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Abstract. In the life, there are always many objects that are unable to actively
contact with us, such as keychains, glasses and mobile phones. In general, they
are referred to non-cooperative targets. Non-cooperative targets are often
overlooked by users while being hard to find. It will be convenient if we can
localize those non-cooperative targets. We propose a non-cooperative target
localization system which based on MEMS. We detect the arm posture changes
of the user by using the MEMS sensors which embedded in the smart watch.
First distinguish the arm motions, identify the final motion, and then perform the
localization. There are two essential models in our system. The first step is arm
gesture estimation model which based on MESE sensor in smart watch. we first
collect the MEMS sensor data from the watch. And then the arm kinematic
model and formulate the mathematical relationship between arm degrees of
freedom with and the gestures of watch. We compare the results of the four
actions which are important in the later model with the Kinect observations. The
errors in the space are less than 0.14 m. The second step is non-cooperative
target localization model that based on the first step. We use the 5-degrees data
of the arm to train the classification model and identify the key actions in the
scene. In this step, we estimate the location of non-cooperative targets through
the type of interactive actions. To demonstrate the effectiveness of our system,
we implement it on tracking keys and mobile phones in practice. The experi-
ments show that the localization accuracy is >83%.
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1 Introduction

There are many small things in life which cannot interact with people actively, such as
keychains, glasses and mobile phones. They are collectively referred to as non-
cooperative targets. The location of non-cooperative targets is often forgotten by users.
If these targets can be located through technology, it will greatly facilitate people’s life.
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For non-cooperative targets, people often find them by recalling where they were
last used (what scene) and then recalling what they were used for (what interactions).
However, there are no relevant sensors on the non-cooperative objects, and people
cannot live under constant surveillance instead relying on smart devices to record their
interactions with the target and guess its location. Today’s smart devices are equipped
with commercial MEMS sensors, including accelerometers [1–3], gyroscopes [4] and
magnetic induction meters [5]. If scenes and interactions could be recorded by using
MEMS sensors, it would can help people find non-cooperative targets.

Meanwhile, with the development of science and technology in recent years, peo-
ple’s life has become more and more intelligent. Smart devices emerge in an endless
stream. A series of devices begin to enter people’s lives, such as smart phones [6],
including smart wristbands [7], smart watches and smart glasses [8]. In this paper, we
uses smart watch to achieve the localization of non-cooperative targets. The main idea is
to record the latest interaction between users and non-cooperative targets through smart
watch, and then guess the location of non-cooperative targets. This paper mainly con-
sists of two steps: the arm posture estimation and the non-cooperative target localization.

The rest of this paper is organized as follow:
Section 2 Related work
Related work is mainly about Kinect development. Kinect is an image device with

high reliability that can recognize motion. In this paper, we compare the results of
skeletal tracking with the results of arm posture estimation model from Kinect.

Section 3 Model Design
This section mainly realizes arm posture estimation model through the data of

smartwatch MEMS sensor and non-cooperative target localization model. We take the
key tracking in the opening scene and the mobile phone tracking in the calling scene to
illustrate the non-cooperative target localization.

Section 4 Simulation and Experiment
This section realizes the visual simulation of the arm posture estimation model and

explain the results of our system. Firstly, the arm posture estimation model is tested
with common images, and then the scene of non-cooperative target is visualized, and
posture changes are also tested. Finally, the localization results of non-cooperative
target are tested.

We summarize this paper in Sect. 5.

2 Related Work

2.1 Kinect

Kinect is released by Microsoft which is a device that interacts with camera sensors [9–
11]. It is a 3D device that can recognize objects, perform language operations, and
capture objects. Kinect is first announced in 2009, and after years of research and
development, Kinect has a richer set of functions and interactive tools.

