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Abstract. A wide range of applications can benefit from the human
motion recognition techniques that utilize the fluctuation of time series
wireless signals to infer human gestures. Among which, device-free ges-
ture recognition becomes more attractive because it does not need human
to carry or wear sensing devices. Existing device-free solutions, though
yielding good performance, require heavy crafting on data preprocess-
ing and feature extraction. In this paper, we propose RF-Mnet, a deep-
learning based device-free gesture recognition framework, which explores
the possibility of directly utilizing time series RFID tag signal to recog-
nize static and dynamic gestures. We conduct extensive experiments in
three different environments. The results demonstrate the superior effec-
tiveness of the proposed RF-Mnet framework.
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1 Introduction

Human gesture recognition, which enables gesture-based Human-Computer
Interaction (HCI), plays an important role in a wide range of applications, such
as smart home, health care, especially the support for sign language (for exam-
ple American Sign Language (ASL)) which can benefit the life of people who
are deaf or hard of hearing. Traditional smart devices, say smart phones/pads,
watches, and other wearable sensors, are widely used to recognize human ges-
tures. However, such device-based approaches have the limitations that users
need to carry or wear the devices, which are not convenient and feasible to
real-world applications.

To overcome above limitations, a lot of effort have been made to explore
device-free human gesture recognition techniques. Such methods usually require
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users to perform hand or body motion and recognize these motions to be the HCI
operations. One possible approach is to use imagery-based devices, e.g., Kinect
and LeapMotion [2,3], to track human motions in a natural way. However, these
systems require line-of-sight and raise concerns on user privacy. Another app-
roach, which is our focus in this paper, is to use radio frequency (RF) based sens-
ing techniques of wireless devices. Generally, such wireless signal based solutions
identify the gesture based on the rationale that there will be changes (i.e., ampli-
tude or phase) of time series RF signals when human performs specific gesture
before the sensing system. By extracting certain features [7,8], the system can
recognize the gesture through pre-defined similarity measures, such as Dynamic
Time Warping (DTW) or distance-based classifiers. However these approaches
all need heavy crafting on data preprocessing and feature engineering. And
the performance is highly dependent on the selection of feature extraction
algorithms.

In recent years, convolutional neural networks (CNN) have led to impressive
success on objection recognition, audio classification, etc. [12,13]. A key superi-
ority of CNN is its ability to automatically learn complex feature representations
using its convolutional layers. Inspired by this, it is natural to ask a question:
is it possible to automatically learn the feature representation from time series
and realize the gesture recognition? In this paper, we design a multi-branch CNN
network, namely RF-Mnet, for profiling time series and classifying gestures.

Specifically, with the rapid development of RFID techniques, RFID tag is
no longer only an identity of certain product, it serves as wireless sensor for
various applications [10,24,27]. The passive tag has the property of low cost
and battery-free access. Inspired by this, we explore the possibility of recogniz-
ing human gestures via RFID systems. Our prototype of RF-Mnet is shown in
Fig. 3(a). We deploy an array of 49 passive tags (7 × 7 tag array) as the sens-
ing plane. RF-Mnet do not need the user to carry any devices. The user just
performs the gestures (including static gestures and dynamic gestures) in the
air before the plane. The induced variations of RF signals (i.e., RSS and phase)
can be collected and correlated to the gestures. We implement a prototype of
RF-Mnet using Commercial-off-the-shelf (COTS) RFID devices, and extensive
experiments prove the effectiveness of our solution.

2 RF Signal Properties

Our RF-based motion estimation relies on transmitting the RF signal and receiv-
ing its replies (i.e., reflections). In our system, we adopt the widely-used wireless
technology: UHF RFID.

To capture the reflections from human, we deploy an RFID tag array. The
human body is made up primarily of water from the RF point of view. Water is
strongly absorptive around 900 MHz (with the dielectric constant of around 80
at room temperature), and radio waves are reflected by body parts. That is, the
human body is both a reflector and an absorber of RF energy.

In ideal circumstances (like the anechoic chamber), the RF wave leaves from
the reader antenna and strikes the tag. However, in real scenarios in which most
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Fig. 1. RSS and phase distribution (a)(b) w./w.o. hand gesture. (c)(d) dynamic gesture
0 and 1.

