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Abstract. Recently, the analysis and recognition of each appliance’s
energy consumption are fundamental in smart homes and smart build-
ings systems. Our paper presents a novel Non-Intrusive Load Monitoring
(NILM) recognition method based on Bayesian Non-Parametric (BNP)
learning approach to solve the problem of energy disaggregation for smart
Solar Home System (SHS). Several researches assumed that there is prior
information about the household appliances in order to restrict those that
do not hold the maximum expectation for inference. Therefore, to deal
with the unknown number of electrical appliances in a SHS, we have
adapted a dynamic Infinite Factorial Hidden Markov Model (IFHMM)
-based Infinite Factorial Finite State Machine (IFFSM) to our NILM
times-series modeling as an unsupervised BNP learning method. Our sug-
gested method can grip with few or nappropriate learning data as well as
to standardize electrical appliance modeling. Our proposed method out-
performs FHMM-based FSM modeling results illustrated in literature.

Keywords: Bayesian Non-Parametric (BNP) · Energy
disaggregation · Infinite Factorial Finite State Machine (IFFSM) ·
Infinite Factorial Hidden Markov Model (IFHMM) · Non-Intrusive
Load Monitoring (NILM) · Solar Home System (SHS)

1 Introduction

Nowadays, many countries have widely adopted renewable energy sources to
reduce the adverse effects of traditional fossil-fueled electricity generation on the
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environment and cut down on their bills. The social and technical developments,
as well as economic profits can be ensured by energy saving and Internet of
Things (IoT) technologies improvements especially for renewable energy.

In fact, understanding daily activities and energy consumption behaviors
can contributes to energy bills reducing, a fine management and an optimal
usage of electrical appliances in a Solar Home System (SHS). IoT and smart
home technologies are able to guarantee an efficient management of energy and
can satisfy the SHS implementation requirements. Furthermore, sensor-based
technologies and data science permit the solar field automation for electricity
saving and participate for green energy awards. Thanks to IoT technology, smart
metering infrastructure, sensors and analytics tools, it is possible to connect
solar panels into one system and manage and remote the smart home via mobile
or Web applications. Our SHS described in Fig. 1 is extensively considered to
lead to energy efficiency goals that require the ability to monitor electric energy
appliances via smart meter technology. This smart device promotes aggregated
electric energy signal acquisition and ingestion before analysis and data mining.

Currently, there has been a wide interest in the field of Non-Intrusive Load
Monitoring (NILM), which involves several methods for monitoring electric
appliances and providing appropriate notifications on usage patterns to home-
owners. NILM approach gives rise to energy disaggregation by discovering the
energy behavior of each household appliance using a single smart meter.

DC current

AC current

Data flow

Power  flow

Ba ery

Charger 
controller

Inverter

Smart meter

Household appliances

PV solar panel

Ba ery monitor

Monitoring system

Wireless communica on

Fig. 1. Solar home system based on smart metering for an efficient green energy
management
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Since the number and the states of electrical appliances differ from one house-
hold to another, several researches assumed that there is prior information about
the household appliances in order to restrict those that do not hold the maxi-
mum expectation for inference. One of the key areas of the NILM study is the
use of unsupervised learning for energy disaggregation which can be an efficient
solution to the problem of dependence on a set of training data. Applying unsu-
pervised learning in NILM can reduce the IT complexity of smart homes solution
deployment.

In this paper, we suggest a BNP model as an unsupervised learning method
to deal with the problem of energy disaggregation with unknown number of elec-
trical appliances in a SHS. We may apply this unsupervised model to solve the
problem of a few or an inappropriate learning data as well as to standardize the
electrical appliance modeling. To address the NILM challenge for energy disag-
gregation based on unsupervised learning, we have implemented our suggested
Infinite Factorial Finite State Machine (IFFSM) building an Infinite Factorial
Hidden Markov Model (IFHMM). This practical method contributes to inform
homeowners about each household appliances energy consumption. The results
of our proposed BNP model are compared with the Factorial Hidden Markov
Model (FHMM) model results illustrated in [32].

