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Abstract. With the development of new array technology and smart
antenna, it is easier to obtain the angle of arrival (AOA) measurements.
The hybrid received signal strength (RSS) and AOA measurement tech-
niques are proposed for the wireless localization in the paper. By con-
verting the measurement equations and relaxing the optimization func-
tion, a second order cone programming and semidefinite programming
(SOCPSDP) algorithm is put forward to obtain the position estimate
by considering the known or unknown transmit power. The proposed
SOCPSDP algorithm provides a solution to the source position esti-
mate and avoids the initialization process. The simulations show that
the SOCPSDP algorithm performs better than the semidefinite pro-
gramming (SDP) algorithm. The accuracy performance of the proposed
SOCPSDP algorithm degrades as the measurement noises increase.

Keywords: Wireless localization · Received signal strength · Angle
of arrival · Convex optimization

1 Introduction

Wireless localization has been playing a key role in many applications, for exam-
ple, emergency services, friend finding and tracking of the elderly [7,24]. In addi-
tion, wireless localization is an indispensable component of wireless sensor net-
works since the readings from a large number of sensor nodes are meaningful
only when the locations of these readings are known. To obtain the position
information, sensor nodes are categorized into anchor node with known position
and source node which is required to be localized. A localization scheme tries
to localize the source node using the ranging information extracted from the
signaling between anchor node and source node [10,19].

Most of the accurate localization techniques are based on the ranging infor-
mation by using the techniques such as, time of arrival (TOA) [9,18], time dif-
ference of arrival (TDOA) [4,20], received signal strength (RSS) [6,17,23] and
angle of arrival (AOA) [3,8]. Among the difference ranging methods, RSS-based
localization scheme is the most prevalent one due to easier implementation and
less complexity [25]. However, the noises of the RSS measurements are large,
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so the positioning performance is not very well. Electronic compass or vision
sensor provides the possibility of AOA measurements, but it requires additional
hardware configuration and the hardware cost of the node. Recently, the cost of
AOA measurement is decreased with the development of new array technology
and smart antenna which provide a broad space for the AOA measurements [5].

To locate the source node by using these different measurement methods,
some algorithms including maximum likelihood (ML) [2,11], second order cone
programming (SOCP) [12] and semidefinite programming (SDP) method [13,26]
are proposed for the wireless localization. The ML estimator is always solved by
the numerical method which requires initial solution to ensure the convergence.
When the selected initial solution is far from the actual, it will be trapped in the
local optimum. To overcome the shortcoming of the ML estimator, the convex
SDP algorithm are proposed to obtain the position estimate of the source node.
By relaxing the nonconvex optimization into convex problem, the SDP method
provides robust solution. However, the computational complexity of SDP is high.
The accuracy performance of SDP can not achieve the optimal Cramér-Rao
Lower Bound (CRLB) due to the convex optimization relaxation [22].

Recently, some researches focus on the wireless localization by using the
hybrid RSS and AOA measurements [1,14]. Due to the increasing of the unknown
parameters, the source node is more difficult to be localized in the three-
dimensional plane compared with the two-dimensional plane. To locate the
source node, the required number of the anchor nodes in the three-dimensional
plane is much larger than that of the two-dimensional plane. Compared with
the single ranging method, the source node is easier to be estimated by using
the hybrid RSS and AOA measurements, which provide more ranging informa-
tion for the position estimation [15]. On the other hand, the required number of
the anchor nodes would be less for locating the source nodes. In [14], semidefi-
nite programming (SDP) relaxation techniques are proposed for the cooperative
wireless localization by using the RSS and AOA measurements. However, the
proposed SDP algorithm performs not very well due to the convex relaxation.

The RSS value of receiving node is relevant with the transmit power of trans-
mitting node. However, the transmit power will be subject to a large fluctuation
because its value is dependent on the height and orientation of the node antenna,
as well as antenna gain and its battery which will decrease with time. So the
RSS-based position estimation problem always assumes the transmit power to
be known or unknown. When the transmit powers are unavailable and assumed
to be unknown, the RSS-based localization scheme is designed to estimate the
positions of the source nodes in [16]. The convex optimization algorithms are
proposed to estimate the position parameters and compared with their perfor-
mance by considering the transmit powers to be known or unknown [25]. In [21],
the linear least square approach is designed to determine the locations of the
source nodes, when path loss model parameters are unknown only by exploiting
the RSS measurements.

