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Abstract. Mobile edge computing (MEC) is a new paradigm to provide
computing capabilities at the edge of pervasive radio access networks in
close proximity to intelligent terminals. In this paper, a resource alloca-
tion strategy based on the variable learning rate multi-agent reinforce-
ment learning (VLR-MARL) algorithm is proposed in the MEC sys-
tem to maximize the long term utility of all intelligent terminals while
ensuring the intelligent terminals’ quality of service requirement. The
novelty of this algorithm is that each agent only needs to maintain its
own action value function so that the computationally expensive issue
with the large action space can be avoided. Moreover, the learning rate
is changed according to the expected payoff of the current strategy to
speed up convergence and get the optimal solution. Simulation results
show our algorithm performs better than other reinforcement learning
algorithm both on the learning speed and users’ long term utilities.

Keywords: Mobile edge computing · Joint resource allocation ·
Multi-agent reinforcement learning · Variable learning rate

1 Introduction

With the development of Internet, mobile intelligent terminals are becoming
more and more popular and its function is more and more various. New applica-
tions such as face recognition, image recognition, automatic driving, video chat
and augmented reality (AR) keep emerging [8]. However, these emerging applica-
tions require that mobile devices should have abundant computational resources
and storage resources, while the resources of intelligent terminals are limited.

Mobile edge computing (MEC) has developed rapidly in recent years, as it
provides a large amount of computational resources to bridge the gap between
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the demands of applications and the restricted capacity of intelligent terminals.
MEC servers are deployed at the base stations (BSs) in close proximity to mobile
subscribers to execute latency-sensitive services, thereby extending computing,
storage and data processing capabilities of intelligent terminals [5].

The joint computational and wireless resources allocation in mobile edge com-
puting systems has been a key point attracting great interests in the MEC system
in recent years [7]. To address the problem that the users in the MEC system
typically suffer from unfair resource allocation, an approach is proposed in [17]
to maximize the overall network throughput under the constraint of each user’s
minimum transmission rate. In [16], the offloading selection, radio resource and
computational resource allocation are jointly optimized to minimize the energy
consumption on smart mobile devices in a multi-mobile-users MEC system. In
[9], three models, namely local compression, edge cloud compression and partial
compression offloading are studied and compared. However, in their papers, the
MEC servers need to know the global information.

Reinforcement Learning (RL) interacts with the environment and improves
the behavior through trial and error to obtain the optimal solution. RL algorithm
is a learning method that requires less prior knowledge and has been widely
studied in the artificial intelligence community [1]. Therefore, there are also
some literatures on the use of RL to solve the problem of resource allocation.
In [14], an intelligent agent is designed to develop a real-time adaptive policy
for computational resource allocation in order to improve the average end-to-end
reliability by employing a deep reinforcement learning method. In [15], a dynamic
offloading framework was formulated as a multi-label classification problem and
the deep supervised learning method is developed to minimize the computational
overhead. The Q-learning based and deep reinforcement learning based schemes
are proposed respectively in [6] to tackle the resource allocation in wireless MEC
system. However, the literatures above only study the situation after offloading
without considering the necessity of offloading. Besides, Q-learning algorithm
will cause the large state and action spaces, which leads to high computational
complexity.

In this paper, variable learning rate multi-agent reinforcement learning
(VLR-MARL) algorithm is proposed and the main contributions of this paper
are as follows:

(1) Wireless and computation resources are jointly allocated in this paper in
order to maximize the utility by increasing the throughput and reducing
the cost of each user. Moreover, the necessity of offloading is also considered
in this paper.

(2) Multi-agent reinforcement learning (MARL) method is used to reduce the
learning time and speed up the search for the optimal strategy through
multiple agents parallel processing.

(3) The learning rate is changed according to the expected payoff of the current
policy and each agent only needs to maintain its own action value function,
which reduces the complexity of this algorithm.
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The rest of paper is organized as follows: in Sect. 2, the system model is
described in detail. In Sect. 3, the VLR-MARL based resource allocation policy
is proposed. Section 4 presents the simulation results. Finally, we conclude the
paper in Sect. 5.