The rest of this paper is organized as follows. Section 2 discuss some related
work. Section 3 exposes our proposed method focusing on the adaptation of time
series modeling by IFFSM to the energy disaggregation problem. The source sep-
aration technique using IFHMM-based BNP model, the inference algorithms as
well as their different related process and models are detailed in followed subsec-
tions. In Sect. 4, we discuss the experimental results of the suggested method.
The conclusions and perspective work are given in Sect. 5.

2 Related Work

According to Hart [20], indirect monitoring methods can measure the non-
electrical characteristics, from which the power demand of each device is
deduced. Device labeling is one of those indirect methods reported in the lit-
erature. The signals are detected by a central hub which estimates the energy
consumption of each device. Nevertheless, this approach requires the character-
ization of each device as well as the installation of a central signature detec-
tor. This method is expensive and takes a long time to install. For this reason,
researchers have been thinking of Wireless Sensor Network (WSN) to identify
the power consumed by each device. These sensors make it possible to monitor
the human behavior and to control the functioning of the device according to
the indicators brought on the temperature, the luminosity, the movements of
the inhabitants [28]. This approach also requires the installation of several sen-
sors which reflects the same high cost constraint. In addition, the Conditional
Demand Analysis (CDA) technique is emphasized since it does not require the
installation of additional meters. However, the CDA requires a large partici-
pant base, in which each participant must complete a detailed questionnaire and
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unusual cases will not be examined. In order to overcome the high cost and intru-
sive complexity of the WSN and its installation, some emphasis has shifted to
NILM methods which automatically deduce the energy signals from each device
by a single sensor at a single measurement point.

Since then, several research work has been suggested with improvements to
the initial design and different approaches. Taking advantage of NILM app-
roach to infer individual appliance’s consumption through a smart meter, sev-
eral researches have demonstrated its utility for appliance classification, demand
response, energy feedback, as well as activity recognition [45,49,54]. Other work
that incorporates consumer behavior information has begun to explore learning
algorithms that operate on a large number of samples obtained from many homes
over extended periods of time. The real-time identification of faulty appliance
behavior is a desired technique to save energy by analyzing wasted energy rea-
sons as well as servicing appliance in failure [47]. Much work has been developed
for use with NILM systems based on electrical signature detection and classifi-
cation utilizing different machine learning as shown in Table 1 that summarizes
the state of art of some NILM techniques and their characterizations.

As a non-parametric machine learning, the Hidden Markov Model (HMM)
was used to describe and identify electrical uses by modeling the combination of
stationary stochastic processes that translate the steady-state power level of the
different combined waveforms into the total load curve [55]. As an extended ver-
sion of HMM model, FHMM model was widely used for NILM approach. Kolter
et al. [32] proposed a device-level power sub-meter learning model using the
prediction maximization technique and then performed rough identification by
Gibbs sampling. Such model does not tolerate non-stationary noise, and there-
fore requires training data to be collected on all devices in the home. For a
Conditional FHMM (CFHMM), the state of each hidden variable is dependent
on the state of each variable of all other Markov strings in the previous time
interval [28].

The Finite State Machine (FSM) is an extension of the HMM model that has
a set of input and output vectors, a transition matrix that considers the current
input and previous state and returns the future state, as well as a send matrix
that treats the input and the current state and returns the output. The FSM
has been used as an unsupervised modelling framework for NILM in multiple
research [24,39]. Under this model, the future hidden state depends only on a
finite number of previous entries.

The source separation problem was closely related to independent component
analysis (ICA) based on Discriminative Disaggregation Sparse Coding (DDSC)
or Source-separation via Tensor and Matrix Factorizations (STMF) methods.
Kolter [30] suggested a NILM based on unsupervised machine learning structured
by the DDSC algorithm that builds a base matrix dictionary corresponding to a
small subset of device types that contains devices with similar functionality. In
order to overcome the limitations of the DDSC learning model which does not
take into account the dependence between the devices, Figueiredo [16] presented
a new model based on the separation of the global electrical signal sources by the
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Table 1. State of art of different NILM based on non-parametric techniques via super-
vised and unsupervised machine learning

