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Abstract. At present, the avionics system tends to be modularized and inte-
grated, and the distributed integrated modular avionics system (DIMA) is pro-
posed as the development direction of the next generation avionics system. In
order to support the operation of complex tasks, DIMA needs to have an
effective resource allocation and scheduling algorithm for task migration and
reorganization to achieve reconstruction. However, many current resource
allocation and scheduling algorithms, used in traditional avionics systems, are
not available for DIMA. In view of the above problems, the paper analyzes the
characteristics of the DIMA avionics system architecture model and builds
abstract models of the computing resources, computing platforms and tasks.
Based on the established model, an efficient task scheduling algorithm, resource
allocation algorithm and task migration algorithm for DIMA avionics archi-
tecture are designed. And we do simulation experiments to establish the model,
and compare the designed EWSA algorithm with the mainstream algorithm JIT-
C. The results show better performance in terms of workflow average com-
pletion time, successful scheduling completion rate and optimization rate. In
addition, considering the failure in the process of executing the mission, we
proposed a mission migration and reorganization algorithm WMA and set dif-
ferent time and number of fault resources of the aircraft in the simulation
experiments to evaluate the performance of WMA algorithm.

Keywords: Distributed integrated modular avionics systems � Resource
allocation � Scheduling algorithm � Task migration

1 Introduction

The avionics system is the critical system to the mission for aircrafts. It covers various
electronic systems such as communications, radar, surveillance, and flight control. If
the engine is the heart of the aircraft, then the avionics system is the brain [1]. It can be
said that there is no advanced aircraft without advanced avionics systems [2]. Recently,
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the avionics system tends to be modular and integrated, subsystems such as flight
management, navigation, display control, radar, photoelectric detection, fire control,
and mission control, are all implemented with universal function module [3]. Dis-
tributed Integrated Modular Avionics (DIMA) system has been proposed as the
direction of the development of next-generation avionics system [4].

The DIMA is essentially a parallel distributed computer system that integrates
heterogeneous hardware resources, which uses switched network to interconnect
hardware facilities of different physical areas of the aircraft and applies application
software system to share underlying hardware devices, to realize highly generalized
hardware devices and lower degree of software and hardware binding coupling [5].

However, compared to other distributed system architectures, DIMA architecture
has many special features owing to its requirements of strong real time, high security
and reliability [6]. First of all, the energy consumption of the computing platform
service is very small compared to the braking system, thus the energy consumption
caused by the algorithm is basically negligible [7]. Secondly, the aeronautical system
has a very high real-time demand for task scheduling, thus the cost factor can be
ignored while sharing internal resources of the aircraft [8]. In addition, in order to
ensure the high safety and reliability of the avionics system, it is necessary to consider
the emergency measures of the aircraft in the case of computational resource failure [9].
For aircraft clusters, we need to consider the differences between different types of
aircrafts for the different sensor information they carried. Moreover, location infor-
mation also needs to be considered when assigning tasks in the process of dynamic
flight of aircrafts [10].

Therefore, in the face of complex DIMA avionics architecture, how to redistribute
integrated heterogeneous computing resources, how to efficiently implement task
scheduling on shared resources, and how to improve the reliability and security of
application systems under DIMA system are the urgent problems to be solved in the
current aviation research. However, with the strong real-time, high security and reli-
ability requirements of DIMA avionics system, related scheduling strategies of tradi-
tional aeronautical systems applying on DIMA show poor performance [11].

In view of the above problems, the paper analyzes the characteristics of the DIMA
avionics system architecture model and abstracts the computing resources, computing
platforms and tasks. Based on the established model, an efficient task scheduling
algorithm, resource allocation algorithm and task migration algorithm for DIMA
avionics architecture are designed.

