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Abstract. Wi-Fi Sensing has shown huge progress in last few years. Multiple
Input and Multiple Output (MIMO) has opened a gateway of new generation of
sensing capabilities. This can also be used as a passive surveillance technology
which is non-intrusive meaning it is not a nuisance as it is not need the subjects
to carry any dedicated device. In this thesis, we present a way to count crowd in
the elevator non-intrusively with 5 GHz Wi-Fi signals. For this purpose,
Channel State Information (CSI) is collected from the commercially available
off-the-shelf (COTS) Wi-Fi devices setup in an elevator. Our goal is to Analyze
the CSI of every subcarrier frequency and then count the occupancy in it with
the help of Convolutional Neural Network (CNN). After CSI data collection, we
normalize the data with Savitzky Golay method. Each CSI subcarrier data of all
the samples is made mean centered and then outliers are removed by applying
Hampel Filter. The resultant wave is decimated and divided into 5 equal length
segments representing the human presence recorded in 5 s. Continuous wavelet
frequency representations are generated for all segments of every CSI sub-
carrier frequency waves. These frequency pattern images are then fed to the
CNN model to generalize and classify what category of crowd they belong to.
After training, the model can achieve the test accuracy of more than 90%.
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1 Introduction

Wi-Fi has become an essential part of our life. The wireless technology is growing and
improving at an exponential rate. Today Wi-Fi is being used in desktop computers,
laptops, mobile and many Internet of Things devices which are able to provide func-
tionality because of it. With every passing year our technologies and electronic
products are becoming tether less that is number of wires are being reduced. When
signals from transceiver leaves for the receiving end it interacts with several objects in
between. They each cause a specific variation in the radio frequency captured at the
receiving end. This recorded variation can help us differentiate how many people are
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standing in the elevator. Although human sensing has been done in the past but none
has been done in an elevator so far with Wi-Fi using Channel State Information (CSI).

The main motivation behind this research is that Wi-Fi is relatively new area of
research in terms of human sensing capabilities. Though a number of researches have
been done in this regard, still much improvements and fine tuning is needed. As I have
mentioned before, continuous development in human sensing based on radio signals is
the driving force. Moreover, it should also be noted here that this is non-intrusive
technique which is not an inconvenience to the monitored subjects as it serves its
purpose at no additional cost to the people monitored. It also non-invasive in terms of
privacy since the Wi-Fi signals research has not yet matured enough or due to technical
limitations of radio signals it cannot record faces. However, recognition of different
subjects using radio signals is also being researched upon in the world. Wi-Fi signals
does not need the environment to be in proper lighting conditions. It does not make
noise; it can work in the dark quietly as well. It serves as a passive tool for studying
human detection that does not require Line of Sight to work unlike traditional methods.
These are the primary motivation and the reasons why we chose to research in this area.

We have developed a way to count humans in an elevator. The techniques used
were studied individually and combined in a sequence that yields more than 90% result
accuracy. The first step is to collect the data samples. For this purpose, Wi-Fi CSI data
is collected. Several post processing is involved before we feed the data samples to our
CNN model. We record 7 full CSI samples for each human category. As we have a pair
of receiving and transmitting antennas and we are considering only the receiving
antennas for the task of recognizing number of humans, one category includes 14 CSI
data samples. 57 sub-carrier level frequency waves in each of 14 CSI data samples.
First data is normalized through Savitzky Golay Method. This smooths the data points
and a trend becomes slightly visible and the noise is somewhat removed. We apply this
to each sub-carrier level frequency wave samples for each instances of human category
recorded. We then apply mean centering method to the CSI data. In order to reduce the
frequency sampling rate, the data is segmented into 5 equal points this gives us 5
patterns in just one sub-carrier CSI wave. Segmented waves are converted into CWT
image patterns. The segmentation allows us to achieve high accuracy rate as it increases
the number of pattern images for our neural net for training.

2 Related Work

Vision Based approaches uses patterns to recognize such as face detection and human
count. Human detection and count techniques for camera-based approaches are very
mature by now and they are widely used in professional environments. Since humans
are of different shape and sizes and can wear different style dresses, detection of
humans through vision-based approaches become slightly more difficult. Only major
challenge with vision-based approach is LOS. It can lose track of people when they
leave the line of sight and when they arrive in the zone where the camera is incapable
of detecting any features. Another challenge with this is proper illumination must be
established before detecting humans. Camera-based approach may be disliked because
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it can record people’s faces and features and sometimes it makes people uncomfortable.
Prior consent, in public places may be a challenge in itself.

