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Abstract. Virtual network embedding/mapping refers to the reasonable allo-
cation of substrate network resources for users’ virtual network requests, which
is a key issue for virtual resource leasing in Cloud computing. Most of the
existing researches only aim to maximize the revenue. As the scale of hardware
network expands, the energy consumption of substrate network also needs to be
paid more attention. In this paper, a multi-objective virtual network mapping
algorithm based on particle swarm optimization with Pareto entropy (VNE-
MOPSO) is proposed. It combines energy consumption and revenue. The
algorithm controls the energy consumption of the substrate network as much as
possible to achieve the goal of energy saving on the premise of ensuring a small
resource cost. By introducing the Pareto entropy based multi-objective opti-
mization model, it can calculate the difference of entropy and evaluate the
evolutionary state. With this as feedback information, a dynamic adaptive par-
ticle velocity updating strategy is designed to achieve the goal of solving the
approximate optimal multi-objective optimization mapping scheme. Simulation
results show that the proposed algorithm has certain advantages over the typical
single target mapping algorithm in cost, energy consumption and average return.

Keywords: Virtual network embedding � Multi-objective optimization �
Discrete particle swarm optimization � Pareto entropy

1 Introduction

Since the 1960s, the Internet has flourished and become an important information
infrastructure in modern society. On August 20, 2018, the China Internet network
information center (CNNIC) released the 42nd statistical report on the development of
China’s Internet network [1]. The report shows that by June 2018, the number of
Chinese Internet users has reached 802 million, and the Internet penetration rate has
reached 57.7%. More than half of the Chinese people have been connected to the
Internet. However, with the explosive growth of the number of users, as well as an
increasing number of distributed applications and emerging network technologies,
network “rigidity” phenomenon is becoming increasingly serious, which hinders the
development of the Internet.
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Network virtualization has great prospects in the future development of the Internet.
Besides, it has been actively applied in software-defined network and cloud computing
environment [2]. Network virtualization takes the substrate networks as the basic
entities, which enables users to take the whole network including virtual hosts and
virtual links as the request scheme. Compared with the previous leasing mode that can
only rent virtual machines but cannot guarantee the demand of network resource, it has
better feasibility.

Virtual network embedding (VNE) problem [3] is one of the key technologies of
network virtualization technology. Each virtual network request (VNR) from service
providers is constrained by node resources (CPU, memory, storage) and link resources
(bandwidth). The content of VNE is to allocate substrate network resources to these
virtual network requests. At present, meta-heuristic algorithms have been successfully
applied to a wide range of optimization problems [4] (e.g. [4–8]). Many researchers
have explored the optimization model, searching strategy, algorithm acceleration, etc.
They have provided important references for the follow-up researchers’ works.

However, most of the studies focus on the optimization of single objective. Con-
sidering the needs to balance mapping costs, benefits, energy consumption, quality of
service (QoS) and other issues in the actual demands of virtual resource leasing, we set
out from the perspective of multi-objective optimization in this paper. Multi-objective
optimization problem (MOP) studies the optimization of multiple objective functions in
a given region. The optimization result is a Pareto optimal solution set. We model and
solve the VNE problem according to reference [9].

In this paper, we combines Pareto entropy multi-objective optimization model with
particle swarm optimization (PSO) to ensure the rental revenue of physical network
resources, and takes the energy consumption into account at the same time. Using the
target space transformation method, the external Pareto solution set is mapped to the
parallel cell coordinate system, and then the population evolutionary state is evaluated
according to the distribution of entropy of the approximate Pareto front end. Then, we
use the feedback information of evolutionary process to design an adaptive parameter
setting strategy that dynamically balances the development and utilization capabilities.
The simulation results show that the proposed VNE-MOPSO algorithm effectively
reduces the cost and energy consumption of virtual network mapping.

2 Problem Formulation

In this section, the VNE problem and the classification of energy consumption are
presented firstly. Then, with the objective of minimizing the mapping cost and energy
consumption, we establish the Integer Linear Programming (ILP) model for multi-
objective optimization of VNE problem.

2.1 Virtual Network Embedding Problem

Substrate Network (SN). We mode the substrate network as a weighted undirected
graph GS ¼ ðNS; LS; AS

N ; A
S
LÞ, where NS is the set of substrate nodes and LS is the set
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of substrate links. AS
N and AS

L denote CPU capacity of the substrate nodes and band-
width of links, respectively.