2 Related Works

At present, although few scholars have studied task scheduling and migration algo-
rithms for DIMA avionics systems, many excellent task scheduling algorithms have
been proposed in other distributed fields such as cloud computing.
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Gupta et al. [12] proposed an online-aware job scheduling algorithm named
MPA2OJS for multi-platform applications. To improve job execution time and opti-
mize throughput, MPA2OJS uses dynamic heuristic job scheduling mapping schemes
and efficiently schedules new high-performance cloud computing (HPC) workflows
and load fluctuations for heterogeneous computing resource platforms based on internal
application characteristics, job requirements, platform capabilities and dynamic
requirements. The algorithm takes the availability of platform resources, the applica-
bility and sensitivity of jobs on the platform into consideration, which balances the load
of multiple computing platforms and distributes job streams to the most profitable
computing platform efficiently.

Dong et al. [13] proposed a task scheduling algorithm with the most efficient
priority named MESF to reduce energy consumption by limiting the number of active
servers and the time of response. It takes advantage of the integer programming
optimization solution to trade off active server and the time of response. Experimental
simulation results show that MESF can save about 70% of energy consumption
compared with the random task scheduling scheme.

Panigrahy et al. [14] proposed a geometric heuristic algorithm by sorting VM
request queues of virtual machines. Li et al. [15] proposed a method based on multi-
dimensional knapsack problem to solve the virtual machine VM placement. By using
the virtual machine VM placement schedule, the total working time requested by the
virtual machine on the same physical machine was reduced.

Khanna et al. [16] proposed a dynamic host management algorithm, which is
activated when the physical machine becomes underloaded or overloaded. At the same
time, the algorithm reduces SLA violations, minimizes migration costs and optimizes
the number of physical servers. Beloglazov and Buyya et al. [17] analyzed historical
data of resource utilization of virtual machines and proposed dynamic virtual machine
integration to achieve the effect of power saving.

Taheri and Zamanifar et al. [18] introduced a two-stage virtual machine integration
mechanism to deal with incomplete VM migration. Perplex VMs are virtual machines
that should be integrated but have no suitable host placement. As a result, the system
terminates the migration and VMs is replaced in its previous location. This problem
will lead to a waste of CPU capacity and power consumption, increasing network
overhead. According to the proposed framework, VMs are migrated from the overused
host to other hosts in the first phase, and VMs from the low-load host are sent to other
hosts in the second phase.

Sahni and Vidyarthi [19] etc. proposed a workflow scheduling algorithm JIT-C
with deadline constraint. JIT-C algorithm is the core technology in the workflow task
until the execution and ready to make a proper scheduling decisions, in order to make
proper scheduling decisions/supply, this algorithm considering the performance of the
virtual machine VM cloud computing platform change, loop controller monitors the
task execution progress monitoring, and according to the latest information resources
allocation/scheduling decisions. JIT-C algorithm scheduling workflow tasks has good
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performance, but because of the avionics system’s strong real-time, high security and
reliability, JIT-C algorithm can not meet the requirements of avionics system.

JIT-C has some shortcomings used in DIMA system platform. We model the
computing resources, the computing platform and tasks by analyzing the characteristics
of DIMA avionics system. Based on the established model, an efficient workflow-based
task scheduling algorithm EWSA is proposed and compared with JIT-C algorithm,
which focused on DIMA avionics system architecture. Through the simulation
experiments, we evaluate these algorithms in terms of the average completion time and
the optimization rate. In addition, considering the failure in the process of executing the
mission, we proposed a mission migration and reorganization algorithm WMA and set
different time and number of fault resources of the aircraft in the simulation experiment
to evaluate the performance of WMA algorithm.

3 DIMA Avionics System Resource and Task Model

Based on the requirements of strong real-time performance, high security and reliability
of DIMA avionics system, we modeled the computing resources, and proposed the
computing platform and workflow task model for the computing resources model.

3.1 Computing Resource Model

A computing resource has a variety of parameter information such as processor,
memory, bandwidth, etc., and each processor has one or more cores, each core has a
fixed computing capacity. Each computing resource can run one or more subsystem
tasks that share the underlying hardware facilities such as memory, processors, and so
on. In order to ensure that the tasks of each subsystem are not interfered with each other
when sharing resources, the concept of partition is proposed in the standard specification
of ARINC653. By dividing different tasks into different partition systems, the task
systems running on the same computing resources are not interfered with each other.

