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Abstract. In response to the demand of memory efficient algorithms
for electrocardiogram (ECG) signal processing and anomaly detection
on wearable and mobile devices, an implementation of the antidic-
tionary coding algorithm for memory constrained devices is presented.
Pre-trained finite-state probabilistic models built from quantized ECG
sequences were constructed in an offline fashion and their performance
was evaluated on a set of test signals. The low complexity requirements
of the models is confirmed with a port of a pre-trained model of the
algorithm into a mobile device without incurring on excessive use of
computational resources.
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1 Introduction

The Internet of things (IoT) revolution has driven the use of wearable devices
for fitness tracking and health monitoring, empowering patients with the capa-
bility of doing self assessments about their health condition. The use of such
technologies is expected to increment in the foreseeable future [1]. In that sense,
the ambulatory monitoring of electrocardiogram (ECG) signals has proven to be
of great importance for the early detection and treatment of a broad range of
cardiac diseases. The small form factor and low power consumption characteris-
tics of modern ECG monitors assure the necessity of efficient algorithms for the
processing of the biosignals. Moreover, efficient lossless compression schemes are
required in order to reduce the amounts of disk space for storage and bandwidth
for wireless transmission.

The algorithm for Data Compression with Antidictionaries (DCA), first intro-
duced by Crochemore et al. [2], makes use of the set of patterns that never appear
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on the source data set to effectively predict redundant symbols. The feasibility of
the DCA for the compression of ECG signals has been previously studied, and it
was also shown that the DCA method can be used for the detection of irregular
heart beat patterns [3]. The algorithm constructs finite-state probabilistic mod-
els with the forbidden patterns obtained from the antidictionaries. The presence
of expected patterns within the signals causes the algorithm to output a low and
steady Compression Ratio, while the appearance of forbidden patterns such as
those that occur on arrhythmias causes an increase on the Compression Ratio,
thus enabling the DCA algorithm to be suitable for detection tasks.

It has been also shown that by translating the domain of the ECG distribu-
tion into a finite set of small integers it is possible to implement the detection
algorithm with the use of less memory resources while maintaining an accept-
able performance. This was done by the implementation of differentiation and
a quantization stages on the signal processing chain that in effect redefines the
signal in a restricted alphabet set [4].

In this paper, we present the results of porting the antidictionary coding algo-
rithm into a mobile platform. Pre-trained models for the detection of Premature
Ventricular Contractions (PVC) have been implemented on the IOS operating
system, requiring relative small amounts of computational resources to process
real time streams of ECG data transmitted through the Bluetooth Low Energy
(LE) communication standard. Additionally, a new quantization method is intro-
duced with the use of percentile statistical measurements from the ECG distri-
bution.

Contents are presented in the following order: In Sect. 2 a brief overview
on the characteristics of the ECG signal and the PVC arrhythmia will be pre-
sented. In Sect. 3 the theory behind Antidictionary Coding will be discussed.
In Sect. 4, a description of the offline processing of the ECG is given, detailing
the process involve in the construction of the probabilistic models and the selec-
tion criteria followed for picking the trained models used for a subsequent stage
of online experimentation. Finally, in Sect. 5 the results of porting the offline-
trained model into an IOS application for online processing of the ECG samples
are shown.

2 The ECG Signal and Premature Ventricular
Contractions

The Electrocardiogram (ECG) is a signal that represents the electrical activity of
the heart. Usually measured directly on the body’s surface, the ECG waveform
is mainly composed of five characteristic components denoted by the letters P,
Q, R, S and T. Each component marks the location of a specific peak or valley
on the ECG signal that corresponds to a change in electrical activity in the heart
and the consequent movement of the cardiac muscle. Sometimes an U component
is also present following the T peak. The left part of Fig. 1 displays an overview
of a typical ECG waveform. The P-peak on the waveform is generated with the
activation of the upper chambers of the heart, the left and right atria, while the
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QRS complex and the T-peak are generated with the activation process of the
two lower chambers, the left and right ventricles [5].

