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Abstract. Robots have been increasingly used in production line and real life,
such as warehousing, logistics, security, smart home and so on. In most appli-
cations, localization is always one of the most basic tasks of the robot. To
acquire the object location, existing work mainly relies on computer vision.
Such methods encounter many problems in practice, such as high computational
complexity, large influence by light conditions, and heavy crafting of pre-
training. These problems have become one of the key factors that constrains the
precise automation of robots. This paper proposes an RFID-based robot navi-
gation and target localization scheme, which is easy to deploy, low cost, and can
work in non-line-of-sight scenarios. The main contributions of this paper are as
follows: 1. We collect the phase variation of the tag by a rotating reader antenna,
and calculate the azimuth of the tag relative to the antenna by the channel
similarity weighted average method. Then, the location of the tag is determined
by the AoA method. 2. Based on the theory of tag equivalent circuit, antenna
radiation field, and cylindrical symmetry oscillator mutual impedance, the
phenomenon of RSS weakening of adjacent tags is analyzed. Based on this
phenomenon, we achieve accurate target localization and multi-target relative
localization by utilizing region segmentation and dynamic time warping algo-
rithms. 3. The proposed scheme is lightweight and low-cost. We built a pro-
totype system using commercial UHF RFID readers and passive tags, and
conduct extensive experiments. The experimental results show that the model
can effectively achieve the precise location of the robot and the object with an
average error of 27 cm and 2 cm.
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1 Introduction

With the development of internet of things, how to interconnect the traditional physical
world with the information world becomes hotspots. In order to manage items, people
need to quickly identify the identity of each item. Many automatic identification
technologies have been widely used, such as Barcode, Radio Frequency Identification
(RFID) as well as numerous biological feature-based recognition technology (for
example fingerprint recognition, face recognition, speech recognition, etc.). However,
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in practical applications, Barcode has the disadvantage of limited recognition distance,
easy to be damaged, and sensitivity to light. Radio Frequency Identification, a com-
munication technology that uses RF signals to realize contactless identification, which
provides a new development opportunity for automatic identification technology. RFID
combines the advantages of other automatic identification technologies, with the
property of non-contact automatic fast identification, accurate and efficient identifica-
tion, low cost, and low power consumption. It provides an effective solution for IoT
applications.

Due to its fast reading speed and long recognition distance, RFID has been widely
used in smart warehousing, smart logistics, smart home and other scenarios. For
example:

(1) In warehousing, RFID has been used to accurately track and manage products.
However, it is difficult to realize the automatic management of products by simply
relying on RFID technology right now. It is still necessary to perform mechanical
manpower manipulation such as forklifts. Due to the imperfect sensing function
and limited computing power, the existing robot technology is difficult to apply to
large, complex storage systems. We envision that if the surrounding environment
can be sensed by RFID tags in the warehouse, accurate tracking of robots and
products can be realized. It can help the robot to quickly find goods, improve
management efficiency, and save labor costs.

(2) In the bookstores, libraries and other scenes, the registration and management of
books is a time-consuming task. If we can use RFID technology to help readers to
quickly find the books or help the librarian to find missing or out-of-order books on
the shelves, work efficiency will be greatly improved.

There are many similar applications, such as supply chain management, airport
baggage tracking and so on. RFID has been widely used in many aspects of daily life,
which improves the work efficiency. However, it needs to be clear that there are still
many problems that need to be solved urgently. In this paper, we pioneer to use RFID
to help navigating the robot and localizing the target object. Extensive experiments
demonstrate the effectiveness of our proposed solution.

2 Related Works

Robots have been deployed and used in a variety of scenarios such as logistics man-
agement, baggage sorting, security access control, and home use. The in these sce-
narios, navigation is a fundamental task to ensure that the robot works properly. The in
terms of indoor navigation, the work of the predecessors can be divided into two
categories: computer vision-based methods and radio frequency signal-based methods.

Computer vision based method [2–4] mainly relies on optical sensors (such as
cameras, light sensors) and path planning, robot control algorithms. This method is
currently the most accurate and mature, but the shortcomings are obvious: (1) this
method usually requires a lot of pre-training to identify a specific target; (2) because the
perception in reality usually depends on visual information such as pictures or videos,
socks, it is easy to make mistakes when identifying items having the same shape.
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(3) the method is extremely sensitive to changes in ambient light and background;
(4) of the computational complexity is high and more computational resources are
required. (5) since visual information is used, this method cannot be applied to scenes
that are not line-of-sight (such as obstacle obstruction).