2.1 Vision/Camera Based Devices

Vision Based approaches [1–4] uses patterns to recognize such as face detection and
human count. Human detection and count techniques for camera-based approaches are
very mature by now and they are widely used in professional environments. Since
humans are of different shape and sizes and can wear different style dresses, detection
of humans through vision-based approaches become slightly more difficult. Only major
challenge with vision-based approach is LOS. It can lose track of people when they
leave the line of sight and when they arrive in the zone where the camera is incapable
of detecting any features. Another challenge with this is proper illumination must be
established before detecting humans. Camera-based approach may be disliked because
it can record people’s faces and features and sometimes it makes people uncomfortable.
Prior consent, in public places may be a challenge in itself.

2.2 Non-camera Based Devices

Dedicated device-based approach includes wearable devices [5, 6], RFID tags [7–12],
mobile phones [13] and other related sensors [14–16] such as smart watches in recent
years are used to detect activity and count the crowd in the indoor environment. This
technique uses some other resources to provide complete functionality such as Wi-Fi
networks or Bluetooth connectivity. Radio frequency-based approaches is relatively
new and developing form of detecting humans and their activity. It can be very sen-
sitive to human activity and many scenarios have been under research for some time
now including vital sign monitoring, indoor localization, human count and gestures
recognition and sleep cycle monitoring. A special device UWB [17–21] radar have
been used to count humans. It works on the signal propagation model as humans and
other objects present between the transceiver and receiver will affect the propagation of
signals. This technique is similar to that of Vision-based methods in terms of not
requiring any of the monitored subjects to wear any wearable devices. For earlier work
of detecting humans through Wi-Fi [22–29] have Received Signal Strength (RSS) [30–
33]. Several research on localization has been done using RSS. It may be vaguely
related to the radar but based on Wi-Fi. Our work also falls under radio frequencies as
Wi-Fi basically works on radio signals. To tackle some of the problems researchers at
MIT have used Hidden Markov Models to make up for human dissimilarities in
structure and introduced some constraints with it on human motion variation. Then they
map the responses received at the receiving end under a skeleton frame of reference
which helps them to detect human activity as well as posture which also keep in view
the human structural differentiations among each other. They call it Wi-Vi [34]. It
works on similar principles that ultrasound, radar or LIDAR [36] works on. They went
on to develop dedicated Wi-Fi systems that can detect sleep patterns, breathing patterns
and tracking applications for human motion. Ultrasound and especially lasers are not
affected by multi-path propagation.

Design and Implementation of Non-intrusive Stationary Occupancy Count 5



3 Methodology

3.1 System Overview

In this section we will discuss the techniques used to project human counts through Wi-
Fi CSI data. The architecture will be discussed through the flow chart and the overall
flow will be explained. The very first task of our research is to gather CSI data through
commodity COTS Wi-Fi hardware. The data is in raw form and must be passed
through some data cleaning filters to remove outliers and then the output from pre-
processing is fed to CNN. Figure 1 shows the whole flow of our architecture.

3.2 CSI Data Collection

As obvious the first step is to setup the Wi-Fi devices in the elevator. We employ a pair
of transmitters and receivers. In particular, we setup a Wi-Fi infrastructure, which
includes two transmitters and two receivers. Then we selected to use the Intel Wireless
Link 5300 NIC to collect the CSI data in the elevator, and the transmission rate is set as
1000 packets per second. One full sample is collected in 5 s that results in 5000 packets
in 5 s at each of the receivers and they are recorded with the help of a software called
Pico Scenes [35]. The Wi-Fi is configured to use 5 GHz frequency band. There are two
transmitters and two receivers located in each corner of the lift.

3.3 CSI Data Pre-processing

CSI Data Smoothing
The first step after the data is recorded is to smooth it. We use Savitzky Golay Method
to smooth our CSI sample data set. It is discussed briefly in the Sect. 2 of this document
(Fig. 2).

Fig. 1. Flow of our technique
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As we can see in Fig. 3 the smoothing process is applied to the CSI data as the first
thing in the data pre-processing. It works on same principle as a moving average. Local
average is calculated by some window size and data is smoothed. After this smoothing
is carried out the data is mean centered that is have a zero mean.