Virtual Network (VN). Similar to the substrate network, a virtual network can be
represented as GV ¼ ðNV; LV; CV

N ;C
V
L Þ, where NV and LV denote the set of virtual

nodes and virtual link respectively. Virtual nodes and edges are associated with con-
straints on CPU and bandwidth resources requests, denoted by CV

N and CV
L respectively.

Each VNR can be denoted by VNRi ¼ ðGV ; TiÞ, where Ti denotes the duration of VN
staying in the substrate network.

The VNE refers to mapping the virtual networks to the subset of the substrate net-
works on the premise of satisfying the nodes’ and links’ constraints. Generally speaking,
VNE is divided into two stages: node mapping stage and link mapping stage.

2.2 Energy Consumption Modeling

The energy consumption of the substrate network is divided into two parts: the energy
consumption of nodes and the energy consumption of links.

Energy Consumption of Nodes. Be similar to the earlier work in [10], we define the
energy consumption of the physical nodes and links. In addition to the basic operating
energy consumption, we abstract the node attributes into processor attributes. Since the
energy consumption of network node is linearly related to the carried load by this node,
we define the i th node energy consumption PNi as

PNi ¼ Pb þðPm � PbÞ � u; if node i is active
0; otherwise

�
ð1Þ

where Pb is the essential baseline power, Pm denotes the total power which comes into
being at the maximum capacity, and u is the utilization rate of the i th node.

Energy Consumption of Links. Because of the load-reducing engines in network
virtualization environment, current network devices are insensitive to the power con-
sumption of traffic load [11], so we regard the energy consumption of physical links as
a constant [12], and we define the j th link energy consumption PL j as

PL j ¼ Pn; if link j is powered on
0; otherwise

�
ð2Þ

2.3 Multi-objective VNE Problem Modeling

With the objective of minimizing mapping cost and energy consumption, the mapping
optimization problem for each virtual network request can be described as:
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min ¼
f1 ¼ a

X
nv2NV

cpuðnvÞþ b
X
lv2LV

X
ls2LS

ulv � bwðlvÞ

f2 ¼
X

ðni;l jÞ2Ps

ð ti � PNi þ tj � PL jÞ

8>><
>>: ð3Þ

where f1 denotes the network resource expenditure for each virtual network request.
cpuðnvÞ represents the computing capacity requirement of virtual nodes nv, and bwðlvÞ
represents the bandwidth capacity requirement of virtual links lv. The parameters a and
b are used to adjust the relative weights of computing resources and bandwidth
resources. And aþ b¼1. PS represents the set of physical nodes and links after map-
ping. ulv is a binary variable used to judge whether virtual link lv is mapped to physical
link. f2 represents the energy consumption of each virtual network request. ti and tj
denote the length of time the node i is open and the link j is open, respectively.

Meanwhile, the mapping process must satisfy the constraints shown in Eq. (4). The
first constraint is about host resource constraints. The idle resources of the current
physical node need to have more resources than that requested by the virtual node to be
mapped. The second constraint is about physical bandwidth constraints. Each physical
link l j occupied by each virtual link lV , on physical path ps, must have greater idle
bandwidth than that requested by the virtual link lV .

s:t: 8nv 2 NV ; 8ni 2 pS; nv ! ni;

CcpuðniÞ �
X
nv!ni

CcpuðnvÞ�RcpuðnvÞ

8lv 2 LV ; 8l j 2 pS; lv ! l j;

min
ls2l j

CbwðlSÞ�RbwðlvÞ

ð4Þ

3 Virtual Network Mapping Algorithm Based on Pareto
Entropy

Because the optimal solution of the above optimization model is not unique, the VNE-
MOPSO algorithm proposed in this paper saves a higher quality feasible solution to the
external archive (Pareto optimal solution set) whenever it is found in the iteration process.
This section introduces Pareto optimal correlated definitions, Pareto entropymulti-objective
optimization model, external archive updating algorithm, particle swarm optimization
algorithm, adaptive parameter strategy and the overall flow of VNE-PSO algorithm.