Due to the breakthrough of image information can only be taken from the limits of
the line of sight, the method based on radio frequency signals has attracted more and
more people’s attention. Many robot navigation methods based on rf signals (such as
wifi, ultrasound, etc.) have been proposed [5–7]. The accuracy of this method still does
not meet the requirements, especially in the final grab operation. In addition, wireless
signals (such as wifi) do not support direct recognition of specific objects. It is too
expensive to binding additional equipment to the item to report the item information. In
order to reduce costs, people put cheap RFID tags on the target items to achieve the
purpose of item identification. On this basis, many indoor positioning methods based
on RFID tags have been proposed. Pinit [8] the multipath effect feature is used as the
fingerprint of the tag space location. The method is based on the fact that adjacent
RFID tags are subject to similar environmental influences and thus exhibit similar
multipath effects. Tagoram [9] using simulated moving tag reverse synthetic aperture
radar (inverse sar), would improve the accuracy of positioning to the centimeter. Rf-
idraw [10] can track the moving tag and can infer the movement of the tag. However,
the method is subject to many restrictions, such as the need for specific equipment,
such as software-defined radio equipment (usrp); the need to deploy antennas around
the target tag, etc., it is difficult to apply to large-scale applications. Some other work,
such as [11, 12], focusing on the use of RFID tags for relative position (such as the
order of books) positioning, and cannot adapt to the scene of assisted robot navigation.

Results in research, are many there at the method, of a using spatial reference signal
tags for taking fingerprints and positioning. At the use of at the signal intensity (re-
ceived signal strength on indicator, RSS) of at the attenuation characteristics of land-
marc [13], vire [14] etc., that is subjected to a using localization similar multipath effect
adjacent tags. At the method, does not need its measure at the distance to the between
and at the reader at the tag, and has at the good tolerance to changes in scene. However,
its measurement accuracy depends on the density of the reference tag, and requires a lot
of preliminary work such as measurement, deployment, calibration, etc., so it is
inefficient.

Because the data collected by a single antenna is very limited, and single-point
communication is greatly interfered by the environment, large-scale deployment of
antennas is not allowed in both cost and practical application scenarios. In order to
collect more valuable information, people will use m antennas. Moving up to collect
tag information at different locations in n, like an antenna array with m x n virtual
antennas, is very similar to the principle of synthetic aperture radar (sar). The work
using this method is mobitagbot [14], tagoram [11] and so on. However, the accuracy
of the method depends on the granularity of the square division. The finer the gran-
ularity, the higher the accuracy, but the computational complexity will also increase, so
the computing resources are demanding more. The in addition, due to the limitation of
the RFID communication protocol, is prone to device the commercial when packet loss
the target at moves the high speed and target is too much. Therefore, the method is only
suitable for tracking low-speed moving targets.
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In summary, how to combine RFID technology with practical application scenarios
to achieve more convenient, effective, economical and practical applications is an
important direction for the future development of RFID technology.

3 System Overview

Position acquisition is a key step in robotic picking. This topic aims to study how to use
RFID technology to help robots get target positions faster and more accurately. Ana-
lyze the process of robot picking goods. The process has two main steps: (1) to the
existing data, obtain the target plane coordinates and move to the target shelf; (2) obtain
the accurate space coordinates of the target, and the robot arm captures the target.
According to the process, we designed a two-stage navigation positioning model:
firstly, the robot is navigated to the vicinity of the target through a coarse-grained
navigation algorithm, and then the target is accurately found through a fine-grained
positioning algorithm. The principle of the system principle is shown in Fig. 1.

The coarse-grained navigation algorithm uses the AoA algorithm. The difficulty of
the algorithm is how to accurately find the azimuth of the tag. Here, using the
backscattering model of RFID, the antenna is moved to the tag for the first time by
changing the distance of the antenna, and then the phase is changed. By using the phase

Fig. 1. System principle flow diagram
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change trend, the azimuth is reversed by weighting the channel parameters. Then, the
AoA is used. The method gets the coordinates of the tag.

