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Abstract. As the terminal devices grow explosively, the resource in a
fog network may not satisfy all the requirement of them. Thus schedul-
ing the resource reasonably becomes a huge challenge in the future 5G
network. In the paper, we propose a fair resource allocation algorithm
based on deep reinforcement learning, which makes full use of the com-
putational resource in a fog network. The goal of the algorithm is to
complete processing the tasks fairly for all the user nodes (UNs). The
fog nodes (FNs) are expected to assign their central processing unit
(CPU) cores to process offloading tasks reasonably. We apply the Deep
Q-Learning Network (DQN) to solve the problem of resource scheduling.
Firstly, we establish an evaluation model of a priority to set the priority
for the offloading tasks, which is related to the reward in the reinforce-
ment learning. Secondly, the model of reinforcement learning is built by
taking the situation of UNs and resource allocation scheme as the state
of environment and the action of the agent, respectively. Subsequently,
a loss function is analysed to update the parameters of a deep neural
network. Finally, numerical simulations demonstrate the feasibility and
effectiveness of our proposed algorithm.
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1 Introduction

As thebibliography 5G era comes, there are an increasing number of terminal
devices connecting to the network [1]. In addition, most of mobile applications
generate massive data, such as augmented reality and autopilot. This brings a
heavy burden on the transmission link to the cloud data server. Therefore, the
fog computing is proposed to relieve the pressure of link delay and congestion in
the network [2]. In a fog network, fog nodes (FNs) are expected to be deployed
in the whole network and help process the data tasks offloaded from user nodes
(UNs). However, as the data tasks grow explosively in the fog network, the FNs
with limited resources, such as computational resources, storage resources and
network resources, can not process the tasks in time, which will cause some tasks
to be unprocessed for a long time. Therefore, in order to guarantee the data tasks
to be processed effectively and fairly [4], it is essential to allocate the resources
reasonably in the fog network.

In past few years, numerous researches focusing on resource allocation have
been carried out. For example, among them, a double-matching strategy for the
resource allocation problem in fog computing network is proposed [6]. The strat-
egy analyses the utility and cost of resource allocation to maximize the cost
efficiency, which is an extension of classic matching algorithm. A novel mecha-
nism named Gaussian Process Regression for Fog-Cloud Allocation (GPRFCA)
is introduced [3]. The GPR method is utilized to predict the future requests
to improve the utilization of limited resource in the FNs and the Power Usage
Effectiveness is considered as the metric to improve the energy efficiency of FNs.
The joint radio and computational resource allocation in fog networks is formu-
lated as a mixed integer nonlinear programming problem [5], with the constraints
including transmission power, service delay and so on. To improve the user expe-
rience, the authors propose a matching game framework to solve the resource
allocation problem.

Although there exist a large amount of literatures about resource allocation
in fog networks, few literatures solve the resource allocation problem with deep
reinforcement learning [9]. In this paper, we focus on the computational resource
allocation and solve the problem of fair computational resource allocation with a
classic deep reinforcement learning algorithm, Deep Q-Learning Network (DQN)
[7]. After modeling computational resource allocation problem into Markov deci-
sion process, we propose a fog computing resource allocation strategy based on
DQN. The strategy first sets priorities for different tasks, and then utilizes the
deep reinforcement learning framework to perceive dynamical resource environ-
ments. Finally, computational resources are reallocated to different tasks in real
time according to the task priorities. The strategy can not only alleviate the
computing pressure of the UNs and dynamically sense the environment but also
realize the automatic allocation of resources and determine the optimal resource
allocation scheme.
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Therefore, our work can be concluded as follows:

(1) We determine the user priorities and define different task states. The task
priority model is established according to different user priorities and task
states. Under the model of task priority, resource utilization and task exe-
cution rate are improved, which meets the quality of experience (QOE) of
different users.

(2) We solve the resource allocation problem in the fog network with deep rein-
forcement learning. The state and reward of environment and the action
of agent are set to establish the model of resource allocation reinforcement
learning. The value function is defined to update the neural network and
the analysis of the update is provided.

(3) The algorithm based on deep reinforcement learning is realized, and the
resource allocation simulation experiment is completed. The effectiveness
and feasibility of our proposed algorithm are verified.