RFID systems are used, the wave emitted from the reader antenna will interact
with many other objects besides the tag itself. For example, in a typical office
building, the integrated backscattered signal of a tag shall be the addition of
the direct beam along the path between the reader and the tag, and those that
are reflected (i.e., from the floor, a distant wall, and nearby furniture). We can
write the resulting signal as:

Stotal = Sdir + Sref0 (1)

Similarly, let us consider, when the human body (i.e., wonderful reflector)
exists, the newly resulting signal of a tag is the interaction of Stotal and the
reflection (Srefh) from the human:

ˆStotal = Stotal + Srefh (2)

Human reflected wave (Srefh) will add to (i.e., in phase) or subtract from
(i.e., out of phase) Stotal, causing the received signal vary. Specifically, this inter-
action happens even when the human body is far from the direct beam from a
tag.

Preliminary Experiment: Typical commercial off-the-shelf (COTS) RFID
reader (e.g., Imping R420) can report the channel parameters, i.e., received
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signal strength (RSS) and phase, of each interrogated tag. To investigate the
influence of human to backscattered tag signals, we conduct a group of proof-of-
concept experiments. We first collect and calculate the average RSS and phase
value of each tag in a 7× 7 tag array in the static environment. Then the volun-
teer performs a static hand gesture (i.e., letter ‘A’ as shown in Fig. 3(b)) before
the tag array. Figure 1(a) and (b) compare the RSS and phase of each tag with
and without the hand gesture. We can observe that almost all tag signals vary
(e.g., increase or decrease) with a human hand nearby the array, which demon-
strates that the reflected wave from human body has essential importance. In
addition, we also let the volunteer perform two dynamic gestures, e.g., moving
the hand to write the number 0 and 1 in the air. Figure 1(c) and (d) illustrate
the RSS and phase of tag #1, which tell that different gestures have different
waveform profiles. In a nutshell, the received signals of tags contain the infor-
mation of human reflections, inspiring us to infer the human gesture using RF
time series signals.

3 Method

In this section, we define the RFID time series classification problem. Then we
introduce the RF-Mnet framework.

3.1 Problem Definition

A time series is a sequence of data points with timestamps. In this paper, we
use 7 × 7 tags in the implementation. We denote the time series of tag i as
Ti = ti1, ti2, . . . , tin, where tij is the value at timestamp j and there are n
timestamps. Thus, a real time series of RF-Mnet is

T =

⎡
⎢⎢⎢⎣

T1

T2

...
Tm

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

t11, t12, . . . , t1n
t21, t22, . . . , t2n

...,
..., · · · ,

...
tm1, tm2, . . . , tmn

⎤
⎥⎥⎥⎦ (3)

where m is the number of tags (m = 49).
A labeled time series dataset is denoted as D = (T k, yk)Nk=1, which contains

N time series and yk is the associated label. yk is a real value and yk ∈ [1, C],
where C is the number of distinguishing labels (i.e., classes). Thus the problem
we solve in this paper is to establish a model that can predict an unlabeled time
series T k.

3.2 RF-Mnet Framework

The overall architecture is illustrated in Fig. 2. The RF-Mnet framework has
three stages: multi-branch input stage, feature extraction stage, and gesture
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Fig. 2. Overall architecture of RF-Mnet.

recognition stage, in which the input is the time series data, and the output is
its label.

Multi-branch Inputs Stage: Different gestures might have different influences
on RF channels, such as the change of energy attenuation and propagation path,
which are reflected in RSS and phase variations of RF signals. Thus, we take
RSS series and phase series as multi-branch inputs, which will provide us a bigger
picture of the human motion. Each time series in the multi-branch has the same
length.

Feature Extraction Stage: We employ two steps for feature extraction: local
convolution and global convolution. The multi-branch inputs (X0) are first fed
into the local convolution block which includes a batch normalization (BN) layer,
a 2-D convolutional layer (Conv) and a rectified linear unit (ReLu), then the
output feature map of local convolution is:

X = BN(ReLu(WX0 + b)) (4)

where W represents the convolution filters and b is the bias. In particular, the
filter size of the Conv layer is 3. The number of filters for both Conv layers is 32.
The output of two local convolutional layers will capture a different dimension
of features from original signals.

After extracting feature maps from each branch, we then concatenate all
features and feed them into the global convolutional stage. Deep convolutional
neural networks are proved to be capable of capturing the hierarchy of features
[25], where the lower layers respond to primitive features, and the higher layers
extract more complex feature informations. Such low and high-level features are
both important and complementary in estimating human gestures, which moti-
vates us to incorporate multi-layer information together. Hence, we employ a
two-layer DenseNet [12] architecture in global convolutional layers, as shown in
Fig. 2. Each layer is a stack of two dense blocks. Each dense block is constructed
with two basic blocks. In each basic block, the input of l-th layer is the concate-
nation of the feature maps produced in all preceding layers 0, 1 . . . , l − 1. If we
denote the sequential operations of BN, ReLU, and Conv as H, the feature map
of l-th basic block as X l, then X l can be calculated is:
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X l = H([X0,X1, . . . ,X l−1]) (5)

Between two dense blocks, there is a transition layer which is composed of
a BN layer, a ReLU layer, and an 1 × 1 Conv layer followed by a 3 × 3 average
pooling layer. The transition layer reduces network parameters by converting
the numbers of filter to half.