Acronyms References NILM

features

Network Sampling

frequency

Simpling

interval

Event-

based

Scal-

ability

Disaggregation

accuracy

Applications

DDSC [30] Source

separation

PLC 0.1Hz 15min No No + The vast

majority of

appliances

STMF [16,46] Source

separation

PLC 0.1Hz 15min No No ++ The vast

majority of

appliances

CO [20] Steady

states

HAN 0.1 KHz 10 s–1 s No No ++ Appliances with

power> 50W

HMM [29,33] Steady

states

HAN 0.1 KHz 10 s–1 s No No +++ Appliances with

power> 50W

NN [7,49] Steady

states

HAN 0.1 KHz 10 s–1 s – Yes +++ Appliances with

power> 50W

DL [26,27,34] Steady

states

HAN 0.1 KHz 10 s–1 s – Yes +++++ Appliances with

power> 50W

FHMM [31] Steady

states

HAN 0.1 KHz 10 s–1 s No No +++ Appliances with

power> 50W

AFHMM [31] Steady

states

HAN 0.1 KHz 10 s–1 s No No +++ Appliances with

power> 50W

DTW [23,40] Steady

states

Transient

states

HAN 0.1 KHz 10 s–1 s Yes No +++++ Appliances with

power> 50W

CFHMM [29] Steady

states

Transient

states

WSN 0.1KHz–

1KHz

1 s–1ms No No ++++ Appliances with

power> 50W

RF [35,42] Steady

states

Transient

states

WSN 1KHz–

20KHz

1ms–

50µs

No Yes +++++ Appliances with

power> 50W

DT [19] Steady

states

Transient

states

WSN 1KHz–

20KHz

1ms–

50µs

No Yes +++++ Appliances with

power> 50W

CDM [4] Steady

states

Transient

states

WSN 1KHz–

100KHz

1ms–

10ms

Yes Yes ++++++ Appliances with

power> 50W

SVM [10] Steady

states

Transient

states

WSN 1KHz–

100KHz

1ms–

10ms

Yes Yes +++++++ Appliances with

power> 50W

NFL [11,12] Steady

states

Transient

states

WSN 1KHz–

100KHz

1ms–

10ms

Yes Yes +++++++ Appliances with

power> 50W

MLC [50] Steady

states

Transient

states

WSN 1KHz–

100KHz

1ms–

10ms

Yes Yes +++++++ Appliances with

power> 50W

GSP [21,56] Steady

states

Transient

states

WSN 1KHz–

100KHz

1ms–

10ms

Yes Yes +++++++ Appliances with

power> 50W

EMI [1] WSN 100KHz 10ms Yes No ++++++++ Some appliance

models

GMM [3] Steady

states

Transient

states

WSN 1KHz–

100KHz

1ms–

10ms

Yes Yes +++++++ Appliances with

power> 50W
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factorization in non-negative tensors. This method has generated great interest
in the concept of blind separation of sources. However, these tow methods assume
a fixed and known number of latent sources.

Many other unsupervised machine learning have been introduced in recent
research work to address NILM requirements [22,41]. NILM based on Bayesian
Non-Parametrics (BNP) dynamical system is introduced to solve the problem of
inferring the operational state of individual electrical appliances though aggre-
gate measurements. An unbiased algorithm for neural variational identification
and filtering was investigated in [36]. BNP techniques are also used in differ-
ent fields, such as driving-styles analysis and recognition for smart transporta-
tion and vehicle calibration [52], intelligent dynamic spectrum access notifica-
tion in cognitive radio environments [1,2,17,51,53], detection and estimation
of sparse acoustic channels [9,25], video and image segmentation, reconstruc-
tion and recognition [13,15,43,44], data clustering and classification [6,14,37],
etc. Numerous surveys have been carried out to describe the different learning
models and the extractions features methods for NILM and home monitoring
systems [3,8]. The advantages of the BNP models are that they can take a com-
plex problem and create a model describing the appropriate solution. Due to
its non-parametric nature with infinite memory chains length bonus, BNP mod-
els are able to deal with an unbounded number of states. Our proposed NILM
method focuses on BNP models which are used most often in source separation
problem.