In this paper a mixed SOCPSDP algorithm is proposed for the hybrid RSS
and AOA wireless localization by assuming the known or unknown transmit
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power. By converting the nonconvex optimization problem into the convex opti-
mization, the proposed SOCPSDP algorithm provides a solution for the source
position estimate and avoids the initialization of the ML estimator. The rest
of this paper is structured as follows. Section 2 presents the problem specifica-
tion of the joint RSS and AOA wireless localization. Section 3 in detail describes
the proposed SOCSDP algorithm by assuming known transmit power. In Sect. 4,
the SOCSDP algorithm is extended to the situation of unknown transmit power.
Section 5 analyzes the simulation results. The conclusion is represented in Sect. 6.
This paper contains a number of symbols. Following the convention, we represent
the matrices as bold case letters. If the matrix is denoted by (∗), (∗)−1 and (∗)T

represent the matrix inverse and transpose operator, respectively. ‖∗‖ denotes
�2 norm. For arbitrary symmetric matrix A, A � 0 means that A is positive
semidefinite.

2 Problem Specification

In a three-dimensional plane N anchor nodes are deployed with known positions
which are denoted as ai = [ai,x ai,y ai,z]T , i = 1, 2, . . . , N . In the same region,
the source node is required to be located. The position of the source node is
denoted as x = [xx xy xz]T . To derive the position of the source node, the
RSS between anchor node i and the source node is measured and denoted by pi.
Assuming that the RSS obeys the logarithmic decay model,

pi = p0 − 10βlog10di + εi (1)

where i = 1, 2, . . . , N , β is called as path loss exponent (PLE) which is deter-
mined by the environment media and generally varied from 2 to 5. p0 is called as
the transmit power and related with the antenna gain and energy supply of the
source node. di is the measurement distance between the anchor node i and the
source node. εi represents the noise which conforms to the Gaussian distribution
with zero mean and variance δ2i,ε.

Fig. 1. AOA measurements between anchor node and source node
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In the three-dimensional plane, the unknown position parameter of the source
node includes the three direction of x, y and z. It is possible to be unreliable
for the wireless localization only by using the RSS measurements between the
anchor node and the source node. To reduce the positioning error and ensure the
reliability of the position estimation, the direction angle and the elevation angle
are also measured and shown in Fig. 1. The direction angle and the elevation
angle are denoted as φi and αi, respectively. By using the geographical position
relationship of the nodes, the direction angle φi and the elevation angle αi can
be written as

φi = arctan(
ai,y − xy

ai,x − xx
) + mi (2)

αi = arccos(
ai,z − xz

di
) + ni (3)

where mi and ni are the noises of the direction and the elevation measurements,
respectively. Without loss of generality, it is assumed that the noises mi and ni

are gaussian with zero mean and variance δ2i,m and δ2i,n, respectively.
To derive the unknown position of the source node, the well known maximum

likelihood (ML) estimator of least square cost function is written as

min
x

N∑

i

(
1

δ2i,ε
r2i,p +

1
δ2i,m

r2i,φ +
1

δ2i,n
r2i,α) (4)

where ri,p, ri,φ and ri,α represent the error of the RSS, the direction and the
elevation measurements. ri,p, ri,φ and ri,α are written as

⎧
⎪⎨

⎪⎩

ri,p = pi − p0 + 10βlog10di

ri,φ = φi − arctan( ai,y−xy

ai,x−xx
)

ri,α = αi − arccos(ai,z−xz

di
)

(5)

where di = ‖x − ai‖. The solution to ML estimator is always solved by the
numerical calculation which requires an initial point. When the initial point
is enough close to the actual solution, the positioning results will be trapped
in the local optimum. To overcome the shortcoming of the ML estimator and
fasten the iterative calculation, the nonconvex optimization equation of (4) is
converted into the convex optimization when the transmit power p0 is assumed
to be known in Sect. 3 and unknown in Sect. 4.