Kinect relies on several core sensors for its rich functionality. The positions of
Kinect infrared (IR) projector, color camera and infrared camera are indicated
respectively. Depth information is collected by an infrared projector combined with an
infrared camera, both of which are CMOS sensors. An infrared camera is an instrument
that emits infrared light using a diffraction grating.
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2.2 Bone Tracking

Simple arm movement recognition work can be achieved with Kinect. It is done by
means of images. When interacting with people, Kinect use bone tracking technology
to locate key parts of the body.

Bone Tracking Technology
In Kinect, human skeleton architecture can be extracted through more than 20 joints
[12–14]. When the user enters the Kinect field of vision, the device can represent the
user’s joint position in space through coordinates (x, y, z). When the computer obtains
these coordinates, it can calculate the posture of the body’s main limbs in space. Kinect
supports simultaneous detection of 6 people, but can only support two skeleton
structures at most. In general, the user can track 20 joints while standing and 10 joints
while sitting. More specifically, Kinect can provide three kinds of information: (a) the
tracking status of relevant bones, only the position of the tester can be detected in
passive mode, and the coordinates of the tester’s 20 joints can be detected in active
mode; (b) give each skeleton a test ID. This ID will be associated with several testers
that can be detected to determine which one the skeleton data belongs to. (c) the
specific location of the user which is actually the center of mass of the user.

Kinect Bone Tracking Development
The development of Kinect is described as follows: Firstly, it communicate with Kinect
and then take the relevant data of the skeleton, so that skeletal events can be returned
and detection functions can be started. Then, the bone tracking function is turned on,
which processes the image information from the camera, and reads the bone data.

Secondly, data smoothing is carried out. Mutations in the data may occur while
processing the data. For example, in the tracking process, some situations may lead to a
large change in the detected position, which is caused by the incoherent actions of the
user and the performance problems of the hardware device of Kinect, so jitter should be
removed by filtering.

Finally, we transform the frame. Since the depth image data and color image data
read by Kinect come from different cameras, and they face different scenes (they are in
different positions), the generated images will be different, so the spatial coordinate
system needs to be transformed. After that the depth information is removed from the
final data and the data are drawn on the plane graph.

3 Model Design

3.1 Arm Gesture Estimation Model Based on Smart Watch MEMS
Sensors

Arm gesture estimation model uses sensors of commercial smartwatches to model and
estimate a series of user arm posture changes.

Kinematics Analysis Model of the Arm
First, we need to introduce the degree of freedom. In the kinematics model of the arm,
the degree of freedom is the rotation angle of the joint which affects the arm posture.
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There are seven degrees of freedom of the human arm. Since the smart watch is worn
on the wrist, We only need to consider the motion state of the upper arm and the lower
arm, so it only considers 5 degrees of freedom, including three on the shoulder and two
on the elbow. We need to establish three coordinate systems to describe the posture of
the arm relative to the human body. The three coordinate systems are: human body,
shoulder and elbow.

This paper establishes the right hand system in the human body shoulder, namely
human body coordinate system. The origin is the shoulder join. The positive direction
of the X axis is from the left shoulder to the right shoulder. The positive direction of the
Y axis is the back pointing to the chest. The positive direction of the Z axis is
perpendicular to the other two axes. Shoulder coordinate system is the coordinate
system established with the upper arm of human body as the reference point. The origin
is the shoulder joint. The axis is parallel to the direction of the zupper arm, with the
positive direction pointing from the shoulder to the elbow. In addition, we need to
determine another axis for it. Here, when the arm is naturally drooping and the palm is
facing the body, the X axis is perpendicular to the direction of the arm pointing to the
human body. The elbow coordinate system is similar to the shoulder coordinate system.
The origin of the coordinate system is the elbow joint, and the positive direction of the
Z axis is from the elbow to the wrist, and the direction of the palm is the X axis.

Now we assume that the length of upper arm is lb, the length of lower arm is ls, the
radius of lower arm is rs.