3 Adaptation of Time Series Modeling by IFFSM to the
Energy Disaggregation Problem

The approach adopted in our energy disaggregation problem is summarized in
Fig. 2 which introduces the NILM approach based on an automatic unsupervised
learning. In particular, the sources separation method allowing the processing
of data from the smart meter, as well as the use of BNP model in conjunc-
tion with the adopted automatic learning method. Our proposed approach for
energy disaggregation problem is described in detail in the following sections
and subsections.

3.1 Source Separation Using IFHMM-based BNP Model

In our study, the FSM relies on a finite memory denoted L and a finite set
denoted X . Each new entry xt is able to modify the FSM state as well as the
observed output. The future state and the output depend only on the current
state and the input. The FSM can be modeled as single HMM where the vector
containing the last n inputs can characterize each state. Making an inference on
this model has a O(T |S|2L) complexity, but it can be reduced to O(T |S|L+1)
by exploiting the suggested IFFSM machine learning based on IFHMM model
that requires approximation inference methods to avoid dependence on memory
length L.
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Fig. 2. Adopted NILM approach based on source separation

In the proposed IFHMM model, we assume binary input variables xtn = 0 for
t ≤ 0. This model can be generalized to obtain additional properties concerning
the fundamental structure of the model. We consider two methods for general-
ization that our inference algorithm can handle with little or no modifications.
First, we assume that the input vectors xtk belong to a finite set X, so that we
can give |X|L possible states in each parallel Markov chain. However, we can
also consider that the set X is a countable infinite set, which implies that the
input vectors do not necessarily contain discrete values. The resulting model is
no longer an FSM model, but an infinite factorial model in which the hidden
variables affect present observations, as well as future observations [18].

To solve the energy disaggregation problem using the suggested unsuper-
vised learning method, we assume that the observation yt represents a sample of
the general smart meter signal, which depends on the signals generated by the
different active electrical appliances. We suppose that there is theoretically an
infinite number of sources that display the observed sequence {yt}T

t=i, where T
is the number of time steps. Every source is modeled by a dynamic system model
wherein the input symbol correspond to the n′th source at time t is denoted by
xtn ∈ X setting the first-order Markov chain, where X may be a discrete or
continuous state space.

Each element of the auxiliary binary matrix S, denoted by stn ∈ {0, 1},
reveals the source state (active or inactive) at time instant t, and can be expressed
as:

xtn|stn ∼
{

δ0(xtn) if stn = 0 ;
U(X ) if stn = 1 (1)
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where delta0(.) designates the Dirac measure at t = 0, and U(X ) is the uniform
law on the set X . The entries xtn are independent and identically distributed
conditionally on the auxiliary variables stn.

Therefore, the proposed dynamic model depends basically on this conditional
probability p(xtn|stn, x(t−1)n) > with stn = 0 for T ≤ 0. This transition model
performs the active states xtn evolving over-time as dynamics of the global smart
meter signal. During the multi-channel propagation of the individual signals, the
electric waves can be reflected and that may cause reception delays. Considering
this memory effect, we can note that the hidden state xtn affects the observations
yt as well as the last future observations yt+1 . . . yt+L−1 if stn �= 0, where L
denotes the last states of overall Markov chains.

The expression of yt likelihood is as follows:

p(yt|X ,S) = p(yt|{xtn, stn, x(t−1)n, s(t−1)n, · · · x(t−L+1)n, s(t−L+1)n}N
n=1) (2)

The considered IFFSM graphic model is shown in Fig. 3.

bn
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s1n

x1n

s2n

x2n

sTn
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. . . 

. . . 

y1 y2 yT

α

. . . 

n = 1, ..., ∞ 

β0, β1

σy
2

Fig. 3. IFFSM modeling with memory length L = 2.

Markov Indian Buffet Process. Among the BNP models, the Markov Indian
Buffet Process (MIBP) is the fundamental building block of the Infinite Factorial
Hidden Markov Model (IFHMM) as an IFFSM. To process an infinite number
of sources, the binary matrix S is distributed as MlBP priors with distribution
parameters α, β0, β1 [48] as:

S ∼ lBP (α, β0, β1) (3)

This MlBP prior distribution ensures that, for any finite number of time instant
T , only a finite number of Markov chain N become active, while the rest of them
remain in the zero state without affecting the observations.