The R-R interval is also pointed on the left side of Fig. 1, it is a measure
of the time elapsed between consecutive heartbeats and is an important metric
usually used for the calculation of the heart rate.

Fig. 1. Two ECG waveforms showing 4 heartbeats each. The second heartbeat on the
left figure displays the location of main peaks and valleys that characterize the signal.
The right figure shows an ECG waveform containing the occurrence of a PVC on the
third heartbeat.

Premature Ventricular Contractions (PVC) are abnormal contractions that
occur earlier than expected within the normal hearth cycle. The PVCs are gen-
erated on the ventricles, unlike the electrical impulses that drive the normal
heart cycle, which are generated on the sinoatrial node [6]. The occurrence of
PVCs can be an important indicator of the presence of an underlaying hearth
disease, and they can be recognized on the ECG as abnormal and wide QRS
complexes [7]. The right part of Fig. 1 shows an ECG waveform that contains
one PVC. The occurrence of the premature heart beat disrupts the normal R-R
interval and thus causing variability in the heart rate.

3 Finite State Machines (FSM) Probability Models
with Antidictionaries

Let Σm be a finite set of integers {0, 1, . . . ,m − 1}, called m-ary alphabet. For
a string xn = x1x2 . . . xn of length n, we consider the set D(xn) called the
dictionary of xn, as the set that contains all substrings of xn including the null
string λ of length zero. The antidictionary A(xn) of xn is defined as the set of
minimal strings that never appear in xn. An element v = v1v2 . . . vk in A(xn) is
called Minimal Forbidden Word (MFW) which must satisfy the following three
conditions:
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1. v /∈ D(xn)
2. A one-symbol shorter prefix of v , defined as p(v) = v1v2...vk−1, must be

contained in D(xn).
3. A one-symbol shorter suffix of v , defined as s(v) = v2v3...vk, must be also

contained in D(xn).

Data compression is achieved by the Data Compression using Antidictionary
(DCA) algorithm [8]. From A(xn), a proper set of MFWs is selected for the
construction of a finite state machine, hereafter referred as FSM. The FSM can
be utilized to build a probabilistic model that normally accepts substrings of
xn, but in the presence of an MFW it will lock itself in a terminal state. A
simple example is introduced next to illustrate the concepts just established.
Consider a string w = 2210010 over Σ3 = {0, 1, 2}. As discussed previously, the
antidictionary A(w) of w is given by the set of all MFWs of w , thus A(w) =
{02, 000, 11, 12, 101, 20, 222, 0100}. By taking a subset of A(w), say As(w) =
{02, 11, 20}, we construct a FSM probabilistic model, as shown in Fig. 2.

The FSM consists of seven states or nodes, with four states S1, S2, S3 and S4

being the internal states and the remaining three states R1, R2 and R3 are the
external states. Each internal state points to another state (or to itself) through
an edge, in Fig. 2 an edge is defined by an arrow and the accompanying symbol
that causes the transition to a new state.

Fig. 2. An FSM model for MFWs 02, 11 and 20. Coloured edges denote the corre-
sponding transitions after a forbidden state is reached. (Color figure online)

Now assume that the ith symbol of xn(1 ≤ i ≤ n) is being processed by
the FSM, and we define the next state reached sequentially by xi as si, where
1 ≤ i < n and s0 denotes the initial state of the FSM. Moreover, we assume
that the state sequence sm = s0s1 . . . sm is uniquely determined by the input
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string xm = x1x2 . . . xm(1 ≤ m ≤ n). The probability of transitioning to a state
specified by the next symbol on the sequence, P (xi+1|si), is given by

P (xi+1|si) =
N(xi+1|si)∑
c∈Σ N(c|si) , 0 ≤ i < n (1)

where N(c|si) denotes the number of times that a transition has happened from
state si with symbol c.