When the two tags are very close, due to the electromagnetic coupling between
them will produce mutual impedance, thus affecting the radiation power of the antenna,
the performance of the reader to read the RSS appears certain level of decline, we call
for the tag adjacent mutual interference phenomenon. The in order to obtain good
reading and writing effects, in general, the phenomenon caused by mutual interference
of adjacent tags should be avoided as much as possible. Of the spacing between tags
should be increased as much as possible to the reduce mutual electromagnetic inter-
ference. Although is the phenomenon was discovered very early, there has been a lack
of clear theoretical explanations and few s in this area. This paper analyzes the phe-
nomenon in detail from the field of electromagnetic field and gives a clear theoretical
explanation. And for the first time, this phenomenon is applied to the field of RFID
positioning, which makes use of the characteristics of the movement of the in the
process, the mutual interference is first enhanced and then weakened. The feature
determines the position of the target tag by detecting the minimum point of the “v”
shaped region where the RSS first drops and then increases.

This paper also designs a large number of experiments, through the data collected
in the field to analyze the errors that may be encountered, and designed a series of
model algorithms to filter out noise interference as much as possible, reducing errors,
including filtering, region segmentation, dynamic time warping and curves. Fitting, etc.

The likelihood of the model system is verified by experiments. The factors that may
affect the accuracy of the system are analyzed through experiments. The optimal
deployment plan is obtained, which provides an experimental reference for the effective
application of the model system.

4 Accurate Indoor Localization of Robot

In order to improve the efficiency of goods picking, we use robots instead of manual
sorting. In the face of a new task, how to find the location of the goods to achieve
accurate picking is our primary problem. This chapter focuses on solving the problem
of how to get the position of the robot. Knowing the real-time position of the robot, you
can make further route planning to navigate the robot to the target location. This paper
using triangulation location method acquires the target position of the robot, which are
the basic steps: (1) first, two antennas are placed in different locations, so that the
antenna in a specific angular speed about its central axis, while acquiring the read
signal characteristics of the antenna; (2) according to the signal characteristics of the
target tag, the angle of arrival of the path of the antenna to the target tag relative to the
x-axis is obtained; (3) according to the obtained target tag to the angle of arrival of the
two antennas, and the known the coordinates of the two antennas, using the triangle the
positioning method obtains the coordinates of the target tag. The individual steps are
explained in detail below.
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4.1 Channel Similarity-Based Tag Azimuth Estimation

Weighted average estimated azimuth using channel similarity channel model propa-
gation of the parameter signal on may be a wireless channel formed from h represents
by [15, 16]:

h ¼ ae�jh ð1Þ

Where a is a parameter representing the attenuation of the signal, indicating the
amplitude of the signal, generally related to the distance; h indicating the frequency
offset (i.e. phase) of the signals [11, 14, 17]. The process of antenna rotation, n sets of
data are u collected near each angle, that is, the reader and the encode communicate n
times, and the theoretical value of the phase at each communication can be calculated
by the formula, then the i the channel parameters that the reader antenna receives the
tag backscattering during the secondary communication can be expressed as:

hi ¼ e�j#i � e�j4pk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1�c2�cos xti�UTð Þ

p
ð2Þ

Where #i is the measured value of the phase at the ith communication and uT is the
actual azimuth of the tag. In the conventional AoA method, the antenna rotation angle
is u, the relative power is calculated by the formula:

P uð Þ ¼ 1
n

Xn

i¼0
hie

�j4pk r cos xti�uð Þ
����

����
2

ð3Þ

The formula for the angle of u all the measured values were averaged. In fact, this
formula is to find the similarity between all the measured values and the theoretical
values at each angle, and then do the arithmetic average. Obviously, the antenna
rotation, if and only if u ¼ /T the time, P uð Þ obtain the maximum value, resulting to
obtain the antenna azimuth.

However, the hardware circuit introduces phase shift hdiv, that is

#i ¼ hi uð Þþ hdiv ð4Þ

The AoA method requires very accurate accuracy of the angle of arrival, and a
small offset can cause very large errors, so hardware errors must be eliminated. Here,
the first value of the phase sequence acquired at each angle is used as a reference value,
and each channel parameter is divided by the channel reference:

Q uð Þ ¼ P uð Þ
h21

¼ 1
n

Xn

i¼1

hi
h1

e�j4pk r cos xti�uð Þ
����

����
2

¼ 1
n

Xn

i¼1
e�j #i�#1ð Þe�j4pk r cos xti�uð Þ

����
����
2

ð5Þ

The phase offset caused by the hardware error hdiv is removed.
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In addition, since the measured phase of the tag has some random errors and obeys
a Gaussian distribution with a standard deviation of 0.1 [11], the weighted average of
the similarity of all measured values and theoretical values is taken here:

uð Þ ¼ 1
n

Xn

i¼0
wie�j #i�#1ð Þe�j4pk rcos xti�uð Þ

����
����
2

ð6Þ

In the formula, wi ¼ f #i � #1; ci; 0:1�
ffiffiffi
2

p� �
each measured value and the theo-

retical value of the similarity weights, there is f x; l; rð Þ ¼ 1
r
ffiffiffiffi
2p

p e�
x�lð Þ2
2r2 Gaussian

N l; rð Þ probability density function; first phase sequence i number relative to the first a
theoretical value of the number ci ¼ hi uð Þ � h1 uð Þ ¼ 4p

k r cos xt1 � uð Þ � cos½
xti � uð Þ�. When the azimuth angle tag u, the Gaussian hdiv distribution, i.e.
hdiv ¼ 0i � hi uð Þ�N 0; 0:1ð Þ, so 0i � 01ð Þ � hi uð Þ � h1 uð Þ½ � ¼ 0i � hi uð Þ½ � � 01�½
h1 uð Þ� �N 0; 0:1� ffiffiffi

2
p� �

; Therefore 0i � 01ð Þ�N ci; 0:1�
ffiffiffi
2

p� �
antenna revolution,

each angle is calculated u at R uð Þ a value can be obtained power profile, the maximum
R uð Þ corresponding to the azimuth angle is the tag.

4.2 Tag Location Estimation

In an actual system, N (N� 2) antennas are deployed in a fixed position, and any three
antennas are not collinear. Each antenna xi ð0\i	NÞ rotates about its central axis O
at a fixed angular velocity. When the phase value of the antenna receiving target tag is
the Largest, The Opposite angle IS The direction of the target tag. In 3.1 the direction
of the phase angle, we have determined the sequence of the tag u and its error e, The
first known i coordinate of antennas xi; yið Þ, corresponds to the angle of direction of the
tag ui, the error is ei, the first i 0\i	N;N� 2ð Þ antennas the straight line equation
point from the center point to the target tag is:

y� yi ¼ tan uið Þ � x� xið Þ; 0\i	N; N� 2 ð7Þ

Obviously, the position of the target tag can be found by at least two antennas.
However, the radio frequency signal is greatly interfered by the environment, in order
to improve the positioning accuracy and improve the robustness of the system, there are
often more than one pair of antennas deployed in the actual environment. We make a
simple transformation of the formula (7):

kix� y ¼ kixi � yi; 0\i	N; N� 2 ð8Þ

Where: ki ¼ tanui is xi; yið Þ the slope of the line passing through the antenna. Then
n antennas can constitute the following overdetermined equation:

C
x
y

� �
¼ d ð9Þ
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Where: C ¼
k1 �1
..
. ..

.

kN �1

2
64

3
75 is a N � 2 matrix; d ¼

k1x1 � y1
..
.

kNxN � yN

2
64

3
75 is a N� 1 vector.

When kij j ¼ 1, for example ui ¼ k p
2 ; k ¼ 1; 3; 5; . . ., the Eq. (8) can be expres-

sed as x ¼ xi, the corresponding correspondence of the matrix C and the vector d is
respectively a 1; 0½ � and xi½ �.

When rank Cð Þ ¼ 2	N the rank of the matrix C, the Eq. (9) has a unique least
squares solution P x;yÞð ,

x

y

� �
¼ ðCTCÞ�1CTd ð10Þ

This is the coordinates of the target tag.

The above algorithms all assume that the reader antenna and the tag are on the same
level, but in actual scenarios, this assumption is difficult to strictly satisfy. When the
antennas are not on the same level, the AoA algorithm actually produces a projection of
the on a horizontal plane coordinates tag. At this time, the between at the antenna at the
distance, at the tag and at the coordinate plane can be separately the measured in
advance, or when the trigonometric function and at the is used to true to the calculate at
the coordinates of at the tag.

Assuming that the azimuth estimation error of the tag relative to the i-th antenna is
ei, then a candidate region is actually determined, as shown by the blue region in Fig. 2.
Obviously, the farther the tag is from the antenna, the ei larger the angle error, the larger
the area of the candidate area, and the coarser the positioning accuracy. The AoA
method requires dense deployment of the antenna array.