The remainder of this paper is organized as follows. The preliminary, includ-
ing system model and task priority, is introduced in Sect. 2. We formulate the
problem in Sect. 3, where we transform the resource allocation in the fog network
into the problem of deep reinforcement learning. In Sect. 4, we apply the classic
deep reinforcement learning DQN to solve the problem. Numerical simulations
are provided to evaluate the performance of our proposed strategy in Sect. 5. At
last, the paper is concluded in Sect. 6.

2 Preliminary

2.1 System Model

We consider a fog network consisting of the cloud data server, a FN and multiple
UNs, as depicted in Fig. 1. The FN is available with M total central processing
unit (CPU) cores for processing the offloading tasks. The computational capacity
of each CPU core is denoted as C, measured in [bit/s]. We denote the set of UNs
as U = {U1, . . . , Un, . . . , UN}. The operating time of the fog network system is
slotted and we denote the index of time slot as k with k ∈ K = {1, 2, 3, . . . }.
Each time slot is denoted by ts (in seconds). For the UNs, the possibility of data
generation satisfies discrete-time On/Off Markov arrival model [8]. At each time
slot, the data from UN Un is transmitted to the FN and cached in the buffer n,
where the queues in the buffer are first-in-first-out (FIFO) queues. Subsequently,
the FN allocates the computational resources (CPU cores) to the cached data
in the buffer. At the beginning of time slot, the CPU cores are reallocated to
the different buffers according to the size of data to be processed in the different
buffers. After processed by the FN, the result of the data is transmitted back to
the UNs or forwarded to the cloud data server.
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Fig. 1. System model.

2.2 Task Priority Model

Due to the multi-source nature of the UNs and the large number of data tasks,
there exists the competition between the UNs. To prevent the link congestion
problem caused by resource competition, it is especially essential to arrange the
order of task processed by the FN reasonably. Therefore, it is considered to set
a priority level for the data task from UNs before the data tasks are processed.
The data tasks with higher priority are assigned computational resources pref-
erentially.

We take the UN priority, the waiting time and the size of data tasks to be
processed into consideration. The specific priority strategy are as follows. The Un

priority is represented as ζn. Different UNs have different user priority levels. For
example, a car node has a higher user priority than a sensor node. Additionally,
considering the task response speed, too long waiting time is not allowed, which
results in the link congestion and poor quality of experience (QoE). Therefore,
the longer the waiting time, the higher the task priority. We denote W k

n , W k
max

as the waiting time of the data task from Un, the maximum of the waiting time
among the data tasks during the time slot k, respectively. At last, the quantity
of the cumulative tasks in the buffer should be considered. Similarly, the more
the cumulative tasks in the buffer, the higher the task priority. We denote Dk

n,
Dk

max as the cumulative tasks from Un, the maximum of cumulative tasks during
the time slot k, respectively.
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Above all, we can obviously obtain the priority of the data task from Un as
follow.

θkn =
(⌊

Dk
n

Dk
max

⌋
× α +

⌊
W k

n

W k
max

⌋
× β

)
× ζn, (1)

where α, β represent the weight coefficient of the cumulative tasks and the
waiting time, respectively.

Under consideration of fair resource allocation, the priority θkn is adjusted
dynamically according to the state of the fog network, including the cumulative
tasks and the waiting time.

3 Problem Formulation

Resource allocation in the fog network is a decision-making process where to
allocate computational resources to process the data tasks from the UNs dur-
ing each time slot. Thus, we model this decision-making process into a Markov
decision process. Because the data tasks generate randomly in the UNs, the
Markov transition probabilities are uncertain. The environment’s dynamics are
unknown when the agent selects the action, thereby we use model-free reinforce-
ment learning to obtain the best policy. Therefore, the fog computing resource
allocation strategy based on deep reinforcement learning is to continuously sam-
ple by interacting with the external environment, and to find the optimal strategy
by maximizing the cumulative reward. The resource allocation model based on
reinforcement learning is established as follows.

3.1 State Vector

At the beginning of each slot time, the FN caches the data tasks, which generates
at the previous time slot, to the corresponding buffers. The system state can be
obtained as follows.

– Dk: Dk is the vector of the cumulative tasks in the buffers and can be rep-
resented as

[
Dk

1 , . . . , Dk
n, . . . , Dk

N

]
, where Dk

n is the cumulative tasks in the
nth buffer during the time slot k.