Fig. 1. ARINC653 partition software diagram
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Figure 1 shows ARINC653 partition software, the core concept is to propose time
and space partition isolation [20]. On the same computing resource, time-division or
space-division scheduling schemes are implemented between partitions, and partitions
are isolated from each other, which improve fault tolerance and security of the system.
In the partition, multiple task processes share the hardware resource information
obtained by the partition system, and the scheduling between task processes can be
specified by the partition system designer, such as FCFS, MFS, etc. Therefore, in order
to comply with the ARINC653 standard specification, the task process application is
run by creating a VmPartition during the abstract modeling of computing resources of
DIMA avionics system.

Figure 2 shows the model diagram of computing resources. It is assumed that an
aircraft has multiple computing resources, and different computing resources have
different parameters such as the number of processors, processing speed and memory
configuration, etc., and the external service is composed of virtualized resources,
including computing services and storage services. All computing resources inside the
aircraft are interconnected through a strong real-time communication network to share
sensor interfaces. Assuming that all computing and storage services are provided by the
same aircraft, the average bandwidth between computing services is roughly equal. In
addition, the storage service is implemented by the unified allocation of the local
storage service of the aircraft, and the computing service is provided in the form of
different types of VmPartition. Virtual partition has different CPU types, memory RAM
and other configuration information resources, and virtual partition is dynamically
submitted by the user to create and destroy. Different process task types are running
between virtual partitions. If two tasks ti and tj are running on different virtual partitions
and there is data transmission association between tasks, the calculation formula of data

transmission time TT eij
� �

is as follows: dti
b , where dti is the data file size output from

task ti to task tj, and b is the average bandwidth of data transmission within the aircraft.
If two tasks ti and tj are scheduled to run on the same virtual partition tj, the data
transfer time between them is zero. In the research work of this paper, the scheduling
scheme between virtual partitions on the same computing resource is Time Shared or
Space Shared strategy, and the intra-partition tasks uses the first-come-first-served
(FCFS) strategy while scheduling between processes.

Fig. 2. The model diagram of calculation resource
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3.2 Computing Platform Model

The computing platform model in this paper is similar to the one used in literature [20],
as shown in Fig. 3. The resources of the aircraft provide services externally with
virtualized service resources, which mainly involve three stages in planning workflow
task execution. The first stage completes resource provisioning, which involves iden-
tifying and mapping the number of computational resources required to perform this
task and the configuration of the VmPartition. The second stage dynamically creates
the VmPartition onto the appropriate physical computing resources and generates an
appropriate schedule for task execution in that partition. The third stage is a process
that exists from the start of operation of the aircraft to the end of the aircraft, that is, to
scan whether the physical computing resources of the aircraft fail. In case of failure, the
failure resource processing module is called to implement the emergency plan to ensure
the execution of subsequent tasks.

Workflow tasks submitted to the computing platform contain associated high-
quality service (QOS) requirements, such as deadline constraints and resource speci-
fication requests. The deadline limit refers to the latest completion time for executing
the workflow, and the resource specification required to perform the task refers to the
computing resource requirements (such as memory, computing power, I/O, etc.). Based
on these input requests, the Workflow Management System (WMS) automatically
identifies the required resources and maps the tasks to the corresponding VmPartition.

WMS is mainly composed of three modules: resource allocation mapping module,
workflow scheduling module and execution management module. Resource allocation
mapping module consists of two sub-modules: resource capability assessment module
and resource mapping management module. Resource capacity assessment module
analyzes workflow structure to determine the number of resource requests, and resource
mapping management module maps the corresponding resource requests to the cor-
responding VmPartition. Workflow scheduling management module and execution
management module work together to dynamically create VmPartition on aircraft
physical computing resources. Workflow scheduling management module mainly
involves the actual scheduling of any workflow node to the VmPartition execution. The
execution management module is used to track the execution status of the task node to
record the Real Start Time (RST) and Real Finish Time (RFT) of the task node and
update the status of resource information. This computing model is task-driven and the
size of the fetched resources may vary at runtime.
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The aircraft is mainly composed of resource scanning module, fault resource
processing module and virtual partition resource allocation module to manage various
computing resource information of the aircraft. The resource scanning module works in
cooperation with the fault resource processing module. When the fault resource is
scanned, the fault resource processing module executes the corresponding emergency
plan. The virtual partition resource allocation module actually creates/destroys
VmPartition on the physical computing resources.