5 Tag Mutual Interference Theory-Based Robot Arm
Gripping Algorithm

In actual deployment, when the distance between the tags is too close, the electro-
magnetic fields of the tag antennas are coupled to each other. In addition, the tags
closer to the reader antenna absorb the energy emitted by a part of the readers, causing

Fig. 2. Schematic diagram of dual antenna AoA positioning model (Color figure online)
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the electromagnetic waves to reach the distance of the tags farther away. Small, read
rate drops, and even unable to read [18, 19]. Therefore, in general, tags should be
avoided from being overly densely deployed. In the previous section, the system can
acquire the rough position of the robot and the target item through multiple rotating
antennas deployed in a fixed position, thereby navigating the robot to the vicinity of the
shelf where the target item is located block. In this section, in order to solve the
problem of how to accurately grab the item, we have established a tag mutual inter-
ference model, which uses the mutual interference characteristics between the tags
when the interference tag crosses the target tag, so that the RSS value of the target tag
first decreases and then grows. The “v” shaped area, by detecting this area, obtains the
position of the target, which is convenient for the robotic arm to capture the target.

5.1 Area Segmentation

Assuming that the sliding double-interference tag passes only one target tag once, the
RSS of the target tag is redundant data for a period of time before and after the
interference tag passes (i.e., the target tag is outside the range of the interference tag).
Therefore, the system needs to segment the data to accurately find the area where the
target tag is disturbed. Here, the area where the smooth portion is for dominant in a
region becomes a smooth region, and the region where the non-smooth portion is
dominant is called a non-smooth region.

The signal segmentation technology is commonly used in the field of speech and
image processing, including static segmentation and dynamic adaptive segmentation.
In this model, the time required for the interference tag to pass the target tag is not
fixed, so static segmentation cannot be simply used. Considering the real-time nature of
the model, a simple, accurate, and efficient algorithm should be chosen to instantly
segment the target area, the even if all data is not available. Therefore, in this paper we
have chosen the method of sliding window for region segmentation.

Let the RSS timing of the target be ¼ x0; . . .; xi; . . .; xn½ �. Let the size of the sliding
window be w, then the sequence in the i-th sliding window is Wi ¼ xi; . . .; xi�1þw½ �.
Since the minimum granularity of RSS collected by the reader is 0.5 dBm, and the
amplitude of RSS in the static and non-interfering space does not exceed ±1 dBm, this
means that the values in the smooth region of the RSS sequence are mostly repeated
values, so the sliding is calculated here. The information entropy of the window to
distinguish between smooth and non-smooth areas:

H Wið Þ ¼ �
Xw

j¼0
p xj
� �

log p xj
� � ð11Þ

Where p(xj) represents the probability that the value in the sliding window
sequence is xj. The larger the entropy,

Pw
j¼0 p xj

� � ¼ 1 the greater the uncertainty of the
data points in the sliding window. Combined with the characteristics of the RSS
sequence here, when the entropy exceeds a certain threshold, it is considered as a non-
smooth region. We take the entropy of the RSS sequence acquired in the static
interference-free scene as the threshold here.
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In addition, due to the sensitivity of RSS, the “bump” and human interference of the
tag will bring data jitter. The information entropy can only distinguish between smooth
and non-smooth regions. If used to detect “v” shaped regions, misjudgment the
problem is shown in the candidate area in (11). However, the data jitter caused by the
accidental factor is usually relatively short. According to this feature, we believe that
the region with the largest number of consecutive non-smooth windows in the collected
RSS sequence is a “v” shaped region. In Fig. 3, each rectangle represents a sliding
window, the light gray box is a smooth window, the light green box is a non-smooth
window, and the middle part of the two light green windows is a “v” shape. Region.

5.2 Dynamic Time Warping

For example, when the reader sampling rate is constant, the interference tag moves too
fast, and the data points are too sparse; when the interference tag moves at a it would
help speed, the discrete points are too dense in timing, and a lot of “redundant” data the
appears. The in addition, due to the multipath effect, the collected RSS values on may
be skipped or missing. Therefore, the actual data collected is not as symmetric and
sparse as the theory. Of the detection of the “v” shaped area is a big challenge. The if it
cannot be effectively processed, it will affect the fitting parameters and directly affect
the accuracy of relative position positioning. Therefore, it is necessary to do some
processing on the original to remove various noise interferences, and it is convenient to
perform further curve fitting.

Fig. 3. Schematic diagram of area segmentation using a sliding window (Color figure online)

Fig. 4. Data before and after DTW processing
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The after the DTW algorithm, the disturbance, and aliasing in uneven the original
speed data are eliminated. Of as shown in Fig. 4, the original data asymmetrical is, and
the even sampling redundant a large number of points are in some areas. Of the
processed data sequence removes the influence of the uneven tag moving speed on the
RSS value and is closer to the ideal trend, which is very important for the curve fitting
in the next step.