First, deduce the position of the smartwatch in elbow coordinates:

Pwe ¼ �rs; 0; lsð Þ ð1Þ

The subscript we indicates the information of the smart watches in the elbow. In
order to determine the watch posture in the space, the X and Z directions of the watch’s
own coordinate system are introduced here as a description method of the watch
posture. Two directions in the elbow coordinate system can be obtained [15]:

Owe ¼ 0 0 1
�1 0 0

� �
ð2Þ

At the same time, the vector Swe
�!

is introduced to describe the position and state of
the smart watch:

Swe
�! ¼ Pwe

Owe

� �
ð3Þ

Then, the state of the smartwatch in the shoulder coordinate system is deduced.

Consider the rotation first, assuming that there is a transition coordinate system Ot
�!

whose origin is at the elbow, but the three axes are parallel to the three axes of the
shoulder coordinate system, and the positive direction is the same. Then, according to
the rotation matrix R (hef , her) corresponding to the degrees of freedom hef and her, the
relationship of the state of the watch in the two coordinate systems is derived [16]:
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Swt
�! ¼ Swe

�! � R hef ; her
� ��1 ð4Þ

where Swt
�!

is the state of the watch in the transition coordinate system. Then consider
there is a displacement change between the actual shoulder coordinate system and the
coordinate system used for the transition. So we can get:

Sws
�! ¼ Swt

�!þ
0 0 lb
0 0 0
0 0 0

0
@

1
A ð5Þ

Where Sws
�!

is the state of the watch in the shoulder coordinate system.
Finally, the state of the smart watch relative to the human coordinate system is

calculated. There is three degrees of freedom rotation between the shoulder coordinate
system and the human coordinate system, then according to the rotation matrix R (hsa,
hsf , hsr) corresponding to the degrees of freedom hsa, hsf and hsr, the state of the watch
in the human coordinate system can be derived:

Swh
�! ¼ Sws

�!� R hsa; hsf ; hsr
� ��1 ð6Þ

Through the above derivation process, the relationship between the position of the
watch and the 5 angles can be obtained. Finally, the posture of the smart watch in the
human coordinate system can be derived as follows [17]:

Swh
�! ¼

Pwh
X
Z

 !
¼ Pwe

Owe

� �
� R hef ; her
� ��1 þ

0 0 lb
0 0 0
0 0 0

0
@

1
A

2
4

3
5 ð7Þ

The position of the watch almost overlaps with the wrist, so the position of the wrist
can be obtained as long as the position of the watch is available. But only one point in the
space (the position of the wrist) is not enough to fully describe the posture of the entire
arm, but also to obtain the position of the elbow. Here, the position of the elbow is also
derived. In the shoulder coordinate system, the position of the elbow Pes is as follows:

Pes ¼ 0; 0; lbð Þ ð8Þ

The subscript es indicates the information of the elbow in the shoulder coordinate
system. Then, change it into the human coordinate system. The elbow involves two
degrees of freedom, hsa, hsf , which gives the position of the elbow:

Peh
�! ¼ Pes

�!� R hsa; hsf
� ��1 ð9Þ

DOF and Arm Posture Mapping Relationship
In this section, the mapping relationship between the posture of the watch and wrist
position, elbow position and 5 degrees of freedom will be established on the basis of last
subsection. The mapping here is one to many. That is, given a watch posture, the cor-
responding other information value is a few. The set of values is called the solution space.
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Steps of acquire the mapping relationship between the posture of the watch and
other information in body coordinate system are: First, traverse the given 5 degrees of
freedom, respectively, and then calculate the values of the corresponding three keys for
a given degree of freedom, namely the wristwatch, wrist and elbow position, and finally
use the watch posture as the key, and other information as the value to establish a
mapping relationship.

Posture Acquisition
We obtain the real posture of the smartwatch in the body coordinate system through the
data of the smartwatch sensor. It mainly includes two steps: first, obtain the direction of
the smartwatch in the world coordinate system, and then obtain the direction of the user
in the world coordinate system, so as to obtain the posture of the smartwatch in the user
coordinate system.