The algorithm’s output for a given symbol that is being encoded depends on
whether the next transition leads to an internal state or to an external state.
For a given integer sequence 1 ≤ I1 < I2 < · · · < It+1 = n, if the Ijth state
(1 ≤ j ≤ t) to be reached corresponds to an external state and the final state
It+1 does not necessary so, then it can be concluded that an MFW is present as
a substring of the input sequence and the algorithm outputs the corresponding
interval Ij of occurrence of the transition to the external state.

In the case of a transition to an external state si through symbol xi, the algo-
rithm would point next to the node that covers the sequence v = xi−s . . . xi+1,
where v coincides with the Longest Common Prefix with one MFW in A(w) and
(0 ≤ s ≤ i − 1).

In the case that the transition leads to an internal state, the algorithm’s
output depends on the total number of available edges, denoted by nE , that lead
to terminal states from the current node. If nE = 1, then the next symbol can
be predicted and the algorithm does not output anything. However, if nE > 1,
then the algorithm outputs the transition probability P (xi+1|si) associated with
the next symbol xi+1 [3].

4 Description of the Detection System

Figure 3 shows the structure of the proposed detection system. The details con-
cerning each stage in the processing pipeline will be discussed next.

4.1 Signal Differentiation

The shape of the probability distribution constructed from the ECG signals can
be affected by the presence of noise and unwanted artifacts in the signals [9]. The
presence of arrhythmia components within the signal can also cause asymmetry
and flattening on the distribution [10]. The left part of Fig. 4 shows a histogram
built from an ECG record consisting of 650,000 samples (with 11 bit resolution).
The distribution clearly displays the asymmetry and flattening characteristics
discussed earlier.

The detection algorithm proposed in this study relies in a quantization pro-
cess aiming to convey the information contained in the ECG probability distri-
bution into a new distribution defined over a smaller alphabet set. The irregular-
ities in the shape of the ECG distribution can lead to uneven distribution of the
samples in the new probability distribution created from the quantized signals.
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Fig. 3. Schematic diagram of the detection system.

To address this inconvenience, we introduce a differentiation step prior to the
quantization process. In this context, we use the term differentiation to refer to
the operation of subtraction of consecutive samples in the original signals.

For a sampled signal sequence denoted by zn = z1z2 . . . zn where zi ∈
Σ2048, 1 ≤ i ≤ n, the differentiation process that yields the output sequence
yn = y1y2 . . . yn is stated as follows:

yi =

{
zi i = 1
zi − zi−1 1 < i ≤ n

(2)

where |yi| ≤ 2047 (1 ≤ i ≤ n).
The histogram built from each component of y shows a shape that resembles

the Laplace distribution although the former is a discrete distribution while the
latter is a continuous one, with a considerable less amount of dispersion than
the distribution of x . The right part of Fig. 4 displays the histogram of the
distribution obtained after the application of the differentiation process on the
ECG signal.
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Fig. 4. Histograms for raw ECG signal distribution (left) and the resultant distribution
after the differentiation process (right).

4.2 Signal Quantization

The next step in the signal processing pipeline aims to translate the information
contained in the differential signals into a domain defined over a smaller alphabet
set. Let’s define Q as the odd number of quantization levels under which the
quantization will take place. Any quantized symbol can be defined only on the
set of integers {0, 1, . . . , Q − 1}. The quantization process is carried out with
a simple ranking system that assigns each sample its corresponding quantized
symbol depending on its differential amplitude value.

Hereafter, let us denote a sequence of quantized symbols of length n by a
string xn over ΣQ where m = Q. The ith quantized symbol xi on the sequence
xn = x1x2 . . . xn ∈ Σn

Q can be obtained from the differential sequence yn and
the set of quantization parameters {q0, q1, . . . , qQ−2} where ql’s (0 ≤ l ≤ Q − 2)
are reals and qi < qj (0 ≤ i < j ≤ Q − 2).

Then, the quantization rule is given as follows:

xi =

⎧
⎪⎨

⎪⎩

0 yi ≤ q0,

l ql−1 < yi ≤ ql

Q − 2 yi > qQ−2.