3.3 Task Model

In the field of real aviation, the combat mission of aircraft is realized step by step. As
shown in Fig. 4, when the aircraft strikes the target, it must first discover the target,
identify and track the target, and then carry out anti-reconnaissance to prevent its
exposure in the process of tracking. When a series of pre-task execution is completed,
the target is hit. In the execution of a series of predecessor tasks, there are data transfer
association requests between the subtasks, and subsequent tasks cannot begin execution
until all prior tasks have been completed. In addition, task nodes that are simultane-
ously executable can be executed concurrently.

Fig. 4. Operational task execution diagram of the aircraft.

Fig. 3. Computing platform model diagram
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According to the description above, we abstract similar aviation missions into a
workflow task model, as shown in Fig. 5, a workflow application W = (T, E) be
modeled as a directed acyclic graph (DAG), where T ¼ t1; t2; . . .; tnf g means task node
set, E is a set of tasks with data transmission between or control set of dependencies to
the edge. Dependency eij is a set of priority constraints of task ðti; tjÞ, where ti; tj 2 T
and ti 6¼ tj, indicate that task tj (subtask) cannot start execution before the end of task ti
(parent task) execution, because there are relevant data transfer dependencies between
task ti and task tj. Subtask nodes are not able to start executing until all parent task
nodes have finished executing and all dependencies (including data transfer and con-
trol) have been preprocessed. The workflow deadline D is defined as the latest exe-
cution time limit for executing the workflow. In this paper, each task node is modeled
as a node with a fixed number of instructions, and each node has a corresponding
output data file size. As shown in the figure, each directed edge represents the time
required to transfer data files between tasks.

4 Efficient Task Scheduling Algorithm Under DIMA
Avionics System

Based on the computing resources, computing platform and task model of DIMA
avionics system in Sect. 4, this section introduces an efficient task scheduling algo-
rithm. Firstly, several variables used in the algorithm and their meanings are intro-
duced, as shown in Table 1.

Fig. 5. Workflow task model diagram
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The operational equations of the above basic mathematical symbols are shown as
follows, some of which are similar to literature [20]:

(1) Firstly, the proposed algorithm should satisfy the real-time requirement of
avionics system. It is necessary to find a scheduling scheme for workflow W and
optimize the total completion time TCT (Total Completed Time) of workflow
W under the limitation of deadline D. The optimization objective is shown in
Eq. (1).

Optimize TCT ¼ max
ti 2 W

RFT tið Þð Þf g; TCT � D ð1Þ

Where TCT is the total completion time of workflow W, ti is the task node in W,
and RFT (ti is the actual completion time of task node ti.

(2) MET tið Þ: the minimum execution time of task ti, assuming that task ti can be
executed on VmPartitiontype and has a minimum execution time ET ti;ð
VmPartitionvÞ on a certain VmPartition type. The calculation formula is shown
in (2):

MET tið Þ ¼ min
VmPartitionv 2 VmPartitiontype

ET ti;VmPartitionvð Þf g ð2Þ

(3) TT eij
� �

: the time for transferring data between task ti and task tj, assuming that
task ti and task tj are assigned to execute on different VmPartition. The average
bandwidth between the VmPartition of the aircraft is b, the data size from task ti

Table 1. Definition of basic mathematical symbols

Symbol Meaning

D Workflow W deadline
T ti;VmPartitionvð Þ Task ti execution time on virtual partition type VmPartitionv
TT eikð Þ Data transfer time between task ti and task tk
MET tið Þ The minimum execution time for task ti
tentry

� �
A task without a parent node

texitf g A task without child nodes
EST tið Þ The earliest execution time for task ti
EFT tið Þ The earliest time task ti ends
RST tið Þ Task ti actually starts execution time
RFT tið Þ Task ti actual end time
EXST tið Þ Task ti is expected to start time
EXFT tið Þ Task ti expected end time
LST tið Þ Task ti starts execution at the latest
LFT tið Þ Task ti end at the latest
MET_W Workflow W minimum execution time
RATE Workflow W completion time optimization rate
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to task tj is dti , and the calculation formula of data transmission time is shown
in (3):