We consider the total consumption of the household, the energy disaggrega-
tion concept is to predict the number of the active electrical appliances as well
as their corresponding consumption. We treat a 24-hour segment for 6 different



164 K. Zaouali et al.

houses. Each electrical appliance holds 4 different states: one inactive state and
3 active states pointing different values of energy consumption.

A symmetric Dirichlet a prior distribution is placed on the vectors of the tran-
sition probabilities as an

i Dirichlet(1), where an
ij = p(xtn = j|stn = 1, x(t−1)n =

i, s(t−1)n. The energy consumption of the electrical appliance n at the time
instant t is null when xtn = 0 (stn = 0), and the total energy consumption
is given by:

yt =
N∑

n=1

Pn
xtn

+ εt (4)

where εt ∼ N (0, σ2
yI) represents additive Gaussian noise with the hyper-

parameter σ2
y is the noise variance and I is the identity matrix.

To get a maximum accuracy, we associate to each electrical appliance an
estimated chain. Thus, the accuracy of each estimated appliance consumption
evaluating the performance of our method is determined by:

accuracy = 1 −
∑T

t=1

∑N
n=1 |x(n)

t − x̂
(n)
t |

2
∑T

t=1

∑N
n=1 x

(n)
t

(5)

where x̂
(n)
t = Pn

xtn
is the estimated consumption of each n electrical appliance

at time instant t. In the case where the inferred number of electrical appliances
is less than the available electrical appliances number, the additional chains will
be grouped in a category of unknown electrical appliances x

(unknown)
t .

Stick-Breaking Construction. The Stick-Breaking construction can be
adapted to the MlBP to efficiency improve inference algorithms by introduc-
ing the transition probability from inactive state to active one denoted by an,
as well as the self-transition probability of the n-th Markov chain active state
denoted by bn. These two hidden variables an and bn are described as follows:

an = p(stn = 0|s(t−1)n = 0) (6)

bn = p(stn = 0|s(t−1)n = 1) (7)

The matrix of the transition probabilities of the n-th Markov chain can be writ-
ten as follows:

An =
(

1 − an an

1 − bn bn

)
(8)

The distribution on the variables an is given by:

a1 ∼ Beta(α, 1) (9)

and the distribution probability on the variables an can be given by:

p(a(n)|a(n−1)) ∝ (a(n−1))(−α)(a(n))(α−1)I(0 ≤ a(n) ≤ a(n−1)) (10)
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with I(.) characterizes the indicator function which is worth 1 if its argument is
true and 0 if its argument is false, α is the concentration parameter that controls
the number of active Markov chains. Independently of n, the MIBP prior over
variables bn, distributed according to a Beta process, is defined by:

bn ∼ Beta(β0, β1) (11)

3.2 Inference Algorithms

Each Bayesian model looks for a posterior inference calculated according to
the posterior distribution of hidden variables. Several time series BNP models
take a proximate inference algorithm if the posterior distribution cannot be
obtained directly. Such inference algorithm can be based on Markov Chain Monte
Carlo (MCMC) methods. In particular, we have used a Gibbs Sampling inference
algorithm that combines MCMC and Sequential Monte Carlo (SMC) standard
tools. The suggested IFHMM model is incorporated with the Gibbs sampling-
based inference algorithm to treat the parallel chains number and transition
variables. The Inference algorithm based on MIBP prior starts with introducing
new inactive chains Nnew utilizing a slice sampling method and an auxiliary
slice variable to provide a finite factorial model. Thus, the number of parallel
chains is increased from N+ to N‡ = N+ + Nnews and consequently the N+

chains number cannot be updated. The first sampled auxiliary slice variable V
is distributed as:

V|S, {an} ∼ Uniform(0, aminimale) (12)

where aminimal = minn:∃t,stn �=0 an can be a Beta distribution.
The next new variables an make the following sampling iterations until an <

V:

p(an|an) ∝ exp

(
β0

T∑
t−1

1
t
(1 − an)t

)
× (an)−β0−1(1 − an)T , (0 ≤ an ≤ an−1)

(13)

Moreover, the next step of the inference algorithm is focused on sampling the
states stn and the input symbols xtn of all chains of the IFFSM model. This
compacted sampling eliminates the chains that remain inactive throughout the
observation time, which allows the update of N+ chains number. We put forward
the use of Particle Gibbs algorithm for inference in non-Markovian latent variable
models.