DenseNet achieves better performance by mitigating vanishing-gradient and
enhancing the delivery of features. However, it is possible that the net will over-
fit the training data since time series data always lacks of complex structures
compared with 3-D images that DenseNet is proved to be effective for object
detection tasks. Hence, a global average pooling layer (kernel size of 3) is adopted
to minimize overfitting and reduce the parameters.

Gesture Recognition Stage: During the gesture recognition stage, we propose
two tasks which involve gesture classification and individual classification. The
latter is able to authenticate the user identity when s/he conducts a gesture,
which can be applied in applications which have privacy and security concerns.
The input of individual classifier is the outputs of feature extraction stage (X̂i),
we then feed the features into a fully connected layer followed by a Softmax
activation function. The output of individual classifier can be denoted as:

Ŷi = Softmax(Ŵ X̂i + b̂) (6)

where Ŵ and b̂ are parameters. The output Ŷi is the predicted possibility of
each label for ith input series data. Since gesture classifier contains individual
related features, the input of gesture classifier is the concatenation of the output
of feature extraction stage (X̂i) and the output of individual classifier Yi. Then,
the output of gesture classifier can be described as:

Ẑi = Softmax(Ŵ [X̂i , Ŷi ] + b̂) (7)

In addition, to train the network, we use cross entropy function to calculate
the loss between predictions and the real labels for gesture classification and
individual classification. We define Ly as loss function of gesture classifier, and
Lz as loss function of individual classifier.

Ly = −
N∑
c=1

yc log(ŷc) (8)

Lz = −
M∑
c=1

yc log(ŷc) (9)

where M,N is the number of gesture and individual classes respectively. Then,
the composite loss can be denoted as:

L = α ∗ Ly + β ∗ Lz (10)

where α, β are hyper-parameters.



150 H. Ding et al.

4 Implementation and Evaluation

4.1 Implementation

As shown in Fig. 3(a), RF-Mnet consists of an Impinj reader (Speedway R420)
and a 7 × 7 Alien-9629 tag array. The whole system runs at the frequency of
922.375 MHz. In order to test the performance of RF-Mnet in multiple envi-
ronments, we ask 5 volunteers to perform a large number of gestures in three
indoor environments: Scene A (tag plane are placed in relatively open space),
Scene B (tag plane are placed near walls and tables), Scene C (multiple objects
are placed around the RFID tag plane). In each scene, there are people walking
around during experiments occasionally.

5cm
10cm

Tag plane
Reader antenna

(a) (b)

Fig. 3. (a) Experimental setups of RF-Mnet. (b) Static gestures: the ASL fingerspelling
alphabet [1].

Dataset: In each scene, we collect two kinds of gestures for each person, includ-
ing static and dynamic gestures. As illustrated in Fig. 3(b), the static gestures
are gestures corresponding to 26 English letters specified by American Sign Lan-
guage (ASL). Dynamic gestures are a handwritten number (0–9,) in the air. The
experimental dataset includes 39000 static gestures (5 users × 3 positions × 26
gestures × 100 instances), 15000 dynamic gestures (5 users × 3 positions × 10 ges-
tures × 100 instances).

Parameter Setting: We implement our network with Pytorch 0.4.0. The Adam
optimizer with β1 = 0.9 and β2 = 0.999 was used to train the network. The
initial learning rate is 0.001, and it decreases by 50% every 3 epochs. We train
the network 40 epochs in total.

4.2 Performance of Gesture Recognition

Overall Accuracy: We first test the overall gesture recognition accuracy of
RF-Mnet. In this trail of experiments, 70% and 30% of the data collected in
three environments are used for training and testing. The accuracy is shown in
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Fig. 4. We can observe that the accuracy of static gesture recognition is higher
(say, average accuracy 99.5%). The reason lies in that the human hand is mov-
ing during writing the dynamic numbers (i.e., 0–9) in the air. The phase and
amplitude of tag signals change dynamically due to the reflections of the moving
hand. Thus, dynamic gestures are more susceptible to multipath interference,
yielding lower accuracy. However, the average accuracy can still reach 92.5%.
The results prove the effectiveness of our framework.
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Fig. 4. Overall gesture recognition accuracy. (a) Static gestures. (b) Dynamic gestures.

