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Abstract. Due to the technological advances of micro-electro-
mechanical sensor and wireless sensor network, gait analysis has been
widely adopted as an significant indicator of mobility impairment for
stroke survivors. This paper aims to propose an wearable computing
based gait impairment evaluation method with distribute inertial sen-
sor unit (IMU) mounted on human lower limbs. Temporal-spacial gait
metrics were evaluated on more than twenty post stroke patients and
ten healthy control subjects in the 10-meters-walk-test. Experimental
results shown that significant differences exist between stroke patients
and healthy subject in terms of various gait metrics. The extracted gait
metrics are consistent with clinical observations, and the position esti-
mation accuracy has been validated by optical device. The proposed
method has the potential to serve as an objective and cost-efficient tool
for rehabilitation-assisting therapy for post stroke survivors in clinical
practice.

Keywords: Body sensor network · Human gait analysis · Information
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1 Introduction

As a fundamental human need, people’s health needs are constantly increasing
with the development of social economy. Especially in the reality of accelerated
aging of the population all over the world. One fifth people will be over the age
of 60 by 2050 according to the statistics of United Nations. This means that the
need for devices with health monitoring and managing functions will continue
to grow. The health crisis is likely to become more and more severe, especially
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for some chronic diseases. For example, stroke is a leading cause of death all
around the world as population ages. Nearly four fifths of stroke survivors are
suffering from hemiparesis which tends to severely deteriorate limbs mobility due
to muscle weakness and Joint degeneration. Walking dysfunction is one of the
main problems in the rehabilitation of stroke patients. A typical symptom man-
ifest as gait disorder, characterized by asymmetry between dual feet, insufficient
foot elevation, deviant gait phase distribution and reduced range of joint motion
(ROM) such as ankle joint. Note that ankle joint is an essential clinical con-
cern, i.e., the plantarflexion and dorsalflexion come from ankle joint are used as
an evaluation factor by clinic in post stroke rehabilitation programs [1–5]. Gait
assessment has thus become a useful tool to study the effect of gait retraining
in stroke patients.

Gait is the external manifestation of human body structure and movement,
motor regulation system, behavior and mental activity during walking. Any
nerve, muscle and joint disease can lead to walking dysfunction [6–9]. Patho-
logical gait refers to the abnormal state of uncoordinated walking. It is actu-
ally caused by diseases of the nervous and motor systems of the human body,
skewness of the pelvis, trunk lateral flexion and other reasons. Gait analysis
system is based on wearable motion capture system, which captures the move-
ment data of lower limbs and then analyzes and evaluates the walking state
of people. Traditional optical device based human gait tracking approach and
pressure sensor based methods universally suffer from high cost and rigorous
requirements of testing setup, hence limited the larger scale application in the
field [10,11]. Regardless of the approach, gait parameters derived from wearable
inertial sensors have showed significant differeces between post stroke patients
with walking aids and healthy subjects able to walk normally without auxiliary
facilities [12–15].

Fig. 1. Three-dimensional anatomical structure and foot movement schematic (a) three
planes of the human body (b) foot plantarflexion and dorsiflexion

The three-dimensional anatomical structure is the reference from which all
other orientation description are based [16–19], where the subjects’ faces are
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directed forward, while the toes facing forward, as shown in Fig. 1(a). In this
case, three anatomical planes can be defined: the sagittal plane, the transverse
plane and the coronal plane, respectively. The coronal plane divides the body
into anterior (front) and posterior (rear) sections. The transverse plane divides
the body into superior (upper) and inferior (lower) sections. The sagittal plane
divides the body into left and right halves. With regards to gait analysis, the
majority of movements occur within the sagittal plane. Note that the ankle
movement to point the toes is called plantarflexion while the movement to bring
the toes closer to the body is called dorsiflexion, as shown in Fig. 1(b).