We get the direction of the smartwatch by combining sensors such as gyroscope,
accelerometer and magnetic induction meter. The main steps are: integral calculate the
real-time Angle of gyroscope, then when the watch is still, use accelerometer and
magnetic induction meter to calibrate Angle obtained by integral calculation.

Next, the connection between the smartwatch and smartphone is used to determine
the direction the user is facing. Data from the smartphone’s accelerometer, gyroscope
and magnetic induction meter are measured and calibrated to determine the user’s
orientation in the world coordinate system. Use the watch posture in the world coor-
dinate system “minus” user orientation in the world coordinate system, we can obtain
the watch posture in the body coordinate system.

Constraints
In the mapping relationship, each state of the watch corresponds to the multiple
freedom combination of arms and the position of the smartwatch. The data of degree of
freedom is relatively abstract, which is not conducive to intuitive display, while the
position of the wrist (or elbow) can be clearly visualized. In this paper, the wrist (or
elbow) is selected to draw the state cloud.

The state cloud which corresponds to the wrist position in the circle motion, exbtract
20 time points in the whole action, calculate the 20 time points gesture of the watch, and
draw the same color graph of multiple wrist positions corresponding to each time point.
State clouds of 20 time points are drawn on the same graph to form the state cloud of this
action. To distinguish, the state cloud at the same moment becomes a layer of state cloud.

There are multiple wrist positions at each moment, and the estimation results on
this basis will be greatly deviated. If the number of corresponding state points at each
moment can be reduced, the accuracy of the results will be greatly improved. There-
fore, in this subsection, constraints are introduced to compress and further optimize the
solution space to make the final “estimation” result more accurate.

The constraint of solution space in this paper mainly includes the following four
points:

(1) Continuity of arm posture;
(2) Arm posture is limited by human structure;
(3) Arm posture changes can be captured by sensors;
(4) The frequency of different arm posture is different.
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Estimation of Arm Posture Change
In the previous subsection, we obtained the state cloud corresponding to the arm
posture change. This subsection will estimate on this basis. Here, we need to select the
most likely state from each layer of state cloud as the current state, and then string the
most likely state points at different consecutive moments to obtain the change trajectory
of wrist position over a period of time. This trajectory is referred to the trajectory line of
wrist in this paper. Similarly, there are trajectory lines of elbow.

The method of estimating trajectory lines is mainly divided into two steps. The first
step is to use the particle points of the state cloud for estimation directly, and the second
step is to smooth the trajectory lines of state changes by a filter.

3.2 Non-cooperative Target Localization Model Based on Arm Gesture
Estimation Model

This subsection will use the DOF data obtained in the previous subsection to capture
the historical interaction between the target object and the user’s arm, and then estimate
the destination of the non-cooperative target object in the scene.

Non-cooperative Target Localization Scenes
In this subsection, the scenes involved in non-cooperative target localization will be
described in detail. This includes an introduction to the scenes of the non-cooperative
target and a description of the types of actions in the scene.

First of all, it is necessary to define the non-cooperative target localization scene
that can be studied in this paper, that is, to explain which non-cooperative targets can
be located and in which scene. The scenes in this paper contain two characteristics: 1.
There are obvious scene triggering actions when someone enters the scene, so that the
smartwatch knows what kind of environment it enters and what target it tracks. Here,
the scene is bound to the tracking target. For example, in the opening scene, only the
key is tracked; in the smoking scene, the lighter is tracked. 2. A series of interactive
actions are carried out between the hand of the user wearing the smartwatch and the
non-cooperative target, so that the smartwatch can estimate the destination of the target.

We picks two simple scenes for analysis.

Scene 1: Track the key chain in the opening scene.
Scene 2: Track the phone in the calling scene.

In general, the action is mainly divided into two categories in related scenes: trigger
action and historical interactive action.

Trigger action: action indicates entry into a scene. When the trigger scene is
detected, it means that the user has entered the scene and the watch can record the
following actions. For example, the opening action in the opening scene.