Mean Centering and Filtering
Mean Centering also refers to have a mean of zero. Centering in simple methodology
means subtracting a constant from every value of a variable. Mean in simple words is
average of the data that can be calculated [34]. Mean of any normal distribution is not
zero. However, we can first normalize the data so that it is mean centered and have one
standard deviation, as shown in Fig. 4.

Fig. 3. After Savitzky Golay smoothing

Fig. 4. Mean centered after smoothing

Fig. 2. One sub-carrier wave raw before smoothing

Design and Implementation of Non-intrusive Stationary Occupancy Count 7



The Hampel filter is a filter that exchanges the middle value in the data window of
size pre-decided with the median or standard deviation if it is too far from it. As shown
in Fig. 5, Hampel filter looks like to add a specific noise that is only specific to one
category of sub-carriers which gives the whole data some recognizable patterns and this
is confirmed by CWT images.

Down Sampling
Our initial data have up to 5000 data points in 5 s which means the frequency is 1000
packets per second. We can decimate the frequency to be 200 data points per second. It
will lower some complexity but the data will maintain its trend. In digital signal
processing, down sampling and decimation are terms related with the process of
downsampling. When down sampling is done on a sequence of time-series of a signal
or other continuous function, it results in an estimate of the sequence that would have
been a result of sampling the signal at a smaller sampling rate thus the overall trend of
the signal will be there but in lower frequency. The wave is smaller in frequency but
still have the same shape as before. As shown in Fig. 6, this technique involves
basically translating the signal into a lower frequency rate and produces an approxi-
mation of the original signal as it would have been in a lower frequency.

Fig. 5. Applying Hampel filtering with window of standard deviation 2

Fig. 6. Down sampling to 200 MHz, Time stretches 1000 ms instead of 5000 ms
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3.4 Continuous Wavelet Transform (CWT)

Continuous wavelet transforms are a way of representing a time-series signal into a
scalogram pattern based on the wavelet patterns to be noted in the series. The wavelet
function we use called analytical morse which is also known as analytic morse
parameter in CWT function in MATLAB.

Figure 7 shows one full sub-carrier wave up to 5 s when the elevator is empty. We
do not expect much variation in this instance. Figure 8 shows the segmented CWT of
one sub-carrier when five people are in the elevator and as you can see the segmen-
tation really result in similar CWT patterns in only one second window.

As we mentioned in segmentation and mean centering and filtering that CWT
results in similar patterns for most of its segmented parts which proves that 1-s window
can be useful.

Fig. 7. CWT of empty elevator in 5 s

Fig. 8. (a–e) Represent one complete sub-carrier wave. (a) first segment representing 1st second,
(b) representing 2nd second, (c) representing 3rd second and so on.
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3.5 CNN for Feature Extraction and Classification

We use deep learning for solving our classification problem of human occupancy. For
this purpose, we make a neural net in MATLAB using its built in Deep learning toolkit
and Alexnet. A Convolutional Neural Network (CNN) is also a deep Learning model in
which we input an image of small size which is our CSI CWT pattern, importance in
terms of learnable weights and biases are assigned and revised based on the cross-
entropy loss function (Fig. 9).

As shown in Fig. 8, It has eight fully connected layers as we have 8 categories to
classify. 0 means when the elevator is empty and 7 when elevator is occupied by 7
people. The goal of our Convolution neural net operation is to extract the high-level
characteristics such as edges, from the input image. We completely rely on CNN model
to extract features automatically unlike other machine learning models where we have
to extract features manually through PCA and ICA models of feature extraction and
reduction. It not only detects edges but gradient orientation as well. With more added
layers, the architecture tries to learn High-Level features as well, giving us a network,
which has the whole idea and somewhat understanding of our continuous wavelet
transform image patterns dataset. The first part of the neural net is the convolutional
layer. As explained earlier, this part detects edges and other related features from the
image based on a kernel which is also decided by the model. This kernel works as a
filter moves to the right from left on the image. It move on by hops to the beginning
starting from the left side of the CWT pattern with the same hop value and then keep
repeating this process of hoping until the entire image is traversed. Thus, detectable
features are detected. As our image is an RGB image all the results are summed with
the bias to give us a squashed one-depth channel Convoluted Feature Output. The next
is the Pooling layer which is responsible for reducing the span size of the Convolved
Feature. This process also reduces dimensionality of our image patterns making it
easier to compute them. Moreover, it is also helpful for extracting prominent features
which may be rotational and share same position in each image, thus maintaining the
process of effectively training of the model. The model is using Max Pooling as default
that returns the maximum value from the part of the image that is covered by the Kernel
at that iteration. Max Pooling also reduce noise internally. After this, comes the fully
connected layers. Fully-Connected layer is usually easy way of learning combination of
features.