TT eij
� � ¼ dti

b
ð3Þ

(4) EST tið Þ: the earliest start time of task ti, when the tasks of the predecessor nodes
of task ti are all executed with the minimum execution time, and after the
relevant data dependence transferring to ti, ti can start execution. The calculation
formula is shown in (4):

EST tentry
� � ¼ 0

EST tið Þ ¼ max

tp 2 ti0sparent
ESTðtpÞþMET ðtp

� �þ TT epi
� �� �

8><
>:

ð4Þ

(5) EFT tið Þ: the earliest end time of task ti, the calculation formula is shown in (5):

EFT tið Þ ¼ EST tið ÞþMET tið Þ ð5Þ

(6) EXFT tið Þ: the expected end time of task ti, assuming that the number of
scheduled tasks at the same level is N, the minimum execution time of all task
nodes are at the same level. The calculation formula is shown in (6):

EXFT tið Þ ¼ EXST tið Þþ
PN

j¼1 MET tj
� �� �

N
ð6Þ

(7) EXST tið Þ: the expected start time of task ti, which is defined as the expected start
time that ti can start execution after all previous task nodes of task ti have been
scheduled and executed. The calculation formula is shown in (7):

EXST tentry
� � ¼ 0

EXST tið Þ ¼ max

tp 2 ti0sparent
EXFT tp

� �þ TT epi
� �� �

8><
>:

ð7Þ

(8) LFT tið Þ: the latest completion time of task ti with the limit of workflow deadline
D. The calculation formula is shown in (8):

LFT texitð Þ ¼ D

LFT tið Þ ¼ min

tc 2 ti0schildren
LFT tcð Þ �MET tcð Þ � TT eicð Þf g

8><
>:

ð8Þ

(9) LST tið Þ: the latest start time of task ti with the limit of workflow deadline D. The
calculation formula is shown in (9):
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LST tið Þ ¼ LFT tið Þ �MET tið Þ ð9Þ

(10) MET_W: The minimum execution time of workflow W, which is defined as the
total time required when all task nodes on the critical path (the longest execution
path) complete execution on the fastest virtual machine. The calculation formula
is shown in (10):

MET W ¼ max
ti 2 W

EFT tið Þf g ð10Þ

(11) RATE: the optimization rate of completion time with the constraint of deadline
D. The calculation formula is shown in Eq. (11):

RATE ¼ TET � D
D

ð11Þ

4.1 Preprocessing Algorithm

In order to save the time of data transfer between tasks, the serial task nodes in
workflow W need to be combined into one task node in advance. The pre-processing
shown in Algorithm 1, is implemented by tksqueue, which firstly queues the entry task,
queues all its sub-task nodes when it exits the queue, merges the existing serial
task nodes, and changes the direction of the merged task node and data transmission
time.
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4.2 Resource Allocation Mapping Algorithm

The resource allocation mapping algorithm is used to allocate VmPartition for task
mapping at the same level in workflow W. In addition, the corresponding task node
binding is assigned to VmPartition.

Specific resource allocation algorithm OptimalVmPartitionMapping, shown in
Algorithm 2, firstly calculates the average expected with hierarchical task execution
time and start time by using Eqs. (5) and (6) with AverageExcutionTime method (line
2). The allocateResourceType method (line 8) is then used to allocate appropriate
computing resources to each task using the expected end time and expected start time
difference of the task. When mapping VmPartition resource configuration, it may occur
that the expected end time of the task node is greater than the expected start time, that
is, EXFT � EXST. In this case, it is unreasonable to continue scheduling the task at
the current expected end time. Therefore, we need to appropriately extend the expected
end time of the task node to appropriately shrink the VmPartition resource configu-
ration of the task node.

4.3 Ewsa Algorithm

When workflow W is in the existing vehicle scheduling on computing resources
platform, first initializes the workflow W with the Initialize method, then respectively
using Eqs. (2), (3) and (4) to calculate the minimum execution time MET in the
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workflow W task node, the data transmission time TT and the earliest start time EST,
and identify critical path task node in workflow W. Equation (10) is used to calculate
the minimum execution time in the workflow W, and judge the workflow scheduling
can be. The Algorithm is shown in Algorithm 3.

