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Abstract. Falls are common events among human beings and raised a
global health problem. Wearable sensors can provide quantitative assess-
ments for fall-based movements. Automatic fall detection systems based
on the wearable sensors are becoming popular in recent years. This paper
proposes a new fall detection system based on the smart insole. Each
smart insole contains pressure a pressure sensor array and can provide
abundant pressure information during the daily activities. According to
such information, the system can successfully distinguish the fall from
other activities of daily livings (ADLs) using deep learning algorithms.
To reduce the computational complexity through the classifiers, the raw
data for each sensor in the time windows are utilized. Furthermore, the
deep visualization approach is applied to provide an intuitive explana-
tion of how the deep learning system works on distinguishing the fall
events. Both quantitative and qualitative experiments are demonstrated
in this paper to prove the feasibility and effectiveness of the proposed
fall detection system.

Keywords: Pressure sensor array - Fall detection + Deep learning -
Smart insole + Deep visualization

1 Introduction

Falls are the most common incident among human beings. It poses a global health
problem. In the United States, more than 1.6 million adults receive treatment due
to the fall-related accidents every year [7], and the financial costs associated with
fall are rising in these years [10]. Approximately one-third of the aged population
fall at least once a year, and the similar reports are also generated from other
countries, such as Spain and Colombia [1]. With increasing age, the physical
changes make people more prone to falls, and the fall injuries are exacerbated.
Falls event leads to significant injuries including skin abrasions, upper limb and
hip fractures, brain injuries and general connective tissue lesions [2,11]. Falls not
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only seriously threaten the health, but also cause the psychological problem like
lowering the self-confidence and being afraid of independent life, which further
weakens the quality of daily life [9]. In the past few decades, falls detection has
attracted more attention from the public. Most of the time, the fallers might
lose consciousness and are unable to call for help. Therefore, many automatic
fall detection technologies have proposed in recent years [16].

It is generally known that the vision, sound, radar, and infrared sensors per-
form well to detect falls automatically [13]. However, these ambient sensor-based
technologies have the problem of privacy and make the seniors face many con-
straints, for example, living in a restricted zone [12,14]. In the last decades, the
development of the wearable sensor-device provides new chances for detecting
fall-related accidents. The wearable sensor-based fall detection systems eliminate
the space limitation compared with the systems based on the ambient technolo-
gies [12]. Due to the wearable accelerometers have the characters of small size
and low price, many wearable fall detection systems are designed based on such
sensors and place them on different positions on the subject of interest (SOI).
However, in these ways, SOI have to wear many sensors during daily activities,
which make them inconvenient. On the other hands, It is forgettable for the SOI
to wear complicated wearable sensors, especially for seniors. Nowadays, smart
insoles based on the wearable pressure sensors array placed in shoes can provide
sufficient information for the gait analysis [§8]. On the other hand, the character-
istics of smart insole placed in the shoe are convenient and hard to be forgotten
by the users.

In this article, we mainly focus on the fall detection based on the smart
insole. To acquire the pressure information of an area, a high-spatial-resolution
pressure sensor array has been developed over an individual pressure sensor. We
extend smart insole with 48 pressure sensors array [8] to contain 96 pressure sen-
sors for receiving more precise pressure information. The deep learning methods
are applied to make the fall detection classifier. Besides, the comparison experi-
ments of using the combinations of the smart insole with other wearable sensors
including accelerometers and gyroscopes to perform the fall detection are also
demonstrated. To further understand the deep learning model on distinguishing
fall events, the saliency visualization [3] is introduced to present how the pres-
sure information during the dynamic motion pattern contributes towards a fall
classification.

2 Related Work

Most of the fall detection systems are designed by utilizing wearable devices
[7,12,15,18]. The wearable devices are attached to clothes or part of the body
of the SOI for detecting the falls [1,7,12]. The sensors as the main components
of wearable devices measure the characteristics of the movements of SOI. The
strategies of the fall detection system mainly monitor the variables of accelera-
tion and speed primarily. The changes of the acceleration magnitude are utilized
to detect the falls. When the value of accelerometers exceeds a specific threshold,
the falls are recognized [15,19]. However, the threshold-based systems based on
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Fig. 1. The flowchart of the falls detection system. The data are collected from the
pressure sensor array on the smart insoles that are attached to the SOI. The data are
transmitted to the centralized data warehouse, and the machine learning algorithms
are implemented for the falling recognition.