Fig. 9. Convolutional neural net overview
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3.6 Algorithm

After data collection is done, CSI is passed through several pre-processing techniques
in MATLAB in the following order. First Taking out each sub-carrier of every sample
one by one then de-noising and taking mean of zero as follows:

for i = 1: 57 all of matrix rows i.e. each sub-carrier as 
57 sub-carrier in one sample
Smooth signal data ( ) with Savitzky Golay

method
(Mean Centering)

(Hampel Filtering) 
end for i

After denoising, Down-sampling the sub-carriers to 200 Hz from 1000 Hz. After
down-sampling the sub-carriers are segmented into 5 equal parts representing 1 s of
window each. Then storing all segmented sub-carriers in one big matrix with labels.

for j = 1: 57 all of matrix rows i.e. each sub-carrier
Down sample the frequency by factor of 5
Segment the into 5 equal parts
Concatenate the each to form one Big matrix

, where 
end for j
Make labels for each , (0,1,2…7)

After other pre-processing tasks are done, the output sub-carriers from segmenta-
tion is wavelet transformed with labels to their category.

for k = 1: N, where N is the number of rows in the 

Wavelet Transform, Time-frequency Representation 
( ) of each row
Read Labels and store respective CWT pattern in rele-

vant directory
end for k

After wavelet transforms are done, we randomly select 85% of wavelets for training
and the remainder of wavelets are left for test and classification of what category they
belong to. Then we launch the CNN model and input data to it.
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4 Evaluation

In this section, we determine the usability of the methodology proposed in this study.
First data is passed through some pre-processing steps and converted into wavelet
transforms. Working with the limited data, we had to segment the time-series signal
data of all the waveforms collected in the data. After the data has been converted, it was
fed to a convolutional neural net. As we rely over CNN to find features for us, it does
exactly that and after a successful run of CNN over training dataset of CWT patterns.
Our set of CWT test data is passed to the trained-net to classify. The accuracy is based
on the true predicted labels.

4.1 Accuracy and Confusion Matrices

In the first training experiment, all of the sub-carrier segmented CWT were divided into
85% training and 15% testing data set. This is done randomly and the algorithm
decides which images to send to training and testing automatically. After the training is
done the classification process yields a confusion matrix as shown in Table 1. The
accuracy is decided as follows:

Accuracy1 ¼ True Predictions
Total number of tested images

� 100 ¼ 97:85%

As the related sub-carrier waves are co-related and thus it can predict classifications
of wavelet transforms with fairly good accuracy. Next, we try to judge the whole sub-
carrier set of one sample with just assisting it with few of the fragments from that class.
For instance, selecting one full CSI sample that have 57 sub-carrier wave data. In that
data we select most of the sub-carriers CWT for one sample to send to test dataset and
only few of the segments from that sample were sent to the training dataset. After this
data was trained it yielded the accuracy of 91.98% and its respective confusion matrix
is shown in Table 2. This introduction of fragments to the training was done because of
the smaller size of the whole dataset. However, this proves that the method is viable for
bigger dataset and can run classifications on unseen dataset.

Select training and testing dataset with labels
Load deep learning library ALEXNET
Define learning rate, batch size and fully connected lay-
ers
Run training process over selected CSI sub-carrier pat-
terns with ground truth

After the neural net has been trained on 85% wavelets 
then it is time to test and classify
Classify test data with learned attributes
Output Accuracy and Confusion Matrix
end.
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Table 1. Confusion matrix1

Peo
ple 0 1 2 3 4 5 6 7

0 1
00 0 0 0 0 0 0 0

1 1 9
6 1 1 0 0 1 0

2 0 1 9
7 1 0 0 0 1

3 0 1 0 9
7 1 1 0 0

4 0 0 0 0 9
9 0 1 0

5 0 1 0 1 0 9
8 1 0

6 0 0 0 0 1 0 9
8 1

7 0 0 0 1 0 1 1 9
7

Table 2. Confusion matrix2

Peo
ple 0 1 2 3 4 5 6 7

0 1
00 0 0 0 0 0 0 0

1 0 9
7 1 0 0 1 0 0

2 0 1
4

7
2 2 4 1 5 2

3 0 2 1 9
3 1 3 0 0

4 0 2 0 1 8
8 2 3 3

5 0 0 0 0 0 9
8 1 0

6 0 0 0 0 1 0 9
7 2

7 0 0 0 5 1 1 3 9
0
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4.2 Training Process and Iteration Results