When it is judged that the workflow W can be scheduled within the deadline D, the
Pre-processing algorithm is used to pre-process the workflow. Equations (2), (8) and
(9) were respectively used to update the task nodes MET, LFT and LST in workflow
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W. The scheduling hierarchy of each task node in workflow task W and corresponding
task nodes at the same level are analyzed by analysis Level method. The resource
allocation mapping algorithm OptimaVmPartitionMappin maps one type of VmParti-
tion separately to generate the corresponding expected scheduling plan. The Shed-
uleAviationCloudlet method (lines 14–20) is in the task scheduling management
module, which performs the actual task scheduling and works with the execution
manager to dynamically create the corresponding task’s VmPartition on the aircraft’s
computing resources and execute the task scheduling on VmPartition. During this
process, the execution manager monitors the execution status of the scheduling task,
and records the actual start time RST and the actual end time RFT of the task, which are
used by the scheduling manager to decide the scheduling plan for the next task. When
the execution manager finds that the task has finished executing, it works with the
scheduling manager to destroy the task’s VmPartition and release system resources.

When the task scheduling management module dynamically creates the VmParti-
tion where the task resides, there may be insufficient computing resources available for
the aircraft to meet VmPartition requirements. At this point, we need to dynamically
adjust the configuration type of VmPartition based on the available computing
resources of the current aircraft. In the process of adjusting the virtual partition con-
figuration VmPartition, the following conditions must be met:

(1) Task ti executing on VmPartition is expected to finish no later than task ti, that is,
EXFT(ti) � LFT(ti).

(2) Task ti binded on VmPartition executes on virtual partitions, there is no such node
tc subtasks, tc 2 t0i s children, making the expected end time of tc is greater than the
start time at the latest.

4.4 Task Migration Wma Algorithm

The fault resource processing module works together with the resource scanning
module. When the resource scanning module finds that there is a fault computing
resource, VmPartition on the fault resource is sent to the fault resource processing
module. The fault resource processing module calls the migration algorithm to realize
task migration and reorganization, as shown in Algorithm 4.
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This algorithm realizes VmPartition movement by traversing (lines 5–9) other
computing resources available to the aircraft. If it finds the computing resource Ri

available to accommodate VmPartition’s request, move VmPartition directly to the
computing resource Ri and restart the task on VmPartition.

If it traverses all available computing resources and find that no computing
resources are suitable for VmPartition’s resource requirements, we select part of the
virtual partition in a preemptive manner to temporarily suspend and join the waiting
queue. As shown in 12–16 lines, we select a virtual partitions with selectVmParti-
tionMigrateChoice method, which realizes two selection strategy as follows:

(1) Select the selectVmPartition in the compute resource Rj that occupies the least
computing resources and is applicable.

(2) select the task node in the compute resource Rj with the longest execution end
time and is applicable for selectVmPartition.
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During processing the task migration, whenever the task node finishes execution
and releases the system computing resources, the fault resource processing module will
give priority to the tasks pending execution queue to ensure that the suspended tasks
can be executed as soon as possible. Although the migration and reorganization of
tasks in a preemptive way will lead to the delay of the entire workflow W, it can ensure
that the aircraft can still perform the workflow tasks normally in the case of resource
failure. Simulation results show that in workflow with relatively simple relational
complexity, the probability of delayed task caused by failure of fault resource is
obvious. Moreover, delay rates are relatively low or even better in complex workflows.

5 Experimental Simulation and Result Analysis

In the paper, we use the simulation tool CloudSim [11] to build the resource model,
task model and computing platform model for the proposed distributed integrated
modular avionics DIMA system. the proposed algorithm EWSA is compared with the
algorithm JIT-C. Moreover, in order to evaluate the performance of WMA algorithm,
we set different time and number of fault resources of the aircraft in the simulation
experiment.