Historical interaction action: after triggering the action, the user enters the scene,
interacts with the non-cooperative target, and places it somewhere. The action of placing
it somewhere is the historical interactive action studied in this paper. By identifying the
historical interaction, we can guess the final destination of the detection target.

There are two scenes in this paper, namely, tracking the key chain in the opening
scene and tracking the mobile phone in the calling scene. The trigger scene here is a
door opening and a phone call.
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(1) Opening action: it refers to the process of taking out the key, inserting it in the key
hole and turning the key to open the door after the user arrives at the door.

(2) Call action: the user takes the phone from a certain location and holds it to his ear
to hold the call.

There are two reasons for dividing actions into trigger actions and interactive
actions. First, trigger actions represent a boundary that defines which actions will be
related to non-cooperative goals of interest. The action after the trigger action is needed
to predict the action of the non-cooperative target position. Then, the sampling rate of
the system can be controlled. The strategy we adopt is to collect a small amount of data
at the ordinary sampling rate for analysis to determine whether the scene is entered. If
the scene is entered, the strategy of high sampling rate will be adopted.

The scenes in this paper are not complicated, and the historical interactive actions
mainly include: putting them into coat pockets, putting them into trouser pockets,
putting them on the table, and throwing them onto some objects nearby (such as sofa,
bed, etc.). In addition to the four types of actions related to where the target is going,
there are also some unrecognizable actions. These 5 types of actions are collectively
referred to as historical interactive actions. They are: load top A1, load bottom A2, put
on top of something A3, throw out A4, and other actions A5.

Action Segment Segmentation
This subsection will segment the action based on the data of the variation of the
freedom of the arm. In the process of moving arms, the movement tends to move from
one resting position to another, rather than moving at any given time. If these periods of
rest throughout the moving progress can be found, then we can segment the action. The
specific approach is as follows: first, track the rest point, extract a short period of
sliding window. In this window, if a few degrees of freedom change is detected to be
very small, then this segment can be used as a candidate set of rest points. Then the data
changes between the rest points are analyzed. Data changes between rest points need to
exceed a certain threshold to prevent small changes from affecting the final results. The
non-conforming rest points will be excluded. Through the above algorithm, one action
segment can be obtained.

Identification of Key Actions
When the action segment is obtained, each action segment can be identified. We will
identify key actions in three steps.

Firstly, feature extraction is carried out to extract the most closely related param-
eters of posture change, and then dimensionality reduction of redundant features is
carried out. Finally, the classifier’s parameters are obtained by training the eigenvector.

In order to tell which, action each segment is, features need to be extracted. This
paper makes use of the following features, which will play a key role in the later action
recognition:

(1) mean
The mean is the mean of the signals. The mean value can reflect the approximate
fluctuation position of signal, and its calculation formula is as follow:
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lx ¼
1
N

XN�1

n¼0
xn ð10Þ

(2) variance
The variance can represent the fluctuation of the whole data above and below the mean
value. Its calculation formula is as follow:

r2X ¼ 1
N

XN�1

n¼0
xn � lxj j2 ð11Þ

(3) kurtosis
Kurtosis represents the peak value of the image at the average value. Intuitively, it
represents the height of the image tip. Its calculation formula is as follow:PN

n¼1 xn � xð Þ4
N � 1ð Þs4 ð12Þ

(4) signal power RMS
Here RMS is actually the square root of signal power. Signals carry energy, and signal
power is a measure of the energy carried by a signal. Its calculation formula is

ffiffiffiffiffi
Px

p
.

Where the * calculation is as follow:

Px ¼ Ex

N
¼ 1

N

XN�1

n¼0
xnj j2 ð13Þ

We select 5 features, which means we need to reduce the dimension of the 25
dimensional vector corresponding to 5 degrees of freedom.