accelerometers are difficult to distinguish the falls from other activities that have
similar characteristics in term of acceleration [1]. Some researchers enhance the
system based on the accelerometers by applying more wearable sensors. The sys-
tems integrate the sensors that are placed on different positions such as the waist,
ankle, and chest on the subject of SOI with data mining techniques [12,16-18].
Besides, the pressure sensor array designed on insole has been used in gait analy-
sis and can provide sufficient information about the SOI movements [8]. In order
to overcome the weakness of using a threshold, machine learning approaches are
implemented including k-nearest neighbor (k-NN) [6], support vector machines
(SVM) [7], decision tree [5] and artificial neural networks (ANNs) [1]. To under-
stand the ANN-based classification models, several visualization techniques are
used. Zeiler et al. [4] try to reconstruct the input of each layer from the output.
Simonyan et al. [3] introduce a specific class saliency visualization approach to
find the most influential part of a particular classification.

3 Methodology

The working flow of the proposed system is illustrated in Fig. 1. The smart insoles
are applied in the proposed system to collect the data. The data are transmitted
to a centralized data warehouse via Bluetooth. The fall detection movements are
learned by the deep learning approaches and the deep learning visualization are
applied for interpreting the deep learning classifier of the fall event.

3.1 Hardware Architecture of Smart Insole

The smart insole is applied in the proposed system for fall detection. Figure1
shows the hardware architecture of smart insole utilized in the fall detection sys-
tem. The smart insole is developed by integrating the circuit board and pressure
sensor array through an insole shaped package. A high-performance Microcon-
troller Unit (MCU) is used for signal processing. Besides, twenty-four 12-bit
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Digital Converter (ADC) channels are provided, which are used for measuring
the pressure sensor array [8]. In this manuscript, each smart insole contains 96
pressure sensors. A Flexible Printed Circuit (FPC) connector connects the pres-
sure sensor array with the signal processing circuit. Multiplexers are connected
with all the pressure sensors and form a voltage divider circuit by connecting the
selected pressure sensor with Rfixed, and the Analog could measure the voltage
drop on the pressure sensor to ADC. The data can be transmitted via Bluetooth
through the wireless module. The top layer is a fabric cover which guarantees
the comfort of wearing and the pressure sensor array with insole shape is put
into the middle layer. The bottom layer is an insole shaped package which is
designed for settled battery and the circuit board.

3.2 Deep Learning Algorithms and Evaluation Metrics

To distinguish falls from other daily activities based on the data collected from
smart insoles, Artificial neural networks (ANN) model is designed. Before the
data are fed into the model, the data normalization is implemented. ANN has
been proved to be efficient due to the promising results on the sensor data
[1]. Hidden features are extracted from the input data through the Artificial
neural networks, and more abstract features are calculated by deeper layers.
Multi-Layer Perceptron (MLP) and convolutional neural network (CNN) are
two primary subcategories of Artificial neural networks. To take advantage of
the characteristic of time-series data dependency, the sliding window is employed
in MLP and CNN for the falls detection. The performance can be validated by
the following success criteria. Sensitivity (Se) represents the capacity of the
automatic system on fall detection, Se = TP/(T' P + FN). Precision (Pr) is the
precision of the system for detecting falls, Pr = TP/(TP + FP). Specificity(Sp)
measures the ability of the system for identifying ADLs, Sp = TN/(TN + FP).
Accuracy (Ac) clearly describe the correct differentiation between falls and non-
falls, Ac= (TP+TN)/(TP+FP+ FN+TN). Here, TP (a fall occurs and the
system recognizes it as a fall), TN (a fall does not occur and the system does
not recognize it as a fall), FP (a fall does not happen but the system recognizes
it as a fall), and FN (a fall happens but the system misses it) are used in the
calculation of sensitivity, precision and accuracy.