5.1 Simulation Experiment Configuration Ewsa Algorithm

In the simulation environment of CloudSim, we assume that the computing resources
of the aircraft have both isomorphic and heterogeneous types. The isomorphic com-
puting resources are consistent with all kinds of computing resources processing
capacity and memory configuration within the aircraft. For heterogeneous computing
resources, the internal computing resources of the aircraft are inconsistent and the
processing capabilities are different. The isomorphic computing resource information is
shown in Table 2, and the other is shown in Table 3. We assume that there are 10
physical computing resources inside an aircraft, and the average network bandwidth
between internal virtual partitions VmPartition is 200 MBps. In addition, as shown in
Table 4, this paper sets up virtual partition VmPartition of three different reference
configuration types in the simulation process. At the same time, this paper sets the
physical computing resources to scan time interval of 200 s.

Table 2. Isomorphic computing resource information table

Quantity Cores Capacity (GHz) RAM (GB)

10 2 4 8
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When evaluating algorithm performance, you need to define an expiration date for
each workflow W. If the deadline is very loose, there is enough time to schedule the
workflow in real time under the constraints of the deadline. Therefore, it is necessary to
comprehensively evaluate the performance analysis of the algorithm for all possible
periods: emergency, moderate and loose deadlines.

Thus, we use the rules in Eq. (12) to set the deadline [20]:

Deadline D ¼ ð1 þ lÞ � MET W ð12Þ

Among them, MET_W is the shortest execution time of the workflow, and l is the
deadline date factor, which is defined as follows:

Strict DeadLines: 0� l\1:5
Moderate DeadLines: 1:5� l\3
Relaxed DeadLines: 3� l\4:5

During the experiment, the workflow is generated by random values. The number
of task node instructions is among the range of [2.5 � 105, 5 � 105], and the data size
between task nodes is among the range of [2 � 102 MB, 5 � 102 MB]. The workflow
W is randomly generated, which has one or more ingress nodes and one egress node.
The workflow W is incremented with the number of its task nodes among [5, 10, 15,
20, 25, 30, 35], and its workflow relationship is more and more complex. The workflow
algorithm with the same task node performs 100 times each time, and we take the
average to evaluate the performance of the algorithm.

Table 3. Heterogeneous computing resource information table

Serial number Cores Capacity (GHz) RAM (GB)

#1 1 2 4
#2 1 4 8
#3 1 6 16
#4 2 4 8
#5 2 8 16
#6 2 12 32
#7 4 8 16
#8 4 16 32
#9 8 16 32
#10 8 32 64

Table 4. VmPartition baseline configuration type

VmPartition type Cores Capacity (GHz) RAM (GB) Storage (GB)

Small 1 1 1.7 160
Medium 1 2 3.75 410
Large 2 4 7.5 840
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5.2 Comparison of Experimental Results

In this paper, we compare EWSA with JIT-C in terms of the average completion time
of workflows, the rate of successful scheduling completion and the rate of optimization.
In addition, by setting different time and number of fault resources of the aircraft, we
evaluate the performance of the WMA algorithm in terms of the rate of the task
migration delay.

(1) Comparison of average completion time of workflows of different algorithms

Figure 6 is the comparison of the average completion time of different algorithms
under different task numbers. As the number of workflow task nodes increases, the
average completion time also increases, and the results show that the EWSA algorithm
is always slightly better than the JIT-C algorithm. The reason is that when the EWSA
algorithm schedules the workflow task nodes, the task nodes on the critical path acquire
more computing resources by evaluating the amount of resources required for each
level of the task node. At the same time, tasks on non-critical paths get longer exe-
cution time without affecting the execution of the next-level task nodes. The EWSA
algorithm optimizes the rational allocation of resources for the entire workflow under
the distributed integrated modular DIMA avionics system, thereby reducing the exe-
cution time of critical paths.