3 Know Transmit Power

In the section the source location x is estimated by using the observed RSS
measurements when the transmit power p0 is assumed be available. It is pos-
sible to relax the ML estimator formulation to a convex optimization problem,
to provide an approximate solution that can be obtained in a globally optimum
fashion with reduced computational efforts. Both SDP and SOCP relaxations are
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convex optimization techniques for wireless localization. To obtain the convex
optimization form, the RSS, direction and elevation angle measurement equa-
tions are approximately linearized by considering the small noise conditions. In
the following, we in detail describe the proposed convex optimization algorithm
for the RSS and AOA wireless localization.

Firstly (1) is rewritten as

d2i = 10
p0−pi+εi

5β (6)

where i = 1, 2, . . . , N , εi is the noise which conforms to the gaussian distribution
with zero mean and variance δ2i,ε. Expanding the right side of (6) with the Taylor
series and neglecting the high order terms, (6) is also equivalent to

d2i = λi +
λiln10

5β
εi (7)

where λi = 10
p0−pi

5β , i = 1, 2, . . . , N . (7) represents the equivalent RSS measure-
ment equation.

To convert into the convex form, we further introduce a new matrix

Z =
[
I3 x
xT y

]
(8)

where y = xTx. So d2i can be given by

d2i =
[
ai

−1

]T

Z
[
ai

−1

]
(9)

By transforming the direction angle measurement equation, (2) is also rewrit-
ten as

tan(φi − mi) =
ai,y − xy

ai,x − xx
(10)

Expanding both sides of (10) and neglecting the high order terms, we obtain
that

− sinφixx + cosφixy = bi,φ +
√

λisinαimi (11)

where bi,φ = −sinφiai,x+cosφiai,y, i = 1, 2, . . . , N . (11) represents the equivalent
direction angle measurement equation.

Similarly by transforming the elevation angle measurement equation, (3) is
also rewritten as

dicos(αi − ni) = ai,z − xz (12)

Since the distance di can be approximately obtained by

di =
√

λi +
√

λiln10
10β

εi (13)
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Substituting (13) in (11) and expanding both sides of (12), we obtain that

− xz = bi,α +
√

λisinαini +
√

λicosαiln10
10β

εi (14)

where bi,α =
√

λicosαi − aiz, i = 1, 2, . . . , N . (14) represents the equivalent
elevation angle measurement equation.

Based on the equivalent measurement equations of (7), (11) and (14), the
optimization problem by using the squared target function can be written as

min
Z,ti,p,ti,φ,ti,α

N∑

i

(
1

δ2i,p
t2i,p +

1
δ2i,φ

t2i,φ +
1

δ2i,α
t2i,α)

s.t. ti,p = d2i − λi

ti,φ = ei,φx − bi,φ

ti,α = ei,αx − bi,α

d2i =
[
ai

−1

]T

Z
[
ai

−1

]
(15)

where δ2i,p = λ2
i ln

210
25β2 δ2i,ε, δ2i,φ = λisin2αiδ

2
i,m, δ2i,α = λisin2αiδ

2
i,n+ λicos

2αiln
210

100β2 δ2i,ε,
ei,φ = [−sinφi cosφi 0], ei,α = [0 0 −1], i = 1, 2, . . . , N . The optimization
function of (15) can be equivalently written as its epigraph form

min
Z,tp,tφ,tα

(τp + τφ + τα)

s.t. ‖tp‖ ≤ τp, ‖tφ‖ ≤ τφ, ‖tα‖ ≤ τα

ti,p = d2i − λi

ti,φ = ei,φx − bi,φ

ti,α = ei,αx − bi,α

d2i =
[
ai

−1

]T

Z
[
ai

−1

]
(16)

where tp � [ ti,p

δi,p
], tφ � [ ti,φ

δi,φ
] and tα � [ ti,α

δi,α
]. The cost function of (16) is linear

with the variables of Z, so it is easy be expressed to the convex optimization form.
However, the constraints in (16) make the problem nonconvex. To obtain the
convex optimization form, we relax y = xTx as y � xTx. So (16) is reformulated
as

min
Z,tp,tφ,tα

(τp + τφ + τα)

s.t. ‖tp‖ ≤ τp, ‖tφ‖ ≤ τφ, ‖tα‖ ≤ τα

ti,p = d2i − λi

ti,φ = ei,φx − bi,φ

ti,α = ei,αx − bi,α
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d2i =
[
ai

−1

]T

Z
[
ai

−1

]

Z =
[
I3 x
xT y

]
� 04 (17)

The convex optimization of (17) includes three SOCP and one SDP constraints,
so it is called mixed SOCPSDP algorithm. The mixed SOCPSDP algorithm
trades off the positioning accuracy and computational complexity since the less
variables are produced in the convex relaxation. The SOCPSDP optimization
problem of (17) is convex and can be solved with well known algorithms such
as interior point methods which are self initialized and requires no initialization
from the user. Extracting from defined Z, we can obtain the position estimate
x of the source node.