– W k: W k is the vector of the waiting time. And W k can be represented as[
W k

1 , . . . ,W k
n , . . . ,W k

N

]
, where W k

n is the waiting time of data tasks from Un

in the time slot k.

Finally, the state of the fog network can be denoted as

sk = {Dk,W k}. (2)

3.2 Action Vector

After sensing the state of the fog network, the agent selects the action from the
action set A according to the strategy π, namely, ak = π

(
sk

)
. ak is the vector

of action and can be expressed as

ak =
[
ak
1 , . . . , a

k
n, . . . , ak

N

]
, (3)
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where
∑N

n=1 ak
n = M and ak

n represents the number of CPU cores allocated to
process the data tasks from Un.

After determining ak, if there exists ak
n = 0, meaning the data tasks from Un

are not processed during the time slot k, the waiting time increases. The waiting
time state of Un can be expressed as

W k+1
n =

{
W k

n + 1, if ak
n = 0

0, if ak
n �= 0

(4)

3.3 Reward Function

Taking the action ak under the state of sk, the agent can obtain a reward from
the environment. Effectively setting the reward function is very important for
deep reinforcement learning to achieve the desired goal. In order to maximize
the execution rate of the task and the satisfaction of the user, we set the reward
function as follows.

rk =
N∑

n=1

θkn × φk
n, (5)

where φk
n represents the data tasks from UN Un processed during the time slot

k, and can be expressed as
φk
n = ak

nCts. (6)

At the time slot k, the agent obtains the immediate reward rk. Our goal is
to maximize the total reward, which can be expressed as follows.

Rk =
∞∑
i=0

γirk+i, (7)

where the discount factor γ ∈ (0, 1) weighs the myopic or foresighted decisions.

3.4 Value Function

The action ak is drawn from a stochastic policy π (a|s) = Pr
(
ak = a|sk = s

)
,

which is a mapping from the state of the fog network to the probability of tak-
ing actions. The value function is the expected value of cumulative discounted
rewards received over the entire process following the policy. The process of
reinforcement learning contains two phases: (a) policy evaluation and (b) pol-
icy improvement. In the first phase, the agent samples data according to the
stochastic policy π (a|s). In the second phase, the agent updates the policy
π (a|s) according to the value function.

There are two definitions of value function: (a) the state value function
V (s) and (b) the state-action value function Q(s,a). The relationship between
V (s) and Q(s,a) satisfies V (s) =

∑
s

Pr
(
ak = a|sk = s

)
Q(s,a). Q(s,a) can be

expressed as

Q(s,a) = E

[ ∞∑
i=0

γirk+i|sk = s,ak = a

]
. (8)
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The optimal Q(s,a) is denoted as Q∗(s,a) and can be calculated by the
Bellman optimality equation as follows.

Q∗(sk,ak) = E

[
rk + γ max

ak+1
Q

(
sk+1,ak+1

)]
. (9)

To optimize the long-term performance, the Eq. (9) is adopted to update
the value function in the Q-learning algorithm. However, when the space of
action is very high or even continuous, it is almost impossible to calculate all
Q(s,a). Consequently, neural network can be used as the function approximator
to approximate the value function.

3.5 Q-Value Approximation

We apply deep neural network (DNN) to approximate the value function. There-
fore, the Q-value can be represented as Qw (s,a), which uses a fully-connected
DNN that is parameterised by a set of weights w = {w1, w2, . . . , wn}. DNN
is comprised of input layer, output layer and hidden layers. The calculation of
each layer consists of three parts: weight, bias and activation (e.g., sigmoid, tanh,
ReLU). For example, let yij and xi denote the output value of the jth neuron
in the layer i and the input values, respectively. Therefore, we can obtain

yij = fact (wi · xi + bij) , (10)

where fact is the activation function, wi is the weights in the layer i and bij is
the bias.

The network parameters will be updated by minimizing the loss function,
which can be expressed as

L(w) = E

[
rk + γ max

ak+1
Qw

(
sk+1,ak+1

) − Qw

(
sk,ak

)]2

. (11)

4 Solution with DQN

DQN is an improvement on Q-learning, which replaces Q-value function with
a deep neural network. Additionally, experience replay and target network are
introduced in the DQN, making the neural network more stable and well-trained.