(3)

The quantization procedure is illustrated on Fig. 5. Previous experiments
with different quantization levels have shown that the algorithm perform at its
best when Q = 7. Next, for the definition of the quantization parameters, lets
consider the percentile Pr as the value on the ECG distribution below which a
percentage r(%) of the samples is allocated. Then, the quantization parameters
are given as:

q0 = P1.5, q1 = P10, q2 = P25, q3 = P75, q4 = P90, q5 = P98.5 (4)

An example of the quantization operation over a differential distribution is
presented on Fig. 5 for a value of Q = 7.
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Fig. 5. Quantization operation on a differential ECG distribution (left) and the resul-
tant quantized distribution (right). The location of the quantization parameters and
the corresponding interval for each symbol are highlighted.

4.3 Training Data and Antidictinary AD Generation

The antidictionary set A to be used in the encoding process is generated from a
segment of ECG data in a preprocessing stage as follows:

Step 1. First, let k be a certain positive integer denoting the total number of
training files from which the antidictionary A will be constructed. Each training
file u i (1 ≤ i ≤ k) consists of 5 ECG waveforms (roughly between 3 and 5.5
seconds of ECG recording). Here, a waveform is defined as the portion of the
signal covered by one R-R interval, as is described on the left waveform on
Fig. 1. For each training file u i an antidictionary set A(u i) is constructed and
the process results in the family of antidictionaries

AK = {A(u1),A(u2), . . . ,A(uk)} .
The process is described on Fig. 6.
Step 2. The antidictionary set A is conformed primarily by the set of MFWs

that show a higher frequency of occurrence among all the generated antidic-
tionaries A(u1),A(u2), . . . ,A(uk) in Ak. Due to the periodic nature of the ECG
signal, some MFWs are expected to appear constantly among the majority of
the generated antidictionaries. However, the dynamic variations in the amplitude
and periods of the training waveforms induce some variability on the frequency
of occurrence of some MFWs. Given an MFW w , the frequency of occurrence
f(w) on w is given by

f(w) = |{i |w ∈ A(u i), 1 ≤ i ≤ k}| . (5)

Step 3. Based on those f values, the MFWs are sorted and finally, the
antidictionary set A can then be built with the MFWs that exhibit a relatively
high frequency of occurrence. Experimental trials show that the MFWs with the
higher frequency of occurrence are in general strings of length one or two. Those
short strings usually perform poorly when implemented in the FSM model in
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the detection scheme. In that sense, for the construction of A the constraint
of choosing MFWs of length greater than or equal to 3 is imposed in order to
achieve better performance in the detection algorithm.

Fig. 6. Antidictionary set construction from the ECG training files set.

4.4 FSM Construction and Detection Criteria

With the appropriate set of MFWs picked from the antidictionary set A, the
FSM can be build alongside the accompanying probability model. Given a set
of MFWs defined over an alphabet ΣQ, in the implementation of the FSM each
state is modeled with two memory registers for each outgoing edge associated
with symbol c ∈ ΣQ. The first register acts as a pointer to the next state reached
through symbol c and the second register is implemented as a counter that holds
the number of transitions to the next state though c. For the particular case
of the FSM with Q = 3 on Fig. 2, there are seven states in total with three
outgoing edges per state. Thus, the number of memory registers necessary for
the implementation of the FSM would be equal to 42.

Once the FSM model is constructed, the transition probabilities are calcu-
lated by performing a second pass in the training data and updating the corre-
sponding counter for each state transition.

Let xn = x1x2 . . . xn be a string being processed with the detection algorithm
by means of a FSM constructed with the appropriate probabilistic model. For
1 ≤ i ≤ n and a given number d > 0, the instantaneous compression ratio Ri

defined on a sliding window wi of size d is given by

Ri =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1
d

i+1∑

k=i−d+2

ln
1

P (xk|sk−1)
i − d > 0,

1
i

i+1∑

k=2

ln
1

P (xk|sk−1)
i − d ≤ 0.