4 Unknown Transmit Power

Sometimes each source node has a specific transmit power depending on, e.g.,
its battery and antenna gain. In addition, the transmit power might change with
time, e.g., when batteries begin to exhaust. Consequently, each source node has
to report its transmit power to anchor nodes constantly during RSS measure-
ments which requires additional hardware and software in both anchor nodes and
source nodes making the network more convoluted. In this section the transmit
powers are considered as nuisance parameters and assumed to be unknown, so
the source transmit powers are estimated jointly with the source locations.

When the source transmit powers are unknown, the convex optimization
relaxation follows the same procedure as described previously for the known
transmit power case but with a slightly different relaxation. When the transmit
power is considered as unknown parameter, we define a new measurement related
parameter μi and a new variable ρ0, which are given by

{
μi = 10

−pi
5β

ρ0 = 10
p0
5β

(18)

So (7) can be rewritten as

d2i = μiρ0 +
λiln10

5β
εi (19)

where λi = μiρ0. So when the transmit power p0 is unknown, the optimization
problem of (15) is given by
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min
Z,ti,p,ti,φ,ti,α,ρ0

N∑

i

(
1

δ2i,p
t2i,p +

1
δ2i,φ

t2i,φ +
1

δ2i,α
t2i,α)

s.t. ti,p = d2i − μiρ0

ti,φ = ei,φx − bi,φ

ti,α = ei,αx − bi,α

d2i =
[
ai

−1

]T

Z
[
ai

−1

]
(20)

where δi,p, δi,φ, δi,α, ei,φ and ei,α are same with the definitions in (15). Similarly
the epigraph form of (20) is written as

min
Z,tp,tφ,tα,ρ0

(τp + τφ + τα)

s.t. ‖tp‖ ≤ τp, ‖tφ‖ ≤ τφ, ‖tα‖ ≤ τα

ti,p = d2i − μiρ0

ti,φ = ei,φx − bi,φ

ti,α = ei,αx − bi,α

d2i =
[
ai

−1

]T

Z
[
ai

−1

]
(21)

where τp, τφ and τα are same with the definitions in (16). Then by relaxing the
matrix Z, the convex optimization form is obtained with

min
Z,tp,tφ,tα,ρ0

(τp + τφ + τα)

s.t. ‖tp‖ ≤ τp, ‖tφ‖ ≤ τφ, ‖tα‖ ≤ τα

ti,p = d2i − μiρ0

ti,φ = ei,φx − bi,φ

ti,α = ei,αx − bi,α

d2i =
[
ai

−1

]T

Z
[
ai

−1

]

Z =
[
I3 x
xT y

]
� 04 (22)

The weight coefficient δi,p, δi,φ, δi,α rely on the estimated λi which is determined
by the transmit power and not available in the beginning. Preliminarily consid-
ering λi as identical we obtain the initial estimate λi. Then putting the initial
estimate into these optimization expressions would produce better solutions for
the position estimate along with the transmit power.
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5 Evaluation

To test the performance of the proposed convex optimization algorithm, the
simulations are implemented by the CVX toolbox using SeDuMi as the solver
in the MATLAB software. Three anchor nodes are set at the points (80, 15, 5),
(30, 60, 80) and (90, 95, 5) in a 3-dimensional plane region. The position of the
source node is set at (50, 50, 50) in advance. The noises of RSS, direction and
elevation measurements are set to δ2p, δ2m and δ2n, respectively. Unless specifically
mentioned, the transmit power p0 and the true PLE β are set to –45.0 dB and
4, respectively. The accuracy performance is evaluated with root mean square
error (RMSE) which is defined as

RMSE =

√√√√ 1
Mc

Mc∑

i=1

‖ xi − xo ‖2 (23)

where Mc is called as the Monte Carlo times, xi and xo denotes the estimate
and the true position of the source node in ith Monte Carlo run, respectively.
In our simulation, we use the average of 1000 Monte Carlo runs to evaluate the
accuracy performance of the proposed algorithm.