4.1 Target Network

In order to make the performance of the algorithm more stable, two structurally
identical neural networks are established: a network with continuously updated
network parameters (evaluation network) and a neural network for target value
update (target network). At the initial moment, the parameters of the evaluation
network are assigned to the target network, and then the evaluation network
continues to update the neural network parameters, while the parameters of
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the target network are fixed. After several rounds of updates for the evaluation
network, the parameters of the evaluation network are assigned to the target
network. The setting of the two networks makes the target Q value stable over
a period of time, thereby improving the stability of the algorithm update.

Therefore, the loss function in Eq. (11) can be reexpressed as follows.

L(w) = E
[
Qt − Qw

(
sk,ak

)]2
, (12)

where Qt is the Q-value generated in the target network and can be expressed
as Qt = rk + γ maxak+1 Qw t

(
sk+1,ak+1

)
. wt is the weight parameters in the

target network.
When the loss function is continuously differentiable with respect to param-

eters w, the parameters w of the evaluation network can be updated with the
gradient of the loss function. Therefore the update of w is as follows:

Δw = αl

[
Qt − Qw

(
sk,ak

)]∇wQw

(
sk,ak

)
, (13)

where αl is the learning rate of the evaluation network.

4.2 Experience Replay

In DNN, the data used to train the neural network needs to be guaranteed be
independent. However, the data sampled from each episode is related to each
other. The experience replay is proposed to break up the temporal correlations
within different data in the episode. The main idea of the experience replay is to
store the agent’s own experience from different episodes and then build a data
set to train the neural network.

The data stored in the replay buffer is a tuple of (sk,ak, rk, sk+1). DNN sam-
ples a mini-batch of I tuples from the replay buffer and utilizes the stochastic
gradient descent (SGD) method to update parameters. Therefore, the parame-
ters w updated in Eq. (13) can be reexpressed as follows:

Δw = αl
1
I

I∑
i=1

[
Qi

t − Qw

(
ski ,a

k
i

)] ∇wQw

(
ski ,a

k
i

)
, (14)

where Qi
t = rki + γ maxak+1 Qw t

(
sk+1
i ,ak+1

)
. The index i refers to the ith

sample.

4.3 DQN Based Resource Allocation Algorithm

The architecture of DQN is depicted in Fig. 2. In the process of reinforcement
learning, the interaction between the agent and environment generates a large
amount of data like (sk,ak, rk, sk+1), which are stored in the replay buffer. The
data set in replay buffer D is used to train the evaluation neural network.

The main steps of the DQN based resource allocation algorithm with target
network and experience replay are as follows.
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Fig. 2. The architecture of DQN

(1) The evaluation network initializes the parameters. The target network is
built with the same parameters as that of the evaluation network. The replay
buffer is cleared.

(2) The agent observes the state sk of the environment and generates action ak

according to the current ε-greedy policy.
(3) The agent observes the next state sk+1 and the reward rk. The transition

(sk,ak, rk, sk+1) is stored in the experience replay buffer.
(4) Sample random mini-batch of I tuples from replay buffer.
(5) The evaluation network is updated with the mini-batch from replay buffer

according to Eq. (14).
(6) The target network is updated with the parameters of the evaluation net-

work every X steps.

The specific algorithm is shown in Algorithm 1.

5 Simulation Results

In order to verify the feasibility and efficiency of tasks offloading algorithm based
on deep reinforcement learning, we use the task execution rate and waiting time
as the evaluation indicators of the simulation experiment. We define task execu-
tion rate as follows.

ERn =
On

Ototal
, (15)

where On, Ototal indicate that the processed data size offloaded by Un and the
size of data generated by Un in a certain period of time. All parameters are
provided in Table 1.

For convenience, in Figs. 3, 4 and 5, the number of CPU and UN is 5 and 3,
respectively. And the priority of U1, U2, U3 is set as 0.5, 0.3, 0.2.