2 System Model

The MEC system studied in this paper is illustrated in Fig. 1, which includes
a base station, MEC Servers and intelligent terminals. The intelligent termi-
nals are connected to the BS through the wireless links and the MEC server is
deployed inside the BS or connected to the BS through the optical fiber. The
MEC server is a relatively small pool of resources with limited communication
and computational resources.

MEC Server

Base Station

User_1 User_2 User_NUser_N-1

Wireless link

Wired link

Mobile terninal

MEC Server

Base Station

User_1 User_2 User_NUser_N-1
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Mobile terninal

MEC Server

Base Station
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Mobile terninal

Fig. 1. System model.

In this paper, we consider that there are N users as N = {1, 2, 3, · · ·, N}.
Each user has computational intensive tasks that need to be offloaded to the
MEC server. We can divide the wireless channel into K subcarriers, where K =
{1, 2, 3, · · ·,K}. Assuming that the subcarriers are orthogonal to each other, the
users that choose different subcarriers do not interfere with each other. The
connection between the user n and the subcarrier k is defined as ck

n. When the
user n utilizes the subcarrier k, ck

n = 1, and ck
n = 0 otherwise. Each user can

only access to no more than one subchannel, which means

K∑

k=1

ck
n ≤ 1,∀n ∈ N (1)

2.1 Communication Model

Since many users share the same channel, we need to take channel interference
into account when transferring computing tasks to the MEC server through the
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wireless channel. The uplink data rate of each user can be expressed as follows:

rn = ωlog2

⎛

⎜⎝1 +
pnck

ngn,s

σ0 +
∑

i∈N,i �=n

pick
i gi,s

⎞

⎟⎠ (2)

where ω and σ0 represent channel bandwidth and background noise power, pn is
the transmission power of user n which is determined according to some power
control algorithms such as [13] and [3]. Further, gn,s is the channel gain between
user n and BS s, which is written as

gn,s = l−α
n,s (3)

where ln,s is the distance between user n and BS s and α is the path loss factor.
We assume that each user n has a computation-intensive task Jn = {bn, dn}.

Here bn denotes the size of input data (including task code and input parameters)
and dn denotes the numbers of CPU cycles required to complete the task Jn. A
terminal can apply the methods in [4] to obtain the information of bn and dn.
In order to offload the task to the MEC server, additional wireless transfer time
is required as

tup
n = bn/rn (4)

The energy consumption generated during this period can be expressed as

ec
n = pn

bn

rn
+ Ln (5)

where Ln represents the energy consumption generated for a period of time after
the completion of data uploading. After the MEC server receives the computa-
tional task, it will execute the task.

2.2 Computation Model

We assume that fc
n is the computational resources (the number of CPU cycles

per second) allocated to user n from the MEC server, so the task execution time
for user n can be expressed as

texe
n = dn/fc

n (6)

Therefore, the total overhead of user n can be given as

Kc
n = λt

n(tup
n + texe

n ) + λe
nec

n (7)

The time it takes for the MEC server to transmit the results back to the user
is negligible because the results are usually much smaller than the uplink data.

If the user does not upload the task to the MEC server, but decide to compute
it locally, the cost only includes the computational time and energy consumption.
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Let fm
n be the computational capability of the user n. The local computational

time of the task J(n) can be given as

texe
n,local = dn/fm

n (8)

Then the local energy consumption can be denoted as

elocal
n = γndn (9)

where γn is the coefficient denoting the consumed energy per CPU cycle, which
can be obtained by the measurement method in [12].

According to the Eqs. (8) and (9), then the local overhead can be expressed
as

Klocal
n = λt

ntexe
n,local + λe

nelocal
n (10)

where λt
n, λe

n ∈ [0, 1] represents the weighting parameters of computational time
and energy consumption for intelligent terminal n.

The utility function for each user should be related to the data transfer rate
and resource overhead. Therefore, the utility function for the nth user can be
given as:

un = ρirn − vi(λt
n(tup

n + texe
n ) + λe

nec
n) (11)

The first item in the above formula represents the data transmission rate pro-
vided to the user, and the second item represents the total cost incurred in
offloading the task to the MEC server. ρi and υi are coefficients of both items.