5.3 Curve Fitting

The in the actual file application scenario, due to environmental interference and other
factors, the RSS value will appear to be an accidental deviation, which is a sudden
jump. Therefore, if the moment the corresponding to the minimum value of the RSS is
directly recognized as the time closest to the interference tag and the target tag, a
certain probability of deviation occurs. The in order to find the “v” shaped area con-
veniently and accurately, a function fitting is needed for the collected RSS sequence for
timing detection. The in the uhf the RFID system, the tag and the listening commu-
nicates of times per second, and each communication will report its RSS value, so the
collected data is discrete. Assuming that each discrete data is the value yi of the
function f(x) at xi, can be established generally polynomial interpolation as an
approximation of f(x) by interpolation the principle. However, the operating since
experimental measurements and measurement errors usually have systematic errors,
there are other disturbances and deviations in the RFID system, such as indoor envi-
ronment differences, the diversity of multipath effects caused by people walking, and
signal attenuation caused by object occlusion. And hardware differences and so on. If
the interpolation polynomial approximation is used directly the fitted function curve
will also retain the deviation of the experimental data. In addition, the use of inter-
polation polynomials in the case of large data volumes can result in extremely high
computational complexity.

The for at the “v” shaped regions in this system, curve fitting can be used to
approximate. By analyzing at the change trend of at the target tag RSS the when at the
interference tag is crossed, at the deformation of at the gaussian function is taken as at
the matching function, and the expression form is:

f xð Þ ¼ ke
� x�a1

a2

� 	2

þ b ð12Þ

In the formula, k, a1, a2, and b are all constant numbers. The image of gaussian
function fits well with the trend of RSS: first, the gaussian function is symmetric with
respect to a 1 and conforms to the theoretical model secondly, it is flat in the non-peak
region, which is similar to the trend of RSS in the ideal case. Since the trend of RSS is
to decrease first, it is taken <0; therefore, parameter b reflects the horizontal asymptote
of the curve, which can be obtained by measuring the RSS value under the condition
that the single tag is stationary and not subject to electromagnetic interference at a fixed
distance; parameter a 1 the abscissa of the extreme point of the reaction curve; the steep
condition of the parameter a 2 reaction curve.
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Here, the least squares method is used to determine u xð Þ the parameters of the
matching function. The principle is that for a given sequence xi; yið Þ; i ¼ 0; 1; . . .;m, in
the given function class /, the sum of the squares of the u
 xð Þ 2 / errors di ¼
u
 xið Þ � yi; i ¼ 0; 1; . . .;m is minimized, that is,

u
 xð Þ ¼ arg minu xð Þ2/
Xm

i¼0
d2i ð13Þ

Geometrically speaking, it is to find xi; yið Þ; i ¼ 0; 1; . . .;m the curve with the
smallest square of the distance from all given points ¼ u xð Þ. The function is u
 xð Þ the
least squares solution. The method of solving this method is as follows: let the
matching function u xð Þ have n unknown parameters a1; a2; . . .; an, so
S a1; a2; . . .; anð Þ ¼ Pm

i¼1 u xið Þ � yið Þ2 that the partial derivatives are respectively
obtained to convert the minimum value problem into the extreme value problem of s,
and then:

@S
@aj

¼ 2
Xm

i¼1
u xið Þ � yið Þ @u

@aj
¼ 0; j ¼ 1; 2; . . .; n ð14Þ

For nonlinear fitting, the Eq. (14) is a nonlinear equation for a j, and the solution is
difficult. In practical applications, the nonlinear function is usually linearized, such as
by finding the matching function equations on both sides. Logarithmically, and then
linearly fit to find the value of each parameter.

Figure 5 is the fitted image of the “v” shaped area. According to theoretical analysis,
the abscissa corresponds to the peak of the fitting curve (the valley of the “v” shaped
region) is the time when the interference tag is closest to at the target tag. An in at the
case the where at the direction of movement joining module of at the tag is known,
knowing this moment, at the relative position of at the tag array can be determined by
comparing at the order in which at the RSS peaks of at the tags in at the tag array appear.
The in addition, if the moving speed of the interfering period tag is constant, the
approximate distance between the two tags in the array can be obtained by multiplying
the-difference between the peak times of the two tags by the moving speed of the tag.