2 Methodology and Materials

2.1 Hardware Platform Based on Wearable IMU

The self-made sensor module weights less than 20 g, the maximum size is not
more than 60 mm. The total power consumption does not exceed 200 mW. The
lightweight design of sensor module is for the demand of gait analysis and
intended to have minimal effect on natural gait of the subjects. The inertial
sensor array specification is shown in Table 1. We have designed a bandage that
binds the sensor tightly on lower limbs, avoiding direct contact with the skin
and allowing the sensor nodes to be adapted to different types of shoes without
compromising the reliability of the sensor installation. In the gait assessment
scenario, the subject wear multiple sensor nodes on both lower limbs, and their
daily activities will not be affected. Movement data from wearable sensors were
recorded when the subjects walked at an preferred speed for 10 m along straight
line path. The embedded operating system μCOS is adopted to collect the raw
sensor data and transmit the data to the host through 2.4 Ghz wireless commu-
nication with the data transmission rate of 100 Hz. In addition to real-time wire-
less transmission, the system can rely on the memory card for offline recording,
which supporting more than 10 h of continuous monitoring. This performance
enhances its portability and is very helpful in outdoor testing scenario, where
subjects are not restricted to stay in the settled wireless communication coverage
area. Figure 2 illustrate the raw motion data of dual foot during normal walking.

Table 1. Inertial sensor array specification

Unit Accelerometer Gyroscope Magnetometer

Dimensions 3 axes 3 axes 3 axes

Dynamic scope ±50 m/s2 ±1200◦/s ±750 mGauss

Bandwidth 30 Hz 40 Hz 20 Hz

Nonlinearity 0.2% 0.1% 0.25%

Axis misalignment 0.1◦ 0.1◦ 0.1◦
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Fig. 2. Raw data collected from IMU (a) Acceleration measurement (b) Gyroscope
measurement (c) Magnetometer measurement

The data from the wearable inertial sensors are compared with measurements
obtained from an optical motion tracking system. On account of the misalign-
ment error, the accelerometer is accurately calibrated with a linear least squares
method. Note that the magnetometer performance is easily distracted by other
magnetic source [14,20–23]. Therefore, it is necessary to estimate the magnetic
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Fig. 3. Fitting results of ellipsoid before and after calibration (a) raw magnetometer
measurement (b) ellipsoid fitting before calibration (c) magnetometer measurement
after calibration (d) ellipsoid fitting after calibration

interference when using the observation data of the magnetometer to estimate
the heading. Set msmsms = [ms

x,ms
y,m

s
z]| as the measured magnetic field for ground

reference, when meet the following criterion, can be directly used magnetic mea-
surement. The threshold λ is set to 0.2 after several tries and errors. Figure 3(a)
(b) and (c) (d) are fitting results of ellipsoid before and after calibration respec-
tively. One rotation of the magnetometer is enough to ensure the accuracy of
the magnetometer calibration.
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2.2 Gait Metrics Definition

Gait metrics definition are described in Table 2. The statistics of gait metrics
may varied greatly between normal and pathological status. For example, under
normal circumstances, the swing phase accounts for 40% of a gait cycle, and the
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stance phase takes the remaining 60% [24–27]. For stroke patients, in order to
alleviate the pain caused by dystonia, they tend to adopt a relatively comfort-
able posture, which leads to the increase of stance phase, along with lower foot
elevation and gait asymmetry.

Table 2. Typical spatio-temporal gait metrics

Gait metrics Description

Stride length (m) Distance between two consecutive footprint of
the same foot

Walking speed
(m/s)

Stride length divided by walking cycle

Stance ratio (s) The proportion of the stance phase in a single
walking cycle

Foot elevation (m) Foot elevation in swing phase, which reflects the
muscular strength

Gait symmetry Symmetry of walking motion between left and
right side of lower limbs

Ankle ROM (◦) Range of ankle flexion during a single stride

q = q0 + q1i + q2j + q3k (2)

This research adopts quaternion to represent rigid body rotation, as illus-
trated in Eq. 2. Note that the rotation from body frame to reference frame can
be represented by a rotation angle α around a phasor axis. It is widely acknowl-
edged that the rotation matrix C can describe a rotation of rigid body as follows:

C =

⎡
⎣

q20 + q21 − q22 − q23 2(q1q2 + q0q3) 2(q1q3 − q0q2)
2(q1q2-q0q3) q20 − q21 + q22 − q23 2(q2q3 + q0q1)