Despite the efficiency and the simplicity of the Gibbs sampling model of each
element xtn|stn, this technique cannot provide good mixing properties owning to
the high coupling of successive steps. The Gibbs sampling model can utilize the
Forward Filtering Backward Sampling (FFBS) method to treat the successive
sampling of chains according a complexity of O(TN‡|X |L+1) to our suggested
IFFSM model while L > 1. However, the exponential dependence on L can
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prevent convergence of the FFBS calculation. Thus, to deal with this problem,
a Particle Gibbs with Ancestor Sampling (PGAS) algorithm is combined with
the inference algorithm to jointly sample the matrices X and S. If P particles
are used for the PGAS kernel, the complexity of our adopted algorithm is about
O(PTN‡L2).

Finally, inference algorithm will sample the global variables joining the tran-
sition and the emission probabilities depending on their posterior distribution
so as to evaluate the likelihood p(yt|X ,S).

This final step of the inference algorithm is focused on the sampling of the
global variables of the model from their full conditional distributions under the
Stick-Breaking construction is expressed as follows:

p(an|S) = Beta(1 + trk
00, tr

k
01) (14)

with tr the number of transitions between states in the N column of S.
With regard to the transition probabilities of the active state to the inactive

state bn, we have:

p(bn|S) = Beta(β1 + trk
00, β2 + trn

01) (15)

We also define the extended matrix X extended of size TxLN+ with:

X (n) =

⎛
⎜⎜⎜⎝

x1n 0 · · · 0
x2n x1n · · · 0
...

...
. . .

...
xTn x(T−1)n · · · x(T−L+1)n

⎞
⎟⎟⎟⎠ (16)

Particle Gibbs with Ancestor Sampling. Compared to the FFBS method,
the PGAS algorithm offers several benefits in addition to its non-exponential
complexity. Notably, it can be applied independently of X proprieties as finite or
infinite set. Furthermore, its inference properties are better than those of FFBS
algorithm which cannot contribute to the N‡ − 1 propriety of the observation
chains. For energy disaggregation problems, the FFBS is often limited to later
local modes in which several Markov chains correspond to a single hidden source.
However, for each simultaneous instant t, the PGAS algorithm can treat and
sample all chains in parallel. This characterization does not exist in FFBS and
FHMM models [5]. The integration of such algorithm involves the elimination of
certain an and bn variable as well as the updated chains N+.

In order to better adapt the PGAS algorithm to our energy disaggregation
problem based on source separation approach, we can refer to [38] describing the
appropriate steps as well as the theoretical justification of the PGAS algorithm.

We assume that the suggested PGAS model is composed of a set of P particles
which represent the hidden states {xtn}N‡

n=1 at an instant t. Let defining the i-
th particle state at time t by xi

t of length N‡ as well as its ancestor indexes
ai

t ∈ 1, . . . , P . Given xi
1:t as the ancestral trajectory of the particle xi

t, the
recursive form of the particle trajectory is described as follows:
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xi
1:t =

(
xai

t
1:t−1,x

i
t

)
(17)

A fixed reference particle denotes by x∗
t is generated by previous iteration

outputs is required for the PGAS algorithm extension in order to introduce novel
inactive chains. Thus, the corresponding ancestor indexes aP

t of the fixed particle
xP

t are variables and randomly picked. Hence, a distribution form qt

(
xt|xat

1:t−1

)
is required to specify the propagate way of the particles, so that, we assume the
following expression:

qt

(
xt|xat

1:t−1

)
= p

(
xt|xat

t−1

)
(18)

=
N‡∏
n=1

p
(
xtn|stn, xat

(t−1)n

)
p

(
stn|sat

(t−1)n

)
(19)

For each instant t, the PGAS inference algorithm samples the particles at
instant t − 1 taking into account their weight specification wi

t−1 and their dis-
tributed propagation qt

(
xt|xat

t−1

)
.