Impact of Human Diversity: Next, we examine the usability of the system.
We invite five volunteers to perform both static and dynamic gestures, 100 times
for each. We balance the diversity of the volunteers in terms of their gender (3
males and 2 females), age (ranging from 22 to 28 years old), and other physical
conditions (e.g., 158–185 cm in height, 45–70 kg in weight, etc.). Note that when
performing the dynamic gestures, they are naturally moving their fingers before
the tag plane according to their writing habits. Figure 5 compares the average
accuracy of static and dynamic gesture recognition. In particular, the accuracy
of each volunteer for static gesture recognition is above 95%.

Impact of Distance: We then check the impact of distance between the user
hand and the tag plane. We vary the distance from 10 cm to 30 cm. Other set-
tings are consistent as default. We choose four representative static gestures and
five dynamic gestures. Specifically, the static gestures involved in this experiment
are a, h, o, v, and the dynamic gestures are 1, 3, 5, 7 and 9. The average recog-
nition accuracy are plotted in Fig. 6. The average recognition accuracy over five
distances is 99.8% for static gestures 90.1% for dynamic gestures. As expected,
when enlarging the distance, the accuracy becomes lower. We envision the rea-
son is that a larger distance to may weaken the direct interference from human
hand, and involve extra influence from ambient factors, which introduces irreg-
ular variations to tag signals and induces lower accuracy.

Impact of Environments: Since the experiments involve three environments,
we also compare the accuracy in different scenarios. The accuracy is shown in
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Fig. 7. The overall accuracy of three environments reaches 92.4%. In particular,
the accuracy of Scene C is lowest because of its rich multipath property.

5 Related Work

Existing studies on the gesture/posture recognition can be classified into follow-
ing categories:

Computer Vision Based Gesture Recognition: Vision based gesture recog-
nition systems capture fine-grained gesture movements using cameras or light
sensors [15,19,20,23,26]. For example, Okuli [26] adopts LED and light sensors
to locate user’s finger. In-air [19] uses built-in RGB camera of off-the-shelf mobile
devices to recognize a wide range of gestures. However, these systems are sus-
ceptible to lighting condition changes, which are not suitable for applications
where occlusions are everywhere. Most importantly, it will expose user privacy.
In contrast, RF-Mnet has no requirement for line-of-sight and is lightweight and
scalable.
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RF-Based Gesture Recognition: Prior works on RF-based gesture recogni-
tion span a wide spectrum, which can be divided into two categories: device-
based and device-free approaches. Device-based methods use wearable devices,
such as sensors or tags, for tracking finger or body movements [6,9,11,14,17,18,
22]. For example, RF-IDraw [22] leverages beamsteering capability of multiple
antennas to detect the direction of the tagged finger and then track the tag
by computing the location of intersected beams, which requires a large number
of antennas that incurs heavy cost. FitCoach [9] perform fine-grained exercise
recognition including exercise types, the number of sets and repetitions by using
inertial sensors from wearable devices. These systems rely on wearable devices
which are not friendly for users. Another appealing solution is device-free ges-
ture recognition. There exists many systems that track the motion of object by
receiving RF signals reflected by objects [4,5,21,24]. For example, WiZ [4] and
WiTrack [5] combine frequency modulated continuous wave (FMCW) and mul-
tiple antennas technologies for motion tracking. However, both methods require
dedicated devices that incur high host for daily gesture monitoring. Tadar [24]
arranges a group of tags as an antenna array which receives reflections from
surrounding objects and tracks human movements, while it cannot perform fine-
grained gesture recognition. Rio [16] detects gestures by touching the surface of
the tag with a finger which limits the position of the finger to some extent. In con-
trast, RF-Mnet is built on COTS RFID devices. Our system enables fine-grained
gesture recognition without the need for users to carry the sensing devices.

6 Conclusions

In this paper, we propose an effective deep-learning based framework, namely
RF-Mnet, to recognize device-free human gestures. RF-Mnet leverages a COTS
RFID tag array as the sensing plane, which allows a user to perform in-air ges-
tures, to capture the time series signals for gesture analysis. Extensive experi-
ments from three environments demonstrate the effectiveness of proposed frame-
work. In particular, RF-Mnet can achieve 99.5% and 92.3% average accuracy for
static and dynamic gesture recognition respectively.