5.1 Known Transmit Power

Firstly, when the transmit power is assumed to be known, the RMSE perfor-
mance of different algorithms are compared by considering the impacts of the
RSS measurement noises when the noise variance δp is varied from 0.2 to 2
dB. Figure 2(a) plots the RMSE performance with the linear estimator proposed
in [15], the SDP algorithm proposed in [14], our proposed SOCSDP algorithm
and the CRLB under known transmit power. It can be seen that the RMSE per-
formance of all algorithms degrades as the RSS noise increases. When the RSS
noise δp is increased to 2 dB, the RMSE of the SOCPSDP algorithm achieves to
1.67 m. However, the proposed linear estimator proposed in [15] and the SDP
algorithm proposed in [14] achieve 2.67 m and 1.83 m, respectively, when δp is
set to 2 dB. The RMSE of the SOCPSDP algorithm is always less than that of
the linear estimator or the SDP algorithm when the RSS noise is varied from
0.2 dB to 2 dB.

Similarly, the direction angle noise δm and elevation angle noise δn are varied
from 0.5◦ to 5◦, Fig. 2(b) and (c) plot the RMSE performance with three different
algorithms. The performance order of three different algorithms is same with
Fig. 2(a). When the noises are increased from 0.5◦ to 5◦, the RMSE is greatly
increased. For instance, when the direction angle noise is varied from 0.5◦ to 5◦,
the RMSE of SOCSDP algorithm shown in Fig. 2(b) is increased from 0.47 m to
1.23 m. When the elevation angle noise is varied from 0.5◦ to 5◦, it can be shown
from Fig. 2(c) that the RMSE of SOCSDP algorithm is increased from 0.42 m
to 1.51 m. So the bigger noises of direction angle and elevation angle lead to the
degrade of the RMSE performance.
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Fig. 2. Performance comparison under known transmit power.

5.2 Unknown Transmit Power

When the transmit power is assumed to be unknown, the transmit power is
estimated along with the position of the source node. When the standard devi-
ation of the RSS noise is also varied from 0.2 dB to 2 dB, Fig. 3 plots the RMSE
of the estimated source position with the linear estimator, SDP and SOCSDP
algorithm. As can be seen, the RMSE performance of three proposed algorithms
also becomes worse as the RSS noise increases. For instance, the RMSE of the
SOCSDP is 0.64 m when the RSS noise is set to 0.2 dB. However, when the RSS
noise is increased to 2 dB, the RMSE of the SOCSDP is also increased to 2.01 m.
Compared with the linear estimator and SDP algorithm, the SOCSDP provides
better accuracy performance for the estimate of source position.
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5.3 Path Loss Exponent

In this subsection, we investigate the effect of path loss exponent (PLE) on
the performance of the proposed algorithms. The RSS noise δp, the direction
angle noise δm and the elevation angle noise δm are set to 0.2 dB, 0.5◦ and
0.5◦, respectively. When the PLE is varied from 2 to 5, Fig. 4 plots the RMSE
performance versus different PLE. As can be seen, the RMSE performance of
the algorithms degrades, especially when the PLE is small. Compared with the
linear estimator or SDP algorithm, the SOCPSDP algorithm performs better.
For instance, when the PLE is set to 2, the RMSEs are 1.27 m with the linear
estimator, 1.07 m with the SDP and 0.96 m with the SOCSDP, respectively.
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6 Conclusion

SOCP has a simpler structure and the potential to be solved faster than SDP,
so its relaxation is weaker. Using the hybrid RSS and AOA measurements and
considering the known or unknown transmit power, we introduce the convex
optimization SOCPSDP algorithm for the wireless localization. The proposed
SOCPSDP algorithm also provides accurate position estimate of the source node
and performs better than the SDP algorithm or the linear estimator. The RMSE
performance of the proposed SOCPSDP degrades as the noises increase. When
the PLE is bigger, the RMSE of the estimated positions would be reduced for
a given noise condition. Since the computational complexity of the proposed
convex algorithm is high due to a large number of variables and equality con-
straints produced in the relaxation process. The next work is how to reduce the
computational complexity of the convex algorithm.
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