Figure 3 compares the performance of the random allocation scheme, the
Fair and Energy-Minimized Task Offloading (FEMTO) [10] scheme and our
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Algorithm 1. DQN based Resource Allocation Algorithm
1: Initialize Q-value function with random weights w

Initialize target Q-value function with weights w− ← w
Initialize replay memory D

2: for episode=1 to Emax do
3: Reset environment state s1.
4: for k = 1 to kmax do
5: With probability ε select a random action ak,

otherwise select ak = arg maxa Qw

(
sk,ak

)
.

6: Execute ak, observe reward rk and next state sk+1.
7: Store (sk,ak, rk, sk+1) in D.
8: Sample random mini-batch of I tuples from D.
9: Update the parameters of the evaluation network:

w ← w + αl
1
I

I∑

i=1

[
Qi

t − Qw

(
sk
i ,ak

i

)] ∇w Qw

(
sk
i ,ak

i

)
.

10: Every X steps, update target network parameters:
w− ← w.

11: end for
12: end for

Table 1. Simulation parameters

Parameter Value

Discount factor γ 0.9

Capacity of replay memory D 300

Number of CPU cores M 4−10

Number of UNs N 2−8

Time slot ts 5μs

Mini-batch I 30

Weight coefficiency α 2

Weight coefficiency β 5

Computational capacity C 200bit/s

Explore probability ε 0.1

Learning rate of network αl 0.01

Priority of UN ζn 0−1

proposed scheme. For the random allocation scheme, the fog node randomly
assigns the computing resources of the node in each step size. For the FEMTO
schemeit uses the fair scheduling metric mechanism to optimize the allocation of
resources with the objective of fair and energy minimization. As shown in Fig. 3,
the average task execution rate of our proposed algorithm is significantly higher
than the random allocation. In addition, as total step increases, the average task
execution rate of our proposed algorithm increases gradually while the execution
rate of the FEMTO scheme decreases.
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Fig. 3. Comparison between our algorithm and random allocation.

Fig. 4. Relationship between steps and waiting time in different UNs.

As shown in Fig. 4, U1 with the highest user priority has the least total
number of tasks waiting, and U3 with the lowest user priority has the most
waiting time slots, namely, U3 has the highest probability of not being allocated
computing resources in the time slot. As total step increases, the waiting time
slots of UNs increase gradually. After reaching a certain peak value, the growth
slows down, and the number of waiting time slots of different users gradually
approaches.
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Fig. 5. Relationship between steps and task execution rate in different UNs.

In Fig. 5, U1 has the highest task execution rate and U3 has the lowest at the
initial moment. As the total number of time slots increases, the task execution
rate of different UNs gradually approach. The analysis demonstrates that the
task with high priority has a high task execution rate, namely, the task with
higher priority is allocated computational resources firstly for task processing
such that the task is processed faster. The task with higher priority has higher
service satisfaction. As the number of time slots increases, the accumulation
of data tasks from UN with low priority and the waiting time of tasks increase
such that the task priority of them gradually increases, resulting that the priority
of UN has little effect on task execution. From Figs. 4 and 5, we observe that
whatever the priority of the UN is, the computational resources are allocated
fairly finally, which results in the increment of the average task execution rate in
Fig. 3. Additionally, the fluctuation of the curves in Figs. 4 and 5 indicates the
learning process of reinforcement learning.

As shown in Fig. 6, when the number of UNs increases, the total waiting
time slots of each UN increases obviously. Additionally, we observe that when
the number of UNs is twice more than that of CPU cores, the waiting time
increases rapidly, which reduces the performance of our proposed algorithm.
Therefore, it will be better that there exist enough CPU cores to schedule.

In Fig. 7, we can observe the trend of loss function L(w). As the training steps
increase, the loss function tends to converge, which satisfies our expectation.
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Fig. 6. Relationship between the number of UNs and waiting time with different CPU
cores.

Fig. 7. Trend of loss function.

6 Conclusion

In this paper, we applied deep reinforcement learning to allocate computational
resource in fog networks. At the beginning of each time slot, the computational
resource is reallocated to process the data tasks. We transformed the process
into a Markov decision process. And then, we introduced the state, reward and
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action of the deep reinforcement learning and explained the specific algorithm
of DQN in detail. Subsequently, the analysis of updating the neural network
was provided. At last, we analysed the task execution rate and total waiting
time slots of each UN. The simulation results demonstrated the fairness and
effectiveness of our proposed strategy.
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