(6)

where P (xk|sk−1) is the transition probability defined in (1).
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A threshold value T is chosen such as an instantaneous compression ratio Ri

greater than T will signal the presence of an arrhythmia pattern in the input
string. Figure 7 illustrates the case of a positive detection when the PCV located
around 156 s time stamp causes an increase on the compression ratio, effectively
surpassing the set threshold (2.5).

Fig. 7. Positive detection of a PVC heartbeat. The top figure displays an ECG sequence
containing one PVC heartbeat while the bottom figure shows how the Instantaneous
Compression Ratio goes above the set threshold value (T = 2.5), likely due to a forbid-
den pattern occurring within PVC.

5 Offline Preprocessing, Model Selection and Accuracy
Assessment of FSM Models

In this section we describe the process involving the experimentation with the
ECG records to obtain the best performance FSM models in an offline fash-
ion. The test signals used for the experiments were taken from the MIT-BIH
Arrhythmia Database, a library of ECG records commonly used for the evalua-
tion of ECG arrhythmia detectors. It consists of 48 records, each one comprising
30 min of ECG recording on two channels digitized at 360 samples per second
per channel at an 11-bit resolution spanning a 10 mV dynamic range. Each ECG
record contains annotations given by two or more cardiologists, thus providing a
medical grade benchmark for the assessment of the quality of arrhythmia detec-
tors [11,12].
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In each experiment, training sets consisting of 50 training files (one training
file containing 5 ECG waveforms, and one waveform consisting of the portion
of ECG data covering the R-R segment) were used for the constructions of the
antidictionaries. Only portions of the ECG signals from the MIT-BIH Arrhyth-
mia Database annotated as “Normal” were employed for the construction of the
training sets.

The MFWs from the antidictionary set where then sorted according to their
f values, as described on Sect. 4.3. A common antidictionary set was then con-
structed from the top 20 MFWs on the sorted set. From the common anti-
dictionary set, 190 different FSM models where then constructed taking into
consideration all possible combinations of 2 MFWs.

The transition probabilities for each FSM model were calculated from the
segment of training data previously used for the construction of the antidic-
tionaries and then each FSM was tested with the whole ECG sequence. The
accompanying annotations files from the MIT-BIH Arrhythmia Database where
used for the posterior calculation of the detection evaluation metrics sensitiv-
ity and specificity. The sensitivity, or true positive rate, measures the ratio of
true arrhythmia heartbeats detected while the specificity measures the ratio of
normal heartbeats identified as such by the algorithm.

Table 1 shows the results obtained after processing 6 records from the
database. The differentiation process resulted on distributions centered around
zero with shapes similar to the distribution shown on the right part of Fig. 4.
For the determination of the set of quantization parameters, the percentiles val-
ues where calculated from the distribution of ECG samples obtained within the
first minute of recording (corresponding to 21,600 samples for records from the
MIT-BIH Arrhythmia Database).

The results on Table 1 for records 105, 205 and 228 correspond to cases with
FSM models of 2 MFWs, while in the cases of records 201, 215 and 221 slightly
bigger models of 4 MFWs were employed to improve detection accuracy.

Table 2 contains the average metrics (sensitivity and specificity) obtained
after processing the 6 aforementioned ECG records, where the metrics of other
methods available on literature are given for comparison purposes.

While the proposed detection algorithm achieves high average values of Sen-
sitivity, the average Specificity suffers in comparison with other methods, as
described on Table 2. It is important to notice, however, that no prior treatment
of the test signals was carried for conditioning or noise removal. It is very plau-
sible that improvements on Specificity would follow with the use of appropriate
methods for noise removal.

For the detection process, a sliding window size of d = 25 symbols was used
for the calculation of the instantaneous compression ratio Ri and a dynamic
range of threshold values T (in the range 1.8 to 3.2) was used to have an insight
on how the variability on T can affect the detection process.

Table 3 shows a comparative description of the antidictionaries and FSM
implementation characteristics for the proposed detection system and the detec-
tion system proposed in [3]. For the calculation of the antidictionary size values
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presented on Table 2, a byte has been assigned to describe every quantized sym-
bol that conform an MFW.