The process of training that yields the Confusion Matrix2 is shown in the Table 3. The
whole process took approximately 21 h. The training was done on a single CPU. The
batch size was chosen to be 20 image patterns per iteration and the learning rate was
1.0e−4. The table consists of number of epochs, number of iterations, mini-batch
accuracy and loss and base learning rate which is mentioned. One epoch of time is
completed when all the of CWT training images are iterated in mini-batches once. The
mini-batch accuracy and loss is decided over the batch size of per iteration which is as
mentioned 20. First it tries to learn the features and predict it. This learning process is
performed for each batch and that decides its accuracy and loss. As you can see the
learning loss is reducing that points to the information that the model is learning.
Consequently, the accuracy is increasing. This mini-batch accuracy is not the accuracy
of classification of the test data but only depends upon the batch of images that
iteration.

Table 3. Training process (over single CPU)

Epoch Iteration Time elapsed (hh:
mm:ss)

Mini-batch
accuracy

Mini-batch
loss

Base
learning rate

1 1 00:00:07 10.00% 4.2973 1.0e−04
1 50 00:04:28 20.00% 1.8777 1.0e−04
1 100 00:07:56 30.00% 1.9363 1.0e−04
1 200 00:15:49 35.00% 1.7443 1.0e−04
1 500 00:39:08 45.00% 1.6446 1.0e−04
1 1000 01:17:55 60.00% 1.3516 1.0e−04
2 1400 01:46:21 70.00% 0.6726 1.0e−04
2 2000 02:20:55 80.00% 0.5751 1.0e−04
2 2500 02:49:06 90.00% 0.2439 1.0e−04
3 3000 03:17:46 90.00% 0.2363 1.0e−04
3 3500 03:46:12 85.00% 0.4313 1.0e−04
3 4000 04:14:21 100.00% 0.0478 1.0e−04
4 4500 04:43:41 95.00% 0.0960 1.0e−04
4 5000 05:18:26 95.00% 0.1244 1.0e−04
4 5500 05:53:02 100.00% 0.0863 1.0e−04
5 6000 06:27:41 95.00% 0.0911 1.0e−04
5 6500 06:58:00 100.00% 0.0396 1.0e−04
6 7000 07:30:31 100.00% 0.0486 1.0e−04
6 7500 08:04:35 100.00% 0.0368 1.0e−04
6 8000 08:39:18 100.00% 0.0055 1.0e−04
7 8500 09:14:31 100.00% 0.0119 1.0e−04
7 9000 09:48:05 100.00% 0.0102 1.0e−04
7 9500 10:22:13 100.00% 0.0188 1.0e−04
8 10000 10:53:54 100.00% 0.0375 1.0e−04

(continued)
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Table 3. (continued)

Epoch Iteration Time elapsed (hh:
mm:ss)

Mini-batch
accuracy

Mini-batch
loss

Base
learning rate

8 10500 11:29:57 100.00% 0.0118 1.0e−04
8 11000 12:07:11 100.00% 0.0102 1.0e−04
9 11500 12:40:55 100.00% 0.0078 1.0e−04
9 12000 13:13:29 100.00% 0.0137 1.0e−04
9 12500 13:41:36 100.00% 0.0018 1.0e−04
10 13000 14:09:54 100.00% 0.0006 1.0e−04
10 13500 14:37:51 100.00% 0.0037 1.0e−04
11 14000 15:05:45 100.00% 0.0007 1.0e−04
11 14500 15:33:42 100.00% 0.0084 1.0e−04
11 15000 16:01:30 100.00% 0.0084 1.0e−04
12 15500 16:29:22 100.00% 0.0051 1.0e−04
12 16000 16:57:12 100.00% 0.0044 1.0e−04
12 16500 17:25:01 100.00% 0.0001 1.0e−04
13 17000 17:52:50 100.00% 0.0014 1.0e−04
13 17500 18:20:40 100.00% 0.0101 1.0e−04
13 18000 18:48:30 100.00% 0.0006 1.0e−04
14 18500 19:16:20 100.00% 0.0109 1.0e−04
14 19000 19:44:24 100.00% 0.0008 1.0e−04
15 19500 20:12:53 100.00% 0.0258 1.0e−04
15 20000 20:41:15 100.00% 0.0012 1.0e−04
15 20500 21:09:39 100.00% 0.0139 1.0e−04
15 20850 21:29:33 100.00% 0.0031 1.0e−04

