Þ

where U�1ð�Þ is the probit function of the standard normal distribution. Based on this
threshold, missing detection can be calculated

Pr xTHð Þ ¼
Z xTH

�xTH

p xnjrð Þdx � k
Z xTH

�xTH

Nðx; h;UÞdx ð28Þ

Once the threshold is selected, the support is detected for jrj � xTH. Then the original
symbol pair is restored by applying MAP detection:

xn ¼ argmax
xe2H

p Hqjxn
	 


¼ argmax
xx2H

p xnjHq
	 


p Hq
	 
P

xe2H
p xnjHq
	 


p Hq
	 
 ¼ argmax

xx;¼H
p xnjHq
	 
 ð29Þ

3.5 Parameter Initialization

Since EM algorithm may converge into a local maximum or a saddle point, proper
initialization of unknown parameters is essential. The sparsity level is initialized as
k0 ¼ M

N qPrc where qPTC is the sparsity ratio achieved by Lasso PTC
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qPTC ¼ max
a[ 0

1� 2N=M 1þ a2ð ÞUðaÞ � a/ðaÞ½ �
1� a2 � 2 1þ a2ð ÞUðaÞ � a/ðaÞ½ � ð30Þ

Due to the fact that the active pdf is symmetric, the active mean is initialized as 0.
Then r2 is initialized as ðsNRþ 1Þ yk k2=M and SNR is set to 100 if there is no extra
knowledge.

3.6 Computational Complexity

The computational complexity is evaluated in terms of floating-point operations
(FPOs). The multiplication of a real number and a complex number require 2 FPOs and
the multiplication of two complex numbers requires 6 FPOs. The value from operation
CN ð�Þ is implemented by look-up table. In the main iteration of proposed algorithm,
the computation of inner decoupling step requires ð10 N + 2) FPOs and these com-
putations need M iterations. The computation of denoising step needs N 22Mþð
16 Hk k0 þ 9Þ FPOs. Equations (18) and (24) require N Hk k0 and ð8 M + 10) ðN �
1Þþ 9 FPOs, respectively. Therefore, the total computation required by proposed
algorithm is T 40MN � 6Mþ 19Nþ 17N Hk k0�1

	 

FPOs. Modulation order is a

factor that affect the computation burden especially when high-order modulations are
used.

The computational complexity of proposed algorithm is dominated by matrix-
vector multiplications in each iteration, i.e., OðMNÞ. The number of iterations required
to guarantee convergence is not large. From the simulation result shown in Sect. 4, it
takes 15 layers to achieve its error floor. Therefore, this linear complexity of proposed
algorithm is suitable for large scale antenna MIMO configurations which are
encountered in next generation wireless communication system.

4 Performance Evaluation

In this section, we present the simulation results of proposed detection scheme. The
base station is equipped withM ¼ 100 receive antennas. The number of total supported
antennas N is set to 250, thus the overload factor is 250%. The symbols transmitted on
the active antenna are QPSK modulated. The channel is modeled as Rayleigh flat
fading channel and the elements of channel matrix H are i.i.d, i.e., Hm;n � CNð0; 1Þ.
CS based schemes, OMP, SP and CoSaMP are implemented as reference. The per-
formance of user detection and SM demodulation. User detection performance is
measured by antenna detection error which is defined as active antenna being detected
as inactive. Symbol detection error rate is used to measure signal detection
performance.
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The detection error rate (DER) and symbol error rate (SER) of different algorithms
is depicted as functions of SNR in Fig. 3. The number of active antennas is set to 10.
When measuring the SER, the active antennas is assumed to be known. The proposed
detector outperforms SP 1 dB in terms of SER and DER. It is worth mentioning that SP
and CoSaMP based methods need the information of the number of active antennas as
prior information which is learned iteratively in proposed method.
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Fig. 3. DER and SER performance versus SNR
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Figure 4 shows the SER and DER performance versus the sparsity level. It con-
siders the case SNR equals 3 dB and 9 dB. In both configurations, proposed algorithm
can achieve a better performance than other methods over a wide range of sparsity
level. With up to 15 active antennas, proposed detector still has a 10−3 SER and 10−4

DER at 9 dB. This means proposed algorithm is robust to a changing number of active
antennas. Another interesting observation is that, in low SNR case CoSaMP perform
better than OMP, but in high SNR case, OMP is about 1 dB outperform CoSaMP.
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Fig. 4. DER and SER performance versus sparsity level
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Figure 5 shows the performance versus iteration indexes with sparsity level being
17 when SNR equals 5 dB and 10 dB. It demonstrates that, proposed detector con-
verges much faster in the first 10 iterations and does not significantly improve after 15
iterations.

5 Conclusion

In this paper, we present an AMP based antenna activity and signal detection algorithm
for spatial modulated NOMA. This solution shows an improved performance compared
to previous CS approaches. This is mainly because Onsager correction ensures the
denoiser input is an AWGN corrupt version of the ground truth. Another major
advantage of proposed algorithm lies in the fact that it achieves its convergency in 15
iterations and its linear computational complexity makes it very practical.
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