In this paper, principal component analysis (PCA) is used to realize data dimension
reduction. PCA is an important algorithm in statistics, which is mainly used to reduce
redundancy and extract main features. PCA can reduce the dimension of feature in the
last subsection greatly. The next step is to use these features for identification.

The types of actions have been described in the previous subsection. What need to
be identified here are the trigger actions such as opening the door, answering the phone,
and the actions such as loading top, loading bottom, putting on something, and
throwing out. Opening the door and answering the phone are identified as a group, and
the last four actions are identified as a group, but the recognition method is universal.

This paper uses support vector machine (SVM) for classification. This is a multi-
classification problem. For example, in the first group, three categories of actions, such
as opening the door, answering the phone and other actions, need to be distinguished.
In this paper, one-to-one support vector machine model is used. It trains the support
vector machine model for any two kinds of actions in the same group and finally judges
the categories according to the voting results of all the models.

Non-cooperative Target Localization
In the previous section, several actions that need to be recognized are identified by
SVM. In this section, the location/destination of non-cooperative targets is tracked
according to the recognition results in the previous subsection.
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In this paper, Fig. 1 is used to represent the relationship between motion recog-
nition and the location/destination of non-cooperative targets (i.e. keys and mobile
phones). In Fig. 1, Scene judgement identifies which scene it is, and the location is
determined by the action, including clothes, table/cabinet, sofa/bed. In this paper, the
smartwatch is first used to collect data for action judgment to determine whether a
scene is entered. After judging the scene, the following actions can be judged, and
these historical interactive actions will be directly linked to the location of the non-
cooperative target.

Fig. 1. Non-cooperative target location flow chart
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So far, this paper has connected the data of arm posture change, classification
model and the location of non-cooperative targets together, so as to realize the local-
ization of non-cooperative targets in the scene.

4 Simulation and Experiment

In Sect. 3, the arm posture estimation model based on smartwatch MEMS sensor and
the non-cooperative target model based on arm posture estimation are respectively
established. This section will carry on the simulation, the experiment, and carry on the
analysis to the result.

4.1 Analysis of Arm Posture Estimation Model Results

This subsection will analyze the reliability and accuracy of the arm posture estimation
model. This paper will compare the results of arm posture estimation model based on
smartwatch with the results of Kinect.

The whole testing process is carried out in the laboratory environment. A total of 5
participants were invited to test each action multiple times. The testing process mainly
includes 3 steps: collecting data of smartwatch, collecting images of Kinect device, and
comparing the calculated results of the computing platform with the results of Kinect.

Smartwatch data collection: the tester wears the LG G Watch on the left wrist, with
the surface facing the same direction as the back of the hand; The tester stands in a
room with few electronic devices (to reduce the effect of magnetic fields) and faced the
Kinect camera to perform the relevant action tests.

Calculation results of the platform are compared with the results of Kinect: after
collecting all sensor data of the smartwatch, it is transmitted to the computing platform;
Calibrate and process sensor data of smartwatch on Matlab, and obtain relevant
parameters; The results of relevant parameters were compared with the data collected
by Kinect in Matlab.

This paper selects four actions for verification, namely circle, “S” curve, straight
line and square. Take a set of test data of drawing circle for display. The tester wears
the watch and draws an arbitrary circle in the space. Figure 2 is the trajectory line of the
elbow and wrist corresponding to the circle drawing, where the figure on the left is the
result of estimation and the figure on the right is the result from Kinect.

In Fig. 2, you can see that the right and left trajectories have the same trend,
although they differ in subtle shapes. In the later part of this paper, when locating the
non-cooperative target, it is enough to identify the action itself as long as the trend is
consistent, without requiring the coordinate points to be exactly identical.

Here, the errors in the circle drawing process were counted, and the cumulative
distribution errors of the circle drawing results were randomly counted for 5 times
respectively.