Figure 8 displays the Receiver Operating Characteristics (ROC) curves for
three different FSM built for record 228, evaluated on a range of threshold values
T raging from 1.8 to 3.2 on increments of 0.01 units. The set of MFWs for FSM
Model-1 is AD1 = {656, 513} while the antidictionary sets for the remaining two
models (FSM Model-2 and FSM Model-3) are AD2 = {656, 5351} and AD2 =
{013, 514}, respectively.

A common MFW, 656, can be found on the antidictionary set of the two
best performing FSM models (FSM Model-1 and FSM Model-2), thus suggest-
ing that MFW very likely corresponds to a forbidden pattern within the PVCs
morphology.

Table 1. Table of results (%) for the detection of PVC on 6 ECG records from the
MIT-BIH database.

Record Sen. Spec.

105 100 94.77

201 98.98 98.40

205 97.18 99.57

215 93.29 79.74

221 97.97 94.43

228 97.79 96.44

Average 97.53 93.89

6 Implementation on a Mobile Platform

The second stage of experimentation consisted on the port of the detection algo-
rithm into a mobile environment for the evaluation of performance at online
operation. The experimental setup is described on Fig. 9. A pre-trained FSM
model has been ported in addition to a quantization stage for the processing of
a stream of ECG samples on real time. Continuing with the same methodology
used on off-line experimentation, the records from the MIT-BIH Arrhythmia
databased have been employed for testing the algorithm.

6.1 Wearable ECG Hardware Characteristics

A custom hardware configuration has been used to emulate the characteristics of
a wearable ECG sensor handling the wireless transmissions of the ECG samples
obtained from the annotated files on the MIT-BIH Arrhythmia database. The
virtual wearable monitor is based around the ESP32-WROOM-32 Microcon-
troller Unint from Espressif Systems [16]. The ESP32-WROOM-32 contains the
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Table 2. Comparison of the proposed method with other arrhythmia detectors.

Algorithm Sensitivity Specificity

Proposed method 97.53 93.89

Ota et al. [3] 97.9 98.6

Ittatinut et al. [13] 91.05 99.55

Adnane et al. [14] 97.21 98.67

Alajlan et al. [15] 100 93.71

Table 3. Antidictionaries and FSM implementation characteristics for quantized sig-
nals from six different ECG records. Results obtained previously in [3] are given for
comparison purposes.

ECG record 105 201 205 215 221 228

Results obtained on Ota et al. [3]

Number of MFWs 281 90 56 178 85 189

AD size (bits) 3,586 996 436 1,792 988 2,316

FSM size (kB) 24.2 6.5 2.6 11.5 6.5 15.4

Results obtained with the proposed method

Number of MFWs 2 4 2 4 4 2

AD size (bits) 48 120 48 144 112 48

FSM size (kB) 1.6 3.2 1.6 3.6 2.5 1.6

ESP32 System on a Chip (SoC) device alongside flash memory and the hard-
ware requirements to achieving low power Wi-Fi and Bluetooth Low Energy
(LE) communication.

The Bluetooth LE standard enables low power communication between the
ECG sensor and the mobile device and at the same time facilitates the easy
implementation of the services both in the client and the server side, reducing
the development time of the mobile application.

The ECG samples have been read from binary files stored on a SD card with
the use of one of the multiple on-board Serial Peripheral Interface (SPI) buses
available on the ESP32-WROOM-32 device. The ESP32 (SoC) device supports a
broad range of open software initiatives, like the Arduino Open Software project.
In our case, the whole configuration of the ESP32 core device was carried out
on top of the SPI and Bluetooth libraries freely provided by Espressif Systems
and the open source community [17].