(2) Comparison of successful scheduling completion rate and optimization rate of
different algorithms

We set the deadline limit of workflow tasks under different constraints as STRICT,
MODERATE, RELAXED, to evaluate the performance of the algorithm. As shown in
Table 5, JIT-C algorithm meets real-time requirements of workflow tasks under
STRICT constraints, and the successful scheduling rate is about 75%, while EWSA

Fig. 6. Workflow completion time

DIMA Resource Allocation and Scheduling Algorithm 193



algorithm is as high as 90%. This is because EWSA algorithm dynamically adjusts the
resource requests of workflow task nodes based on the number of resources available
on the current platform, and macroscopically enables workflow task nodes to meet the
requirements every time they request resources. Both JIT-C algorithm and EWSA
algorithm can achieve 100% under MODERATE and RELAXED deadline constraint,
caused by the extended deadline limit that leads workflow tasks to having more relaxed
time to implement scheduling on limited resources without delay.

The rate of optimization is calculated according to the deadline defined by the
workflow, and the calculation formula is shown in Eq. (11). In order to see the opti-
mization effect of workflow completion time more intuitively, we present the opti-
mization results in the form of bar chart, which is shown in Fig. 7. The optimization
rate of EWSA algorithm is higher about 10% than that of JIT-C algorithm under
STRICT constraints. Under MODERATE and RELAXED constraints, they are nearly
stable and the optimization rate of EWSA algorithm is about 3% higher than that of
JIT-C algorithm. As the deadline constraint is more relaxed, JIT-C algorithm can
always find the appropriate resources while EWSA algorithm optimization degree is
close to saturation. In addition, with the increase of the number of workflow task nodes,
the complexity of workflow relationship becomes higher and higher. Many tasks are
close to serial execution, and the concurrent execution rate is lower, resulting in the
lower degree of optimization.

Table 5. Completion rate and optimization rate of workflow successful scheduling

Tasks deadline limit Workflow
5 10 15 20 25 30

STRICT JIT-C Success rate 78% 76% 74% 73% 74% 75%
Optimize rate 5% 5% 5% 5% 4% 5%

EWSA Success rate 90% 89% 91% 86% 88% 87%
Optimize rate 17% 14% 15% 15% 12% 12%

MODERATE JIT-C Success rate 100% 100% 100% 100% 100% 100%
Optimize rate 41% 42% 42% 42% 41% 42%

EWSA Success rate 100% 100% 100% 100% 100% 100%
Optimize rate 44% 45% 44% 45% 46% 44%

RELAXED JIT-C Success rate 100% 100% 100% 100% 100% 100%
Optimize rate 70% 70% 70% 69% 67% 68%

EWSA Success rate 100% 100% 100% 100% 100% 100%
Optimize rate 70% 72% 70% 70% 70% 70%
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(3) Migration task delay rate of wma algorithm

We set different time and numbers of failure resources of the aircraft in our sim-
ulation to verify the efficiency of task migration and reorganization, and to evaluate the
performance of WMA algorithm. The computational resource failure time is set as
400 s after the simulation is started, and the number of computational resource failures
is randomly selected among [1, 8]. Experimental results, in Fig. 8, show that when the
number of workflow task nodes is small and their relationship is simple, the rate of
workflow delay is high at about −11%. As the workflow task node number increases,
the relationship is more and more complex, thus the delay rate is gradually decreasing,
the completion time optimized slightly at around 2%. Because the more complex the
relationship between task nodes within the workflow, the number of concurrent exe-
cution of task nodes within the same hierarchy decreases, making the execution of the
entire workflow task nodes close to serial.

Fig. 8. Migration task delay rate

Fig. 7. Completion time optimization rate
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6 Conclusion and Future Work

Under the current trend of integrated modularization of avionics systems, by analyzing
the characteristics of the future distributed avionics system DIMA architecture model,
the paper focuses on the task scheduling and resource allocation of DIMA and uses
simulation tool CloudSim to model its computing resources, tasks and computing
platforms. Based on the established model, an efficient workflow-based task scheduling
algorithm EWSA is proposed and compared with JIT-C algorithm, which shows better
performance in terms of average workflow completion time and the rate of optimiza-
tion. In addition, considering the failure in the process of executing the mission, we
proposed a mission migration and reorganization algorithm WMA and set different
time and number of fault resources of the aircraft in the simulation experiment to
evaluate the performance of WMA algorithm.

The related scheduling algorithms and models proposed in the paper are currently
applicable to single aircraft platforms. Considering multi-aircrafts cluster is the next
research direction.
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