2.3 Problem Formulation

The resource allocation in MEC system is formulated as an optimization prob-
lem. The objective of this paper is to maximize the utility function of all agents.
When the cost of offloading is less than the cost of local computing, it can be
considered that the resource allocation is reasonable and can meet users over-
head requirement, otherwise the offloading is unreasonable. Each user can only
choose one subcarrier. Under this constraint, the problem is formulated as

max U =
∑

n

un (12)

s.t.Kexe
n < Klocal

n (13)
K∑

k=1

ck
n = 1,∀n ∈ N (14)

3 Multi-agent Reinforcement Learning Based Resource
Allocation Algorithm

In this section, reinforcement learning is applied to solving the problem (12)–(14)
to obtain the joint strategy of wireless and computational resource allocation.
In the following, we first present the basic model of RL, then propose MARL
to speed up the rate of convergence by parallel computation, and at last add
variable learning rate to reduce the complexity of state and action space.
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3.1 Basic Model

In the MEC network, each user acts as an agent. In each time slot, the agent
chooses an action from action space. After applying an action, the agent receives
a reward or punishment from the environment.

(1) State Space: The degree of satisfaction of user n can be defined as sn(t), so
state space is expressed as

S(t) = {s1(t), s2(t), . . . , sN (t)} (15)

where sn(t) = {0, 1}, when sn(t) = 0, it means that the offloading cost of
the user is more expensive than the local computation. On the contrary, if
it is sn(t) = 1, it means that the offloading is reasonable and the user meets
the needs of overhead costs.

(2) Action Space: Each user selects computational and wireless resources, so the
action space can be represented as:

an(t) = {bn(t), cn(t)} (16)

where cn(t) represents computational resources obtained from the server and
bn(t) represents wireless resources. The computational resources provided
by the server have been decentralized as {4000, 4500, 5000, 5500}, therefore
cn(t) represents the computing resource arbitrarily selected on behalf of the
user. Besides, bn(t) =

{
b1n(t), b2n(t), ..., bK

n (t)
}
, bk

n(t) = 1 represents that user
n chooses subchannel k.

(3) Reward: When the user chooses the action an(t) by observing the state
sn(t), it will obtain an immediate reward rn(t) as

rn(t) = un(t) − Φ (17)

where Φ > 0 is a fixed cost when the user chooses an action. Multiple agents col-
lectively explore the environment and refine wireless and computational resource
allocation based on their own observations of the environment state. While the
resource allocation problem may appear a competitive game, in order to make
all agents cooperate with each other, the same reward is used for all agents. As
such, the reward includes the instantaneous utilities of all intelligence terminals.
In the meantime, to achieve the objective that all users offload successfully as
much as possible, the reward is set to add a constant number Ω, that is greater
than the largest utility. The reward of the user at each time step t is defined as

Rn(t) =

⎧
⎨

⎩

∑
n

rn(t), if
∑
n

sn(t) < N
∑
n

rn(t) + Ω, f
∑
n

sn(t) = N
(18)
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3.2 Multi-agent Reinforcement Learning Policy

Reinforcement learning often has the characteristics of delay in return, so a
function is defined to indicate the long-term influence on the strategy chosen in
its current state. This function is called the value function [10]. The expression
of value function is

V π(s) = Eπ[
∞∑

i=0

γiri|s0 = s] (19)

where E(x) denotes the expectation of x. The above formula represents a cumu-
lative expectation of the reward value obtained by the strategy in the initial
state s, and γi is the discount factor to measure the importance of the reward
in the value function. In general, the further away from the current state, the
smaller the effect of the reward.

The current value function can be estimated by the value function of the
subsequent state and the formula can be obtained as

V π(s) = π (s)
∑

s′∈S

p(s, s′)[r0 + γV π(s′)] (20)

where p(s, s′) represents the state transition probability from state s to state s′

and π (s) denotes the policy of agent i at state s. All subsequent states can be
obtained from the model formula π (s) and action set. When these conditions
are unknown, the subsequent state can be obtained only by trials and sampling.

A policy usually corresponds to multiple execution actions. The value func-
tion can be decomposed into the expression related to each action, and the action
value function can be obtained as

Q(s, a) = ra
s + γ

∑

s∈S

p(s, s′)
∑

a,∈A

π (a|s′) Q(s′, a′) (21)

where ra
s denotes the reward when agent i chooses action a at state s, p(s, s′)

represents the state transition probability from state s to state s′ and π (a|s′)
denotes the policy of agent i at state s′ choosing action a.