3.1 Relevant Definitions of Pareto Optimality

Definition 1 (Pareto dominate). For any two vectors u; v 2 X, we call u dominate v
(or v is dominated by u) which is denoted as u � v, if and only if 8i ¼ 1; 2; . . .;m; ui �
vi ^ 9j ¼ 1; 2; . . .;m; uj\vj , where m is the number of optimization objectives.
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Definition 2 (Pareto optimal solution and Pareto optimal solution set). A solution
x� 2 X is called Pareto optimal solution or non-dominant solution if and only if
:9x 2 X : x � x�. The set PS ¼ fx� :9x 2 X : x � x�j g of all Pareto optimal solutions
is called Pareto optimal solution set.

Definition 3 (Pareto Front End). The region PF ¼ fFðx�Þ x�j 2 PSg formed by the
objective function values corresponding to all Pareto optimal solutions is called Pareto
Front End or Pareto Equilibrium Surface.

3.2 Pareto Entropy Multi-objective Optimization Model
and Evolutionary State

Pareto Entropy Multi-objective Optimization Model takes the difference of Pareto
entropy as the basis of optimization. Firstly, we map the multi-dimensional Pareto
solution stored in the external archive to the two-dimensional plane by the target space
transformation method. Thus, we can obtain the parallel lattice coordinates of each
Pareto solution and calculate the Pareto entropy value of the external archive
approximating the Pareto front end. When the external archive is updated, the differ-
ence of entropy will be generated. Evaluating the population status according to the
updating situation and using it as feedback information can better control the opti-
mization process, taking into account the diversity and convergence of the population.

We transform the multi-dimensional Pareto solution into two-dimensional plane in
parallel coordinates [9]. The integer coordinate of its mapping is the parallel cell
coordinate, and the calculation formula is as follows

Lk;m ¼ K fk;m�fmin
m

fmax
m �fk;m

l m
; if fk;m 6¼ fmin

m

1; otherwise

(
ð5Þ

where xd e returns the smallest integer that not less than x; k = 1, 2,… K, K is the
number of external archive in the current iteration, which need not be specified by the
user; m = 1, 2,… M, M is the number of objectives to be optimized; fmax

m and fmin
m are

the maximum and minimum values of the m th objective of the current Pareto solution
set, respectively.

In the t th iteration process, the Pareto entropy [9] of the external archive
approximation Pareto front end is

EntropyðtÞ ¼ �
XK
k¼1

XM
m¼1

Cellk;mðtÞ
KM

log
Cellk;mðtÞ

KM
ð6Þ

where Cellk;mðtÞ represents the number of cell coordinate components that fall on the k
th row and m th column after the approximate Pareto front end is mapped to the parallel
cell coordinate system.

When the number of members of external archive reaches the maximum capacity, it
is necessary to evaluate the individual density of new solution and all old solutions
when updating external archive again. The individual density DensityðPiÞ [9] of any
solution Pi is as follows
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DensityðPiÞ ¼
XK
j ¼ 1
j 6¼ i

1

PCDðPi;PjÞ2
ð7Þ

PCDðPi;PjÞ ¼
PM
m¼1

Li;m � Lj;m
�� ��, if9m; Li;m 6¼ Lj;m

0:5; if8m; Li;m ¼ Lj;m

8<
: ð8Þ

where i, j = 1, 2,… K, K is the number of members in external archive; Pj is any other
non-dominant solution that different from Pi in external archive. PCDðPi;PjÞ denotes
the distance of parallel cell between Pi and Pj.

With the continuously searching of new solutions by particle swarm optimization,
the external archive is constantly updated. On this ground, the evolutionary state of the
algorithm in each iteration is divided into three kinds:

Stagnation state: The new solution obtained by the algorithm is denied access to
external archive.
Diversified state: The new solution obtained by the algorithm replaces the old solution
of poor quality in external archive.
Convergence state: The Pareto front-end generated by the algorithm approximates the
real Pareto front-end in the target space.

3.3 External Archive Updating Algorithms

The main feature of the second generation multi-objective evolutionary algorithm is
that external archives retain elite solutions, so it is necessary to constantly update
external archive to obtain high-quality Pareto optimal solution set. In the process of
updating external archive, there will be five cases [9].