Based on the above process, the data processing process of this model can be
drawn, as shown in Fig. 6. Acquisition of the target tag to the RSS after values, first

Fig. 5. Schematic diagram of curve fitting
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average smoothing to remove jitter the data, eliminated the causal factors of space RSS
interference value; secondly divided into areas, to find areas of interference, to filter out
non- interference of related data; then through the DTW algorithm, the influence of the
uneven sliding speed on the RSS timing is removed, so that the target sequence is as
close as possible to the theoretical trend. Finally, the curve fitting is performed to find
the minimum value of the RSS sequence, and the position of the corresponding
interference tag is considered to be the location of the target tag.

6 Experiment and Evaluation

6.1 Experimental Environment

Figure 7 shows the main hardware devices used in the system, including RFID readers,
reader antennas, RFID tags, and so on. The speedway r420 commercial UHF RFID
reader manufactured by Impinj is used here. The reader complies with the EPC the
global parameters.

R420 reader is connected. 4th laird a9028 type directional antenna, a gain of 8dbi,
transmitting circularly polarized waves, in order to more effectively read the tag of
different states, the main parameters of the antenna as illustrated.

This article uses the doc (alien 9741) type document tag produced by alien com-
pany of the united states. The tag has good anti-interference ability and can be placed at
a close distance of multiple tags, which can effectively reduce the mutual occlusion
between different tags, cardboard and similar printed matter dielectrics can be placed in
many documents that are tightly wrapped by the tag without being missed by the reader
[19]. The in addition, to the test performance of the model, uses this chapter the other
six tags also, as shown in Fig. 8.

Fig. 6. Data processing process flow chart
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The system follows the EPC Global C1G2 protocol, and the operating frequency is
920.375–924.375 MHz in mainland China, with a total of 16 channels. R420 reader is
connected to an Ethernet cable is equipped with 8 GB DDR4 memory, 256 GB
PCIe SSD hard disk, the CPU is a 2.7 GHz clocked Intel Core i5-6200 the PC on
board.

6.2 Robot Indoor Positioning Model Evaluation

Antenna Rotation Radian. To test the effect of the antenna’s radius of rotation on the
accuracy of the model, we deployed two antennas of the same model at two locations
separated by 3.5 m. It gradually increases the radius of rotation of the antenna, the
using the method of the third chapter of the estimated position of the tag, and the tag is
determined to estimate the actual coordinates and the coordinate distance-difference,
i.e., the positioning accuracy of the method. Other parameters during the experiment,
such as the antenna’s transmit power (32.5 dBm), transmission frequency
(924.375 MHz), and tag (“doc” type), remain constant. The experimental results are
shown in Fig. 9. Obviously, the accuracy of the system is stable within 20 cm when the
radius of rotation is in the range of 12 to 17 cm. When the rotation is reduced

ALIEN BAT Inlay
(ALN 9770)

ALIEN Spider-360
(ALN 9726)

ALIEN Square Inlay
(ALN 9629)

ALIEN Doc Inlay
(ALN 9741)

ALIEN Squiggle Inlay
(ALN 9640)

Impinj E41-B ALIEN Short Higgs 4
(ALN 9762)

Fig. 8. Main tag used in this article

Fig. 7. System main hardware
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(<12 cm), the accuracy is getting worse. As stated in Sect. 3.3.2, this is due to the fact
that the radius of rotation is too small and the distance difference caused by the rotation
is not so obvious that the phase change is not obvious. When the radius of rotation is
greater than 17 cm, since the maximum distance difference is greater than half a
wavelength during rotation, a plurality of minimum values may be brought, resulting in
an azimuth angle uncertainty, which is likely to cause a large error.

Antenna Rotation Radius. Of the two antennas spacing is another important factor
affecting the accuracy of positioning (navigation). Here, the distance between the two
antennas is gradually increased, and the coordinates of the tag are estimated at each
distance. During the process, other factors remain the same, using the same tag all the
time, and the antenna has a radius of rotation of 15 cm at each pitch. The results are
shown in Fig. 10. It can be seen that from the overall trend the error increases with the
increase of the spacing. In some cases, there is a case where the pitch is increased and
the error is rather reduced. This is because when the antenna pitch is too close, the
electromagnetic wave is reflected, interfered, or even diffracted by the opposite
antenna, causing multipath, and the phase measurement value is largely deviated. In
addition, the spacing of the antenna should not be too far, otherwise due to the char-
acteristics of the AoA method, the deviation of the angle will become more and more
obviously due to the increasing distance of the tag antenna, resulting in a large posi-
tioning error, based on the test results of this paper, the spacing of the antenna should
be set at about 2.5 m.