The errors are calculated on three axes, and the results are shown in Fig. 3. It can be
seen that the wrist error and elbow error are respectively 0.27 m and 0.15 m, the
accuracy is well guaranteed. When drawing circles, the wrist error is larger than the
elbow error, because when doing the action, the wrist motion range is larger than the
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elbow, the error has such a relationship is not surprising. And Z axis error than the other
two axes error is large, it is related to the error of Kienct in depth.

4.2 Visualization and Recognition Results of Non-cooperative Target
Locating Scene

In this subsection, the scene of non-cooperative target locating will be specified to
make it visible, and the rationality of the result can be judged directly through the
visualization results of the model. This subsection will examine the door opening and
phone calling scenarios, as described in Sect. 3.

Fig. 2. Model estimation results and Kinect observation results of drawing circle trajectory line
(unit: meter)

Fig. 3. Cumulative distribution of wrist and elbow position errors in circle drawing
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Opening the Door Scene
Compare the estimated results of the smartwatch with the results of Kinect, as shown in
Fig. 4. In Fig. 4, blue is the track line of the wrist and red is the track line of the elbow.
It can be seen that the trend of the two segments of track lines remains consistent, and
the errors of the whole process on the three axes are 0.12 m, 0.14 m and 0.14 m
respectively. The estimated results of the smartwatch on the left clearly show the
process of turning a key or a door handle, while Kinect’s description of the process is
not accurate enough. This is because when the wrist and elbow are at the same height,
the key points of the wrist and elbow are next to each other in the bone tracking, and
the interaction between the two makes it impossible to describe the state in detail.

Calling Scene
From Fig. 5, it can be seen that the track line of the whole phone call is relatively
simple, and Significant stagnation can be seen at the top of the trajectory line, which
corresponds to the state of the phone at the ear. Compared with the results of Kinect,
the errors of the three axes were 0.11 m, 0.13 m and 0.15 m respectively.

Fig. 4. Comparison figure of track lines of two devices (unit: meter) (Color figure online)

Fig. 5. The trajectory of the wrist and elbow during a phone call (unit: meter)
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Historical Interactive Action
The results of the historical interaction actions involved in the following scenes are
described here. Several related historical interactions have been illustrated in the pre-
vious section, they respectively are load top, load bottom, put on something and throw.
It’s also necessary to show the accuracy of their recognition, to prove later non-
cooperative target test is conducted on the basis of the accuracy of guarantees. The
results are shown in the following table (Table 1):

It can be seen from the above table that smartwatches have high accuracy in
identifying the following actions. Next, this paper will use the data of 5 degrees of
freedom changes obtained by the estimation model to locate the non-cooperative
targets.

4.3 Results Analysis of Non-cooperative Target Locating

Test Preparation
This section describes the preparation of a test for a non-cooperative target location. It
describes the entire test process and details.

The whole testing process of this paper is carried out in the laboratory environment.
The main points include two steps: the smartwatch collects data, and the computing
platform trains the data.

Data collection of smartwatch: the experiment invited 5 testers to perform 70 times
of 2 trigger actions and 4 historical interactive actions respectively. They also did 70
other random actions. So there are seven types of actions, and each type of action has
350 sets of data. The LG G Watch was worn on the left wrist in the same direction as
the back of the hand.

The computing platform trains the data: the collected data are preprocessed, reduced
and put into model training on the computing platform, and the parameters are cal-
culated to distinguish the actions. For 7 types of actions, 250 groups are randomly
selected from 350 groups of data as the training set and 100 groups as the test set.
During the extraction of these 250 groups, the data of each tester should be distributed
evenly, so as to facilitate later analysis.

Table 1. The result of historical interactions

Action Average wrist
distance

Average elbow
distance

X Y Z X Y Z

Into the coat 0.10 0.08 0.14 0.14 0.09 0.12
Into the pants 0.09 0.09 0.15 0.09 0.07 0.14
Put on STH 0.04 0.12 0.14 0.11 0.08 0.12
Toss out 0.08 0.09 0.12 0.06 0.06 0.09
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Each of the 5 participants was invited to perform 40 door opening and phone call
simulations. That is 200 sets of complete test data for each scene, a total of 400 sets of
data.