Case I. If the external archive is empty, the new solution will enter the external archive
directly. The population is in convergent state now.
Case II. If the new solution is dominated by any old solution in the external archive, the
new solution is discarded. The population is in stagnation state now.
Case III. If the new solution dominate 0–r old solutions, we firstly remove the old
solutions in the external archive which are dominated by the new solution. If the
external archive is not saturated at this time, the new solution is added to the external
archive. The population is in convergent state now.
Case IV. If the new solution and the old solution in the external archive are mutual non-
dominant solutions, and the external archive is saturated, and the individual density of
the new solution is the largest one, so the new solution is discarded. The population is
in stagnation state now.
Case V. If the new solution and the old solutions in the external archive are non-
dominant solutions, and the external archive is saturated, but the individual density of
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the new solution is not the largest one, then the new solution replaces the old solution
which has the largest individual density. The population is in diversified state now.

From the above five cases, we can get the external archive updating algorithm.

Algorithms 1. External Archive Updating Algorithms

Input: 1) External archive A   to be updated;
2) Maximum capacity K of external archive;
3) The new solution P obtained by evolutionary algorithm;

Output: 1) Updated external archive 'A  ; 
2) Evolutionary state,( state =0,1,2. Indicates stagnation state, diversification state and 

convergence state respectively. );
             3) The difference of entropy EntropyΔ . 

1: if ( A = ∅ ){  
2: ' { }A P= ; 2state = ; logEntropy M=Δ ; 
3: return 'A , state , EntropyΔ ; } /* Case I */
4: if ( p is dominated by ia , ia A∈ ) {
5: 0state = ; 0Entropy =Δ ; 
6:  return A , state , EntropyΔ ; }  /* Case II */
7: if (for any ia A∈ , ia is dominated by p ){
8: set r is the number of old solutions dominated by p ,set  | |A is the current number  of 
members of A . Firstly, set = / { }iA A a .

9: if ( ==0r ) | |+1
log

| |

A
Entropy

A
Δ = ; 

10: else if ( ==1r ) 2
logEntropy M

MK
=Δ ; 

11: else if ( 1 | |Ar< ≤ ) 2 | |
log log

| | - 1

A
Entropy M

MK A r
+Δ =

+
; }

12: if ( | |A K< ){
13: '= { }A A P∪ ; 2state = ; 
14: return 'A , state , EntropyΔ ; }  /* Case III */
15: else if ( |A K== ) { 
16: set = { }B A P∪ , assess the individual density of all members of B . 
17: find the member with the largest individual density maxb  in B . 
18: if ( maxP b== ) {
19: '=A A ; 0state = ; 0Entropy =Δ ;
20: return 'A , state , EntropyΔ ;  }  /* Case IV  */
21: else {

22: max' / { }A B b= ; 1state = ; 2
log=Entropy M

MK
Δ ; 

23: return 'A , state , EntropyΔ ;  }  /* Case V*/
24: }
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3.4 Particle Swarm Optimization

Particle Swarm Optimization Algorithm was originally developed by J. Kennedy and R.
C. Eberhart. It was proposed in 1995 as a result of studies on bird predation. For VNE
problem, The location vector of the particle Xi ¼ ½x1i ; x2i ; . . .; xNi 	 represents a mapping
scheme, in which xni takes a positive integer and represents the number of the physical
node to which virtual node n will be mapped. The particle velocity vector Vi ¼
½v1i ; v2i ; . . .; vNi 	 represents the adjustment decision of the mapping scheme. During the
evolutionary process, the position and velocity of each particle are updated as follows:

Viþ 1 ¼ xVi þ c1ðpBesti � XiÞþ c2ðgBesti � XiÞ ð9Þ

Xiþ 1 ¼ Xi þViþ 1 ð10Þ

where x; c1; c2 [ 0 represent inertia weight, learning weight and group weight. The
location vector pBesti represents individual optimal solution, and location vector gBesti
represents global optimal solution of the whole group.