The following equations develop the weights expression as well as the ancestor
weights:

Wt(x1:t) =
p (x1:t|y1:t)

p
(
x1:t−1|y1:t−1

)
qt (xt|x1:t−1)

(20)

∝ p (y1:t|x1:t) p (x1:t)
p

(
y1:t−1|x1:t−1

)
p (x1:t−1) p (xt|xt−1)

(21)

∝ p (yt|xt−L+1:t) (22)

with yτ1:τ2 denotes the set of observations {yt}τ2
t=τ1 . The Wt(x1:t) equation

involves that obtained weights wi
t−1 depending essentially on the likelihood eval-

uation at time t. The estimated ancestor weights w̃i
t−1|T of the reference particle

are given by:

w̃i
t−1|T = wi

t−1

p
(
xi
1:t−1,x

∗
t:T |y1:T

)
p

(
xi
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) (23)
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∗
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)
(25)

Calculating the weights w̃i
t−1|T for L > 1 and i = l, . . . , P increasing the

model complexity by O(PN‡L2).
To deal with the last equation, we have to take only the IFHMM factors

which depending on the particles index i, without memory (L = 1) and with a
transition probability p(xt|xt−1) factored in parallel through the IFHMM model.
The weights expression can be written as follows:

w̃i
t−1|T ∝ wi

t−1p
(
x∗

t |xi
t−1

)
(26)
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4 Simulations and Results

We have implemented the proposed IFFSM based on IFHMM model with the
following parameters to obtain the desired results:

– Length of the observation sequence T .
– Number of possible states Q = 4
– Iteration number i = 10000
– Hyper-parameters of our IFFSM model:

• λ1 = 15 and λ2 = 10 are the parameters of the Gaussian distribution on
consumption, i.e. Pn

q ∼ N (15.10)
• γ1 = 0 and γ2 = 0.5 are the hyper-parameters of the Gaussian distribution

on the white noise denoted as εt ∼ N (0, 0.5).
• β0 = 1 is the hyper-parameter of the distribution on the self-transition of

the inactive state an
i ∼ Dirichlet(1).

• β1 = 0.1 and β2 = 2 are the Beta distribution hyper-parameters involv-
ing the transition from an active state to an inactive state bn, i.e.
bn ∼ Beta(0.1, 2).

• MlBP distribution on the activation binary matrix S is defined as S ∼
MIBP (l, 0.1, 2).

The visualization of the general load curve which represents the total con-
sumption of the electrical appliances is given by the Fig. 4.
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Fig. 5. The estimated load curve of each electrical appliance

After implementing our suggested IFFSM model adapted to the energy dis-
aggregation problem, we obtain the load curves for a specific electrical appliance.
Each load curve represents the evolution of the consumption of each electrical
appliance over time. A visualization on Matlab allows to obtain the results pre-
sented by the Fig. 5.

5 Performance Evaluation and Discussion

To evaluate the performance of our model, we apply the formula of the equation:

accuracy = 1 −
∑T

t=1

∑N
n=1 |xn

t − x̂n
t |

2
∑T

t=1

∑N
n=1 xn

t

(27)

This formula allows to test the performance of our IFFSM model to estimate
the individual energy consumption of each appliance installed in smart homes.
The performance of our model is calculated for the 4 appliances that consume
the most energy. Table 2 shows the different performances of our applied model.