154 H. Ding et al.

References

1. American Sign Language (2019). https://www.nidcd.nih.gov/health/american-
sign-language

2. Leap Motion (2017). https://www.vicon.com
3. X-Box Kinect (2017). https://www.xbox.com
4. Adib, F., Kabelac, Z., Katabi, D.: Multi-person motion tracking via RF body

reflections (2014)
5. Adib, F., Kabelac, Z., Katabi, D., Miller, R.C.: 3D tracking via body radio reflec-

tions. In: Proceedings of USENIX NSDI (2014)
6. Bu, Y., et al.: RF-Dial: an RFID-based 2D human-computer interaction via tag

array. In: Proceedings of IEEE INFOCOM (2018)
7. Ding, H., et al.: A platform for free-weight exercise monitoring with RFIDs. IEEE

Trans. Mob. Comput. 16(12), 3279–3293 (2017)
8. Ding, H., et al.: Close-proximity detection for hand approaching using backscatter

communication. IEEE Trans. Mob. Comput. 18(10), 2285–2297 (2019)
9. Guo, X., Liu, J., Chen, Y.: FitCoach: virtual fitness coach empowered by wearable

mobile devices. In: Proceedings of IEEE INFOCOM (2017)
10. Han, J., et al.: CBID: a customer behavior identification system using passive tags.

IEEE/ACM Trans. Network. 24(5), 2885–2898 (2016)
11. Hao, T., Xing, G., Zhou, G.: RunBuddy: a smartphone system for running rhythm

monitoring. In: Proceedings of ACM UbiComp (2015)
12. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected

convolutional networks. In: Proceedings of IEEE CVPR (2017)
13. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-

volutional neural networks. In: Proceedings of IEEE ICONIP (2012)
14. Mokaya, F., Lucas, R., Noh, H.Y., Zhang, P.: MyoVibe: vibration based wearable

muscle activation detection in high mobility exercises. In: Proceedings of ACM
UbiComp (2015)

15. Plotz, T., Chen, C., Hammerla, N.Y., Abowd, G.D.: Automatic synchronization
of wearable sensors and video-cameras for ground truth annotation-a practical
approach. In: Proceedings of IEEE ISWC (2012)

16. Pradhan, S., Chai, E., Sundaresan, K., Qiu, L., Khojastepour, M.A., Rangarajan,
S.: RIO: a pervasive RFID-based touch gesture interface. In: Proceedings of ACM
MobiCom (2017)

17. Ren, Y., Chen, Y., Chuah, M.C., Yang, J.: Smartphone based user verification
leveraging gait recognition for mobile healthcare systems. In: Proceedings of IEEE
SECON (2013)

18. Shangguan, L., Zhou, Z., Jamieson, K.: Enabling gesture-based interactions with
objects. In: Proceedings of ACM MobiSys (2017)

19. Song, J., et al.: In-air gestures around unmodified mobile devices. In: Proceedings
of ACM UIST (2014)

20. Taylor, J., et al.: Efficient and precise interactive hand tracking through joint,
continuous optimization of pose and correspondences. ACM Trans. Graph. 35(4),
143 (2016)

21. Wang, C., et al.: Multi-touch in the air: device-free finger tracking and gesture
recognition via COTS RFID. In: Proceedings of IEEE INFOCOM (2018)

22. Wang, J., Vasisht, D., Katabi, D.: RF-IDraw: virtual touch screen in the air using
RF signals. In: Proceedings of ACM SIGCOMM (2014)

https://www.nidcd.nih.gov/health/american-sign-language
https://www.nidcd.nih.gov/health/american-sign-language
https://www.vicon.com
https://www.xbox.com


Device-Free Gesture Recognition Using Time Series RFID Signals 155

23. Xiao, R., Harrison, C., Willis, K.D., Poupyrev, I., Hudson, S.E.: Lumitrack: low
cost, high precision, high speed tracking with projected M-sequences. In: Proceed-
ings of ACM UIST (2013)

24. Yang, L., Lin, Q., Li, X., Liu, T., Liu, Y.: See through walls with COTS RFID
system! In: Proceedings of ACM MobiCom (2015)

25. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks.
In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS,
vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
10590-1 53

26. Zhang, C., Tabor, J., Zhang, J., Zhang, X.: Extending mobile interaction through
near-field visible light sensing. In: Proceedings of ACM Mobicom (2015)

27. Zhao, C., et al.: RF-Mehndi: a fingertip profiled RF identifier. In: Proceedings of
IEEE INFOCOM (2019)

https://doi.org/10.1007/978-3-319-10590-1_53
https://doi.org/10.1007/978-3-319-10590-1_53

	Device-Free Gesture Recognition Using Time Series RFID Signals
	1 Introduction
	2 RF Signal Properties
	3 Method
	3.1 Problem Definition
	3.2 RF-Mnet Framework

	4 Implementation and Evaluation
	4.1 Implementation
	4.2 Performance of Gesture Recognition

	5 Related Work
	6 Conclusions
	References