3.5 Adaptive Parameter Strategy

In order to better control the evolutionary process, it is necessary to continuously obtain
real-time feedback information from the evolutionary environment. We can flexibly
control the search trend of the algorithm by adjusting the parameters x; c1; c2 of the
motion equation. In this paper, a dynamic adaptive parameter adjustment strategy is
designed according to the population evolution state and the difference of Pareto
entropy returned by the global external archive updating algorithm, as shown in
Eq. (11). Besides, Lenx; Lenc1 ; Lenc2 are the interval lengths between the maximum
and minimum values of x; c1; c2. Referring to literature [13], the ranges of x; c1; c2 are
controlled in [0.4, 0.9], [0.5, 2.5], [0.5, 2.5], respectively.

x tð Þ ¼
x t � 1ð Þ stagnant state

x t � 1ð Þþ 0:06 
 Lenx 
 DEntropy tð Þ diversified state

x t � 1ð Þ � 0:1 
 Lenx 
 DEntropy tð Þ: convergent state

8><
>:

c1 tð Þ ¼
c1 t � 1ð Þ stagnant state

c1 t � 1ð Þ � 0:06 
 Lenc1 
 DEntropy tð Þ diversified state

c1 t � 1ð Þþ 0:1 
 Lenc1 
 DEntropy tð Þ convergent state

8><
>:

c2 tð Þ ¼
c2 t � 1ð Þ stagnant state

c2 t � 1ð Þþ 0:06 
 Lenc2 
 DEntropy tð Þ diversified state

c2 t � 1ð Þ � 0:1 
 Lenc2 
 DEntropy tð Þ convergent state

8><
>:

ð11Þ

3.6 The Whole Flow of VNE-MOPSO Algorithms

For each virtual network request, the VNE-MOPSO algorithm firstly generates the
initial position of particles randomly, then judges whether it is feasible for each new
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location and updates the external archive, so as to obtain the difference of entropy and
evolution state. Then it updates the particle’s speed and position according to the
adaptive parameter strategy until the end of the iteration. The final mapping scheme is
selected randomly from the external archive.

In Eq. (9), we transform the velocity vector Viþ 1 into binary value by probability
mapping. The specific method is to use sigmoid function to map Viþ 1 to [0, 1] intervals
as probability. If the probability is greater than or equal to the decimal of a randomly
generated [0, 1] intervals, the next step speed is 1, otherwise the value is 0, as shown in
Eq. (12). We use Eq. (10) to update the position of the particles, and randomly select a
new physical node that satisfies host resource constraints for a virtual node whose
velocity component is 1.

V�
iþ 1 ¼

1; if rand() � Sigmoid(Viþ 1Þ;
0; otherwise:

�
ð12Þ

The pseudo-code of VNE-MOPSO algorithm is shown in algorithm 2.

Algorithms 2. Virtual Network Embedding Based on Pareto Entropy (VNE-
MOPSO)

Input: Virtual Network vG , Physical Network sG ;
Output: Mapping solution.

1: get the node queue and link queue of real-time idle resources in sG ; 
2: for each particle instance in the population, initialize position vector; 
3: initialize global external archive gArchive = ∅ ,initialize Individual archive
pArchive = ∅ ; 

4: for ( int i = 0; i < MaxItCount ; i++ ){
5: if (current position is feasible){
6: use the shortest path method to generate the mapping scheme and calculate 
the values 1f , 2f of objective functions; 
7: for each particles, call algorithm 1 to update gArchive , preserve the evolution-
ary state and the difference of entropy at present;
8: for each particles, call algorithm 1to update pArchive ; 
9: randomly select a solution from gArchive ,and take it as a group optimal solu-
tion gBest
10: select the nearest solution to the group optimal solution from pArchive , and 
take it as an individual optimal solution gBest ; 
11: according to Eq. (11), calculate the values of 1 2, ,c cω by evolutionary state 
and the difference of entropy
12: according to Eq. (9-12), update the velocity vector and position vector of 
particles; }
13: else if (current position is not feasible){ 

randomly adjust the particle position; }
14: if ( gArchive remains unchanged consecutively for 8 rounds){ 

algorithm terminates; }
15: if ( gArchive ≠ ∅ ){ 

randomly choose a solution as the mapping scheme from gArchive .  }  
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4 Simulation Results

The performance of VNE-MOPSO is compared with that of VNE-UEPSO in reference
[4]. All the algorithms in this paper are implemented in Java language under Windows
system. The simulation module of VNE algorithm is compiled on the platform of
CloudSim3.0.3 [14]. In order to ensure the diversity of topologies, the probability of
connectivity, the boundary of resource demand and the number range of nodes are used
as input parameters to generate random topologies.