Fig. 9. Relationship between positioning error and antenna rotation radius

Fig. 10. Relationship between positioning error and antenna deployment spacing
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The Impact of Tag-to-Antenna Distance. Here is another set of experiments: set the
distance between the two antennas to 2.5 m, the radius of rotation of the antenna to
15 cm, move the tag on the mid-perpendicular line of the midpoint of the two antennas,
and gradually increase the tag and the two antennas. The distance between the midpoint
of the line (that is, the “foot” of the vertical line), the other parameters remain
unchanged during the process, use this method to estimate the position coordinates of
the tag, and the error between it and the calculate actual the position, the as shown in
Fig. 11 shown. Of the farther is from the midpoint the tag of is two the antenna
connections, the further from the is two the tag antennas. Obviously, in this process, the
error continues to increase. The when the distance between the tag and the foot is
0.4 m, the distance between the tag and the two days is about 4.2 m, and the mea-
surement error of the tag is as high 68 cm. It is foreseeable that as the distance
increases, the error will continue to increase, which is clearly unacceptable.

6.3 Evaluation of Robot Arm Grabbing Algorithm

The Impact of the Distance Between Two Interference Tags. To further determine
the interference from the tag suitable place, here the following experiment: increasing
the distance between the two interfering tag sequence d from 1 to 10 cm (i.e., u arms of
the plate-shaped), in each under the spacing, the u-shaped plate with two interference
tags is slid across the target tag, and the maximum drop amplitude of the target tag RSS
at different intervals is recorded, and the experiment is repeated. Antenna the tags target
and the keep stationary during the this other the process parameters and leave
unchanged. Of the experimental results are shown in Fig. 12. when the distance
between two the interference distance tags is 5 cm, the RSS of the target tag decreases
the most, reaching 13 dBm. At other intervals, interference still exists, but it does not
achieve optimal results.

Fig. 11. Relationship between positioning error and tag antenna spacing
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The Impact of Angle. As can be seen from the Fig. 13, the angle between the
interference tag and the target tag affects the magnitude of the RSS drop. While the
other conditions remain unchanged, the angle between the interference tag and the
target tag is changed, and the interference tag is traversed by the target tag according to
the fine-grained positioning model, and the position of the target tag is measured.
Figure 13 shows the distance difference (error) between the coordinates of the position
estimate and the actual coordinates at different angles. Obviously, the error increases
with the increase of the angle, and the error between the two reaches the maximum
when the angle is 90°. When the angle between the two is less than 45°, the mean value
of the error is 1.9 cm, which indicates that the model can obtain higher accuracy. The
actual deployment, this feature should be considered as much as possible, so that the
interference tag and the target tag are as parallel as possible.

Comparison with Existing Works. Figure 14 shows the use of stpp [13], rf-compass
[20], tagoram [11], mobitagbot [14] and other existing work to locate the target tag
when the average error. Wherein the rf-compass dependent on the stage in the signal
processing software defined radio equipment (the usrp), expensive; and the stpp,
tagoram, mobitagbot rely on commercial the rfid. Device the stpp is mainly used to
obtain the sequence of the tag array, the average positioning accuracy. 8 cm & lt & lt
around; tagoram the using multiple antennas, the hologram the using differential

Fig. 12. Maximum drop in the target tag RSS when the tag is interspersed at different intervals

Fig. 13. Relationship between localization accuracy and the angle between two tags
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algorithm can track a moving target, and obtain a higher accuracy (3.8 cm & lt);
mobitagbot in the multipath effect has strong robustness in the strong scene, and the
average error is about 2.8 cm. Compared with the above work, the proposed model
algorithm can achieve an accuracy of 1.9 cm & lt. Compared to the require high
computational complexity tagoram and required in the system in the initial stage of
each of signal characteristics the measured on may be as a reference position
mobitagbot, used in the this study location algorithm is lightweight, easy operation and
high efficiency.

7 Conclusions

Robots have been increasingly applied to various real-world applications. This paper
attempts to use RFID tags, which are widely deployed in warehousing and logistics, to
help robots to navigate automatically and then locate targets. The paper is divided into
two parts: rapid navigation of the robot and precise localization of the target. Extensive
experimental results prove the effectiveness of proposed methods.
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