2(q1q3 + q0q2) 2(q2q3-q0q1) q20 − q21 − q22 + q23

⎤
⎦ (3)

where

ψ = − arctan(
2(q1q2 − q0q3)

q20 + q21 − q22 − q23
) (4)

θ = arcsin(2(q2q3 + q0q1)) (5)

ϕ = − arctan(
2(q1q3 − q0q2)

q20 − q21 − q22 + q23
) (6)

The combination of roll angle ϕ, pitch angle θ and yaw angle ψ determine
the three-dimensional orientation, which lay a solid foundation for position esti-
mation.
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Fig. 4. Gait phase detection by k-mean clustering algorithm (a) swing phases detection
(b) stance phases detection

As illustrated in Fig. 4, the k-mean clustering algorithm efficiently classifies
the detected swing phases and stance phases into true and false clusters based
on time durations, respectively. Meanwhile, the extreme values of each cluster
are illustrated by red lines. Results shown that time constraint parameters were
determined adaptively for different data sets using the k-mean algorithm, in this
case, false gait phases detection due to sensor data fluctuation could be properly
eliminated (Fig. 4).

Fig. 5. Experimental scene and optical system validation (a) Inertial sensor installation
and high reflection marker for optical motion tracking (b) 3D orientation and position
ground truth provided by optical apparatus

2.3 Experimental Results and Discussions

In this research, the subjects included the patients group and the control group.
The patients group consists of twenty stroke survivors (ten females and ten
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Table 3. Gait parameters comparison for healthy subjects and patients. Results are
presented as mean (±SD)

Gait metrics Healthy subjects Stroke survivors

Stride length (m) 1.17± 0.15 0.72± 0.48

Walking speed (m/s) 0.96± 0.15 0.64± 0.37

Stance ratio (%) 59± 4 70± 16

Foot elevation (m) 0.22± 0.05 0.011± 0.09

Gait symmetry 0.93± 0.07 0.74± 0.26

Ankle ROM (◦) 66± 9 39± 18

Table 4. 3D position estimation error

Position error X-axis (m) Y-axis (m) Z-axis (m)

Trial 1 0.017± 0.005 0.023± 0.004 0.008± 0.003

Trial 2 0.014± 0.003 0.019± 0.005 0.006± 0.004

Fig. 6. Results of comparative experiments using Optitrack device

males age from 38 to 67) with varying degrees of gait abnormality. The control
group includes ten healthy subjects (five females and five males age from 22 to
46) who participated in the control tests. The tests consist of multiple walking
trials along the specific straight line path for each subject at their comfortable
pace. The experiment took place in the corridor of first affiliated hospital of
Dalian Medical University. The extracted gait metrics are presented in Table 3,
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the stride lengths, walking speed, foot elevation, gait symmetry and ankle range
of motion (ROM) are relatively low in stroke survivors, which are consistent
with clinical observation. The mean value of stride length of healthy subjects
are 1.12± 0.18, with the minimum being 0.98 m. The system validation scenario
is shown in Fig. 5, and the results of comparative experiments using Optitrack
device are shown in Table 4 and Fig. 6.

3 Conclusions

In this work, an IMU based system for ambulatory gait monitoring was pre-
sented. The physical interface is connected to the computer by a Bluetooth link,
and provides feedback to the medical staff and patients while performing walking
trials. The system allows for in-home rehabilitation at an affordable cost.

The essential aspect of wearables sensors in healthcare applications is mon-
itoring the health of users. Body sensors network provides the foundation of
numerous medical applications by measuring and processing physiological infor-
mation upon which medical staff can make intelligent decisions and inform the
subjects with quantitative data. Particularly, IMU sensors consist of accelerom-
eters and gyroscopes are readily available on contemporary smartphones and
wearable devices. They have been widely adopted in the area of limb movement
disorder recognition, fall detection and step counting applications being promi-
nent examples in this field. In the long run, only the combination of hospital,
data and equipment can fully reflect the advantages of big data and wearable
computing. The battery life, data processing, data collection, transmission and
the ability of computers to analyze the data independently are the key to the
ultimate solution of gait analysis in the big data era.
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