In order not to get stuck in a locally optimal solution, we adopt ε − greedy
strategies [2] to explore the environment. ε is a very small number, as the prob-
ability of picking a random action and 1 − ε denotes the probability value of
selecting the optimal action.

π (a|s) =

{
1 − ε + ε

|A(s)| , a = arg max Q(s, a)
ε

|A(s)| , a �= arg max Q(s, a) (22)

One popular reinforcement learning method is Q-learning [11]. In Q-learning,
the optimal Q-value function can be obtained from the Bellman’s equation. The
Q-value of the current state can be calculated using the Q-value of the next state.
There is a difference between the calculated Q-value and the original value in
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this state, which is called incremental Q-value. Then, we can use it to update
the Q-value, which is given as:

Q (s, a) ← Q (s, a) + α

(
r + γmax

a′
Q (s′, a′) − Q (s, a)

)
(23)

where α represents the learning rate and usually α = 0.1, max
a′

Q (s′, a′) repre-

sents the maximum Q-value of all possible actions in the next state.
In this paper, all users are assumed to be agents. All the actions of agents

constitute the joint action space set A = a1 × a2 × ... an. The return function of
each Agent is calculated based on the joint action space and all agents’ policies
are combined into joint strategy h. The Q-value of each Agent in state s is

Qh
n(s, a) = E{

∞∑

k=0

γkri,k+1|s0 = s, a0 = a, h} (24)

This Q-value iteration algorithm is guaranteed to converge to the optimal
point with Q (s, a) → Q∗(s, a) as iteration → ∞ [10]. Because Q-learning is
off-policy, which means the agent learning and interacting with the environment
are different. The behavior policy is used to interact with the environment to
generate datas in order to make decisions in the training process. The target
policy is constantly studying and optimizing using the datas generated by the
behavior policy. The target policy is greedy while choosing behavior uses ε −
greedy strategy. The maximum action value is used to calculate the expected
return of the next state, however the current policy does not always select the
optimal action. The strength of the off-policy is that by separating the target
policy from the behavior policy, the global optimal value can be obtained while
maintaining exploration.

3.3 Variable Learning Rate-MARL Algorithm

To reduce the space complexity of multi-agent problem and improve convergence,
we propose a VLR-MARL algorithm. The learning rate changes by the principle
that learn fast while losing and learn slowly while winning. The principle helps
convergence by giving other agents more time to adapt to strategy changes
that initially seem beneficial, while allowing agents to adapt more quickly to
other agents’ harmful strategy changes. This algorithm requires two learning
parameters δlose and δwin. If the agent is currently determined to be winning,
δwin is used, otherwise, δlose is used. It is based on virtual game, and replaces the
unknown equilibrium strategy with the approximate equilibrium average greedy
strategy.

The agent will explore action ak when it transfers from stage sk to sk+1 and
has the reward function R. Then its average estimation strategy update can be
expressed as:

π̄i (sk, ak) = π̄i (sk, ak) +
1

C(s)
[πi (sk, ak) − π̄i (sk, ak)] (25)
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where C(s) denotes the number of occurrences of state s. The strategy can be
given as

πi (sk, ak) = πi (sk, ak) + Δsai
(26)

Δsai
=

{−δsai
ai �= arg maxa′Q (s, a′)∑

a′ �=ai

δsa′ , others (27)

The learning rate that is used to upgrade the policy depends on whether
the agent is currently determined to be winning or losing. This is determined
by comparing whether the current expected value is greater than the current
expected value of the average strategy. If the expectation of the current policy
is smaller, then the larger learning rate δlose is used.

δsai
= min(π(sk, ak),

δ

|Ai| − 1
) (28)

δ =

{
δwin,

∑
ai∈Ai

πi(sk, ak)Qi >
∑

ai∈Ai

π̄i(sk, ak)Qi

δlose, others
(29)

The detailed procedure of the proposed VLR-MARL algorithm is presented
in Algorithm 1.

4 Performance Evaluation

In this section, we evaluate the performance of our VLR-MARL algorithm and
provide the numerical results compared with other algorithms.