Fig. 10. Training process graphical
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Figure 10 shows the full graph of the learning and training process of the CNN.
The process took a long time to complete over a single CPU. Although the accuracy
shows 100% but it is also an approximation of the learning process as there is still some
loss in the learning process. There was room for more improvement but we approxi-
mate that the loss was nearly zero and for saving time, the training came to a conclusive
end with 15 repetitions of learning of each and every CWT patterns involving 20850
iterations in total having 1390 iterations per epoch.

4.3 Experiment with Composition of Sub-carriers

In this experiment, the sub-carrier signals for one sample consisting of 57 sub-carriers
at each antenna of one category were combined by taking average of 57 sub-carriers
and outputting only one wave. The problem for us in this technique is that it drastically
reduces size of our dataset which is already small to begin with. Consider the Fig. 4.2
and it has 57 sub-carrier information from one antenna.

We also tried composition of sub-carriers by superimposing all of them over each
other in one sample and then some cause constructive interference and some
destructive and the resultant were segmented and fed to the CNN. The results were not
very good and they were even lower to an extent which was not worth mentioning. So,
we tried with taking an average of each data point in time of every sub-carrier signal in
one sample and then do the segmentation over it after which it shows promise as may
be a good solution in some scenario.

Now when we take its mean for each point in time the whole resultant signal
becomes like in the Fig. 7 after mean of zero (Fig. 11).

After averaging all of the samples, we are left with only 14 samples each antenna
for each category. When the signal segmentation is done for one category, we are left
with only 70 CWT patterns from one antenna which is not enough as the person
standing changes his posture will change the wave and it will not be correlated to the
rest of the samples. For getting more posture and variability information from all of the
samples we need more data collection. This method may result in good accuracy if it is
done to a large dataset. However, this is yet to be tested and part of our future work.

Fig. 11. Mean centered average of sub-carriers
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With what little dataset we had we checked accuracy of this experiment. It yields
51.78% accuracy. The confusion Matrix for this experiment is given below in Table 4.

This is why we treat every sub-carrier wave of every sample from all the categories
as features of their respective class. This gives us more information and makes up for
all possible variability caused by the multipath propagation of different signals.

5 Conclusion

We have developed a way to judge a signal at sub-carrier level to classify human
occupancy in the elevator. The proposed technique involves a combination of easily
available commercial off the shelf Wi-Fi hardware. We set it up in the elevator and
configure to use 5 GHz band for increased sensitivity. The use of 5 GHz gives us a
greater number of sub-carrier channel state information and those we have used as
features. After pre-processing, all the sub-carrier segments are wavelet transformed and
then they are fed to Alexnet a CNN model for feature extraction and classification. We
rely on the capabilities of CNN for feature extraction automatically and after learning
over a set of training data of wavelet transforms of sub-carriers of different labels. A set
of unseen test wavelet transforms are given to the neural net to classify them to their
true categories.

Table 4. Confusion matrix

Peo
ple 0 1 2 3 4 5 6 7

0 4
3

2
9 0 0 1

4 0 1
4 0

1 1
4

8
6 0 0 0 0 0 0

2 1
4

1
4

2
9

1
4 0 0 2

9
1

4

3 0 2
9 0 4

3 0 0 2
9 0

4 0 0 1
4 0 4

3 
1

4 0 2
9 

5 0 2
9 0 0 0 4

3
1

4
1

4

6 1
4

1
4 0 0 0 1

4
5

7
1

4

7 1
4 0 0 0 0 0 1

4
7

1
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We experimented with compositing all the sub-carrier signals before segmenting
and wavelet transforms of each sample with mean of their respective data points in time
and some features are lost in this process and it reduces the data size and for a small
dataset the accuracy will be decreased.

That is why each sub-carrier level information is taken as a possible feature for its
class because of the small size of dataset and it gives us a good point to start. The
model predicts the sub-carrier wavelet transforms with more than 97% accuracy and
when we feed a complete sample of unseen patterns for respective categories with only
few segments of them as training, the model predicts them with more than 91%
accuracy. This proves that when training over a large dataset of several hundred
samples of CSI of each category it will yield a good percentage of accuracy even for
unseen samples.
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