In the experiment, the termination condition of discrete particle swarm optimization
(DPSO) is that the global optimal position is not changed consecutively for 8 rounds or
the total number of iterations exceeds 30 rounds. Each experiment tests 2000 virtual
network requests. The algorithm maps 70 virtual network requests in the search waiting
queue for the first time to ensure that the physical network resource occupancy reaches
full as soon as possible. Later it searches for the first 20 requests in the queue at a time.
The relative weight ratio of computing resources and bandwidth resources in Eq. (1) is
set to 1:1. The initial values of motion parameters x; c1; c2 are 0.85, 0.7, 2.3. The
energy consumption parameters Pm;Pb;Pn are 300, 150, 150. The maximum capacity
of external archive K is 5. The physical network and virtual network parameters in the
experiment are shown in Table 1.

In experiment 1, we compared the change trend of physical network revenue-cost
ratio and energy consumption when receiving 2000 virtual network requests under
different virtual link bandwidth parameters. As can be seen from Fig. 1 and Fig. 2, the
VNE-MOPSO algorithm can reduce the mapping cost and energy consumption of
physical networks. When the substrate network is idle (VNR count is around 0–800),
there is little difference between the two algorithms. The main reason is that the
physical network resources are sufficient in the early stage, and the search ability of
particle swarm optimization is strong. The optimization effect of the VNE-MOPSO
algorithm proposed in this paper is not obvious. However, with the increasing of the
number of virtual network requests accepted, the optimization effect of the VNE-
MOPSO algorithm continues to increase, and finally saves about 3.63%, 6.88% of the
mapping cost and 9.81%, 4.64% of the energy consumption, respectively.

Table 1. Basic experimental parameter setting

Parameters Substrate network Virtual network

Number of nodes 80 2–10
Connectivity 0.2 0.4
CPU capacity 10000 250–2500
Bandwidth capacity 10000 200–1000;600–3000
Survival time 50–500
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In addition, the larger the bandwidth of virtual link, the higher the corresponding
mapping cost, the better the optimization effect on mapping cost the VNE-MOPSO
algorithm is. Energy consumption is determined by the number of physical nodes and
links that have been opened and the load of physical nodes. Energy consumption has
nothing to do with the bandwidth of virtual links. Thus, the energy consumption of
virtual links with bandwidth of 200–1000 is higher than that of 600–3000.

In experiment 2, we compared the trends of long-term average revenue over time
when virtual link bandwidth is in 600–3000. As can be seen from Fig. 3, the VNE-
MOPSO algorithm proposed in this paper has advantages over VNE-UEPSO in terms
of long-term average revenue in physical networks. This is because the VNE-MOPSO
algorithm takes mapping cost and energy consumption as optimization objectives,
takes into account the diversity and convergence of Pareto front-end in the evolutionary
process, saves physical network resources, and speeds up mapping speed, thus it can
improve the long-term average revenue. In Fig. 3, the long-term average revenue is
relatively high in the early stage, and then shows a downward trend. This is due to the
abundant physical network resources, high mapping efficiency and the large number of
virtual network requests accepted in the early stage, so the revenue is also high.
However, with the increasing number of accepted virtual network requests, the process
of virtual network mapping gradually reaches a stable state in the process of occupying
and releasing physical resources, and the average revenue tends to be stable.

Fig. 1. Cost of substrate network under different virtual request parameters

Fig. 2. Energy consumption of substrate network under different virtual request parameters
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5 Conclusions

Aiming at the VNE problem, considering the cost of mapping and energy consumption,
and combining with the theory of multi-objective optimization, a multi-objective
particle swarm optimization VNE algorithm based on Pareto entropy is proposed.
According to the update status of the external Pareto solution set, the difference of
entropy is calculated and the evolution status of the population is evaluated. Combining
with the dynamic adaptive particle velocity update strategy, the mapping cost and
energy consumption are reduced, and the long-term average benefit is also obtained.
Experiments show that the algorithm proposed in this paper has certain advantages over
other similar algorithms in terms of revenue, energy consumption and solution
efficiency.

Virtual network mapping is a key problem in cloud resource allocation, and many
factors need to be considered in the designing of algorithm. This paper considers multi-
objective optimization from the perspective of mapping cost and energy consumption
of substrate physical network. The next step is to try to optimize more objectives
simultaneously and introduce virtual network quality of service as an additional
parameter.
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