In this simulation, we suppose that there are 20, 30 or 40 users within a radius
of 100 m, randomly distributed around the base station. The total number of
channels is K = 5 with channel bandwidth W = 5 MHz. The user’s transmitted
power is 100 mW. The path loss coefficient of the channel gain is α = 4 and
the background noise power σ0 is −100 dBm. The size of all users’ input data
bn for the computation task Jn is 5000 kB and the number of CPU cycles dn

required to complete the task is 1000 Mc. The available computational resources
in MEC servers is fc

n = {5000, 8000, 10000, 12000} M/s. The local computational
capability of each user is 500 M/s.

4.1 Convergence of Proposed Algorithm

The convergence of the proposed VLR-MARL algorithm is shown in Fig. 2. The
initial action is chosen randomly and the stable state is achieved within 20
iterations. Figure 2 also shows the performance with different learning rate δwin

and δlose. When the δwin

δlose
= 1

2 , VLR-MARL algorithm reaches the optimal utility
a bit faster. Therefore, the learning rate is chosen to be δwin = 0.005 and δlose =
0.0025 in the next simulation.

Figure 3 shows the offloading success rate of different numbers of users. The
state function of the users shows the offloading situation. When sn(t) = 1, the
task offloading is known as successful. When the number of users increases, the
rate of convergence will slow down.
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Algorithm 1: VLR-MARL Algorithm for Resource Allocation in MEC
Network
Input: The number of populations N , the distance d between each user and MEC

Server, Max iteration, the number of wireless channel K
Output: Optimal sequence of actions required to maximize the users’ utility

1 Initialize: Qi(s, ak) = 0 , πi (s, ak) =
1

|Ai| , π̄i (s, ak) =
1

|Ai| , δlose, δwin, C(s) = 0,

α, γ, ε ∈ [0, 1]; for iteration = 1 to Max iteration do
2 for useri to userN do

3 useri take ε − greedy policy to choose action ak based on the current state s
4 Calculate the next reward value ri
5 Calculate the next state s′
6 Update Qi(s, ak)

:Qi (s, ak) ← Qi (s, ak) + α

(
r + γmax

a
′ Q (s′, a′) − Qi (s, ak)

)

7 Update C(s) = C(s) + 1

8 Update the average estimation strategy π̄i (s, ak)

= π̄i (sk, ak) +
1

C(s)
[πi (sk, ak) − π̄i (sk, ak)]

9 Determine whether the agent is wining and choose

δ =

⎧⎪⎨
⎪⎩

δwin,
∑

ai∈Ai

πi(sk, ak)Qi >
∑

ai∈Ai

π̄i(sk, ak)Qi

δlose, others

10 Update the strategy function πi (s, ak)

11 iteration = iteration + 1

12 Return the action space of all users

Fig. 2. Utility of users
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Fig. 3. Offloading success rate

4.2 Comparison to Other Algorithms

Then, the convergence efficiency are analyzed with various MARL algorithms.
Figure 4 shows the learning curves of centralized single agent Q-learning algo-
rithms in [6], Q-learning MARL algorithms and VLR-MARL algorithms pro-
posed in this paper. As can be seen, Q-learning reaches the optimal solution
more slowly than the proposed VRL-MARL algorithm. Moreover, the utility of
Q-learning single agent reinforcement learning (SARL) and Q-learning-MARL
are lower than VRL-MARL. Therefore, the VRL-MARL algorithm performs
better both on the learning speed and users’ utilities.

Fig. 4. Learning curves of different algorithms
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5 Conclusion

In this paper, we propose a MARL framework to obtain the optimal resource
allocation strategy in the MEC system. The optimization issue has been designed
to obtain the maximum long-term reward while guaranteeing that users’ offload-
ing is reasonable. Considering the non-convex and combinatorial characteristics
of this joint optimization problem, we have proposed the VLR-MARL strat-
egy by jointly choosing channels and allocating computational resource to users.
Based on the theory that learn slowly while winning and learn fast while los-
ing, our strategy can efficiently provide a near-optimal solution with a small
amount of iterations. Simulation results are given to indicate the convergence of
the proposal method and better performance compared with other reinforcement
learning methods.
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