In accordance to the Bluetooth LE specification, a custom Bluetooth Service
and its corresponding Characteristic were implemented both in the wearable
device and the mobile application [18]. Two randomly generated Universally
Unique IDs (UUID) where used to identify both the Service and its Characteris-
tic. ECG samples are treated as 16 bits unsigned numbers, and two samples are
transmitted every 6 mS, for a rate of 333 ECG samples per second. The Blue-
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Fig. 8. Receiver Operating Characteristics curves for three different FSM trained to
process record 228 under a wide range of threshold values (T ). Maximum accuracy
values and the corresponding threshold values for each model are given as follows:
FSM Model-1 achieving 97.02% accuracy at T = 2.56, FSM Model-2 reaching 94.68 %
at T = 2.67 and FSM Model-3 with 86.73% accuracy at T = 2.63.

tooth Characteristic is granted with the “Notify” property, and each time two
samples are ready for transmission the notification alerts the mobile applications
Bluetooth instance.

6.2 Mobile Application Deployment

The mobile application has been developed on the IOS mobile operating system.
An object oriented approach has been adopted for the implementation of the
quantization and FSM related data structures, to speed up development and
facilitate code readability.

The deployed application was evaluated with Apple’s Xcode development
environment and tested on an Iphone 6s device. By using Xcode’s memory pro-
filer and benchmark tools, the performance of the application was evaluated with
an average of 30MB of memory and 65% of CPU usage on one of the cores of the
mobile device while processing the ECG samples in an on-line fashion. Figure 10
shows a screenshot of the running mobile application alongside the prototype
of the ECG sensor. An USB connection is used to upload the firmware on the
ESP32-WROOM-32 unit and to power it during operation.
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Fig. 9. Schematic digram of the experimental setup used for the evaluation of the
detection algorithm on an mobile platform.

7 Discussion

In order to increase the sensitivity values on the measurements, further care
should be taken for handling baseline wandering, mains interference and other
sources of noise.

The offline processing of the records for the determination of the best set
of antidictionaries and the construction of FSM models can prove to be a com-
putationally intensive process, as each FSM model is evaluated with the entire
ECG sequence over a range of threshold values. Next stages in our research
efforts include the identification of specific MFWs patterns for PVCs and other
types of arrhythmias to narrow down the pool of target MFWs and simplify the
preprocessing stage.

The mobile application performed with a constant average usage of 30 MB
of system memory while running a FSM of 9 nodes in the background and
processing the ECG record 201 from the MIT-BIH database. The use of bigger
FSM models for increasing accuracy should not lead to excessive increase on
memory usage.



Arrhythmia Detection with Antidictionary Coding 65

Fig. 10. The experimental setup for the online evaluation of the trained FSM models.
The emulated ECG sensor (on the left) transmits the ECG samples through Bluetooth
LE while in the mobile application the quantization and posterior processing in the
FSM is effectuated to produce the output CR waveform displayed on the phone screen.

8 Conclusion

A system for the discrimination of irregular ECG patterns based on the scheme
of antidictionary encoding applied to quantized signals has been presented, with
a proof of concept port of a pre-trained FSM model into a mobile application.

The rescaling of the ECG distribution with the differentiation and quanti-
zation operations results on lower space complexity requirements for the imple-
mentation of the FSM probabilistic models. This is evidenced on Table 3, where
an average size of 2.35 KB is calculated for the models constructed with the pro-
posed approach while the models designed from binary ECG sequences require
an average of 11.11 kB. This is further evidenced with the relatively low memory
resources usage (30.5 MB) for online processing of ECG samples on the mobile
application.

The achieved average metrics of sensitivity (97.53%) renders the proposed
detection algorithm as a feasible alternative for PVC detection. Higher sensitivity
values can be achieved with approaches such as the Gaussian Process Classifier
(GPC) method suggested in [15], this at the expense of using bigger segments
of training data and using a mix of time and frequency domain features to
differentiate the pathological heartbeats.
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Further research efforts aiming to increase the average specificity metrics
could include the evaluation of additional time domain features, such as the R-R
interval assessment made in [13] and band-limiting the ECG signal in a narrow
frequency band to eliminate high frequency noise, as happens with the Discrete
Wavelet Transform (DWT) method used on [14].

Besides, a deep dive in more specific details about the characteristic forbidden
patterns that appear in each type of heartbeat could lead to the extension of the
algorithm to a multi-class classification category.
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