We have to test the performance of our IFFSM model and compare the
accuracy with an existing Markov model. Thus, we have used the Reference
Energy Disaggregation Dataset (REDD) in order to be able to evaluate our
model. We have compared the obtained results with the FHMM model results
implemented in [32]. Table 3 visualizes the performance of each model for 6 smart
homes described by the REDD database.
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Table 2. Performances evaluation: the accuracy of the estimated energy consumption
for 4 household appliances situated in a smart home environment

Smart home electrical appliances

Dishwasher Microwave oven Refrigerator Lighting

Accuracy (%) 66.3 67.2 70.1 61.4

Average 66.75

Table 3. Comparison of our IFFSM model performances to the FHMM model

Accuracy (%)

Proposed IFFSM model (IFHMM) Compared model (FHMM)

Smart home 1 66.7 71.5

Smart home 2 66.3 59.6

Smart home 3 66.2 59.6

Smart home 4 66.7 69.0

Smart home 5 66.4 62.9

Smart home 6 66.7 54.4

Average 66.5 64.5

We demonstrate that the proposed model slightly exceeds the FHMM model
in the energy disaggregation problem. Thus, the accuracy of the model does not
change substantially in different houses, this is because the model is completely
unsupervised and does not require learning data but can determine consumption
from prior observations and distributions.

Thus, the proposed model is more practical because it is not realistic to
believe that learning data can be obtained from all the homes where we will
implement our solution and we should not expect to have a model for each
electrical appliance installed in each home.

6 Conclusion

In this paper we have proposed a NILM approach based on an unsupervised
learning to solve the energy disaggregation problem. In fact, we have adapted
an IFFSM- based time series modeling to the source separation problem with
an unknown number of sources. We have developed a BNP model which aims
to disaggregate the general load curve at the end of a smart meter. We have
implemented the suggested IFFSM model building an IFHMM model and we
have obtained satisfactory results compared to the FHMM model which requires
learning data and test data. The proposed model builds on the MIBP to recog-
nize an infinite number of hidden Markov chains with either discrete or contin-
uous states. We have put forward a PGAS algorithm for posterior inference to
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deal with the FFBS complexity. We have successfully implemented our proposed
model and we have visualized the experimental results using the REDD data-set.

However, our proposed approach is inappropriate if we want to use it on
a large number of SHS deployed in smart cities or smart grids. Being a blind
method, it is difficult to recognize each estimated chain of a specific device
with the lack of sufficient individual information from each appliance for every
SHS. Being a blind method, it is difficult to recognize each estimated chain of a
specific device for lack of sufficient individual information from each appliance for
every SHS. To deal will this limitation, we can improve our suggested IFHMM
model by dividing the chains between the houses in a hierarchical way while
calculating each activation function individually for every house and inferring the
common features between different houses. In further research, we can improve
our inference algorithm scalability to contribute for both a larger number of
appliances and larger observation sequences. Furthermore, we can transform our
model from a time-invariant load model using an offline static database to an
on-line unsupervised model for autonomous household database construction in
order to recognize the real-time behavior of the power consumption [22].

Abbreviations
The following abbreviations are used in this manuscript:

AFHMM Additive Factorial Hidden Markov Models
ANN Artificial Neural Network
BNP Bayesian Non-Parametric
CDA Conditional Demand Analysis
CFHMM Conditional Factorial Hidden Markov Models
CO Combinatorial Optimization
DDSC Discriminative Disaggregation Sparse Coding
DL Deep Learning
DT Decision Tree
DTW Dynamic Time Warping
CDM Committee Decision Mechanism
EMI Electromagnetic Interference
FFBS Forward Filtering Backward Sampling
FHMM Factorial Hidden Markov Models
FSM Finite State Machine
GMM Gaussian Mixture Model
GSP Graph Signal Processing techniques
HMM Hidden Markov Model
IFFSM Infinite Factorial Finite State Machine
IFHMM Infinite Factorial Hidden Markov Model
IoT Internet of Things
KNN k-nearest neighbor
MCMC Markov Chain Monte Carlo
MIBP Markov Indian Buffet Process
MLC Multi-Label Classification
NFL Neuro-Fuzzy Logic algorithm
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NILM Non Intrusive Load Monitoring
PGAS Particle Gibbs with Ancestor Sampling
REDD Reference Energy Disaggregation Dataset
RF Random Forest
SHS Solar Home System
SMC Sequential Monte Carlo
STMF Source-separation via Tensor and Matrix Factorizations
SVM Support Vector Machine
WSN Wireless Sensor Network
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