Test Results and Analysis
This subsection will process 350 sets of data for each of 7 types of actions. After
dividing the data into training set and test set, the training set is used to train the SVM
model, and then test the data and explain the results.

First, 350 groups of data were randomly assigned. Using random Numbers, 250
groups were selected as the training set and 100 groups as the test set. Each group
corresponds to 7 actions, namely 7 pieces of data. Here, the tester is required to make a
single action each time when collecting data, so as to avoid the workload of dividing
the action segments and directly conduct follow-up training.

Then, the arm posture estimation model is used to obtain the changes of the 5
degrees of freedom of these 350 sets of data. The input of non-cooperative target
locating is the change data of 5 degrees of freedom. Next, it is necessary to extract
features from the data of these degrees of freedom changes and conduct dimensionality
reduction processing on these features.

Finally, the training set is put into the support vector machine to train, record the
parameters, and use the test set to verify the accuracy and recall rate of the model. Here,
3 support vector machines are trained by using door opening data, phone call data and
other movement data, and 10 support vector machines are trained by using 4 move-
ments and other movement data. The final test results are shown in the following table:

Where the columns represent the actual categories of data and the rows represent
the categories assigned. Among them, opening the door, answering the phone and other
actions are the first group, indicating the distinction of scenes. Putting in coat, putting
in trousers, putting it on something, throwing it out and other actions are in the second

Table 2. Action test results (unit: %)

Action Open 
the door

Answer the 
phone

Into 
the 
coat

Into the 
pants

Put on 
STH 

Toss 
out Else 

Open the 
door 93 2 5 

Answer the 
phone 2 91 7 

Into the
coat 95 1 1 0 3 

Into the
pants 2 91 3 0 4 

Put on STH 0 3 88 3 6
Toss out 1 2 2 87 8
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group to indicate the division of direction. You can see that the classification has good
accuracy, which is mainly related to the complexity of the scene. Among them, more
than 87% of the samples were correctly judged, and the misjudged movements were
mainly other movements, but the proportion was relatively small. Next, the whole
process will be tested with the complete scene test data.

It can be seen that the accuracy of Table 3 is lower than that of Table 2, mainly
because the overall error is jointly determined by the error of scene judgment and the
error of direction judgment. Among them, the main reason for wrong judgment results
is that the other actions of the tester are casual, and some actions are similar to the key
actions concerned in this paper, which leads to the inaccurate classification results of
the classifier. However, the final accuracy rate was more than 76% and the overall
accuracy rate was 83%, which enabled the estimation of the destination of non-
cooperative targets.

5 Conclusion

This paper realizes the locating of non-cooperative targets based on smartwatch, which
mainly includes the arm posture estimation model and the non-cooperative target
locating model.

This paper verifies and tests the model, and the results are as follows:

(1) arm attitude estimation model results

In the experimental part of this paper, 5 testers are invited to draw 4 kinds of images
in the air, and the triaxial error is no more than 0.30 m. This paper also identifies the
scene actions that need to be involved in the locating of non-cooperative targets, and
the error is no more than 0.14 m.

(2) results of non-cooperative target locating

In this paper, 5 testers were invited to perform a total of 350 times of 7 types of
actions involved in the scene, 7*250 groups of data were used as the training set, and
7*100 groups of data were used as the test set, with the accuracy of action is more than
87%. In this paper, the testers demonstrated a total of 400 scenes, and the average
accuracy of non-cooperative target locating is no less than 83%.

We believe that the model in this paper will be applied to more scenes in the future.

Table 3. Scene test results (unit: %)

Action Open the door Answer the phone
Into the
coat

Into the
pants

Put on
STH

Toss
out

Into the
coat

Into the
pants

Put on
STH

Toss
out

Accuracy
rate

90 86 84 80 88 82 78 76
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