3.3 Deep Learning Visualization

The deep neural network has made enormous progress over the last several
decades and got tremendous attention from academia, industry, and health-
care community. Many researchers have been considered about improvements in
the knowledge of how to create high-performing architectures and learning algo-
rithms. Historically, deep learning models have been thought of as “black boxes”,
meaning that the inner workings were different to understand or interpret. In
order to shine the light into the “black boxes” to better understand exactly
what the deep learning has learned, the deep learning visualization approach is
applied.
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In this section, the technique for the deep learning model visualization [3]
is introduced. Saliency map is a quick way to tell which variation of the sensor
data influenced the classification decision made by the network. Given a trained
classification CNN, a specific activities class ac of interest, an sensor data Iy and
the class score function S,.(I). The value of every single sensor I are sorted
according to the influence on the score S,.(Is). Take the linear score model as
the example,

Sac(I) = wgel + bac (1)

where the I is the input sensor data, and w,. and b,. are the parameters in the
model. The magnitude of elements w determines the importance though sensor
I for the specific class. In CNN scenario, it is a highly non-linear problem.
According to the first-order Taylor expansion, the S,.(I) can be approximated
expressed with a linear function in the neighborhood of I.

Sac(I) = wh' I +b, where w = 3§;c 1. (2)

Current deep learning Visualization is mostly focused on image-based system
[4]. However, in the sensor-based system, it lacks efficient methods to know what
the changes in movements make the models arrive at a certain classification
decision. Here, exploring the deep learning visualization for the sensor-based
system are mainly discussed. To acquire the saliency map from the time-series
pressure sensor array, a two-dimension matrix should be utilized. The time is
represented over one dimension while another dimension is expected to be related
to the value of the pressure sensor array. The class saliency map S € R™*™ can
be calculated through the back-propagation process in the CNN and according
to the derivative w. Researchers can elicit a particular interpretation using deep
learning visualization for fall detection.
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Fig. 2. The position where IMUs are attached.

4 Experiments

4.1 Dataset and Experimental Settings

It is commonly acknowledged that most of the falls occur with the directions
of forwards, backward or sideways [20]. The experiments are designed with a
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Table 1. The comparison experimental results of using smart insoles and wearable sen-
sors placed on SOI for fall detection, W-waist, H-hand, T-thigh, I-smart insole, with
k-nearest neighbor (knn), support vector machines (svm), decision tree (dt), discrimi-
nant (dc), Multi-Layer Perceptron (mlp) and convolutional neural network (cnn).

pr(knn) se(knn) |sp(knn)|ac(knn) pr(svm)|se(svm)|sp(svm)|ac(svm)
0.9385 [0.9423 |0.9896 |0.9828 |0.9458 |0.9342 |0.9910 |0.9828
0.8566 [0.8601 |0.9758 |0.9592 |0.8477 |0.8477 |0.9744 |0.9562
0.9336 [0.9259 |0,9889 |0.9799 |0.8943 |0.9053 |0.9820 |0.9710
0.9555 [0.9712 |0.9924 |0.9893 |0.9874 |0.9712 |0.9979 |0.9941
I 0.9916 [0.9753 |0.9986 |0.9953 |0.9797 |0.9918 |0.9965 |0.9959
HI 0.9872 [0.9547 (0.9979 |0.9917 |0.9917 |0.9877 |0.9986 |0.9970
TI 0.9958 [0.9794 |0.9993 |0.9964 |0.9917 |0.9877 |0.9986 |0.9970
WHTI| 0.9958 |0.9835 [0.9993 [0.9970 0.9918 |0.9918 |0.9986 |0.9976
pr(dt) |se(dt) |[sp(dt) |ac(dt) |pr(de) |se(de) |[sp(dc) |ac(dc)
0.9540 [0.9383 |0.9924 |0.9846 |0.9751 |0.8066 |0.9965 |0.9692
0.8611 [0.8930 |0.9758 |0.9639 |0.8942 |0.7253 |0.9862 |0.9503
0.9461 |0.9383 |0.9910 |0.9834 |0.9760 |0.8354 |0.9965 |0.9734
0.9833 [0.9712 |0.9972 |0.9935 |0.9736 |0.9095 |0.9959 |0.9834
0.9918 [0.9877 [0.9986 |0.9970 |0.9793 |0.9753 |0.9965 |0.9935
0.9833 [0.9671 |0.9972 |0.9929 |0.9706 |0.9506 |0.9952 |0.9888
0.9795 [0.9835 [0.9965 |0.9947 |0.9787 |0.9465 |0.9965 |0.9835
WHTI| 0.9836 |0.9877 [0.9972 [0.9959 0.9756 |0.9877 |0.9959 |0.9947
pr(cnn) se(cnn) [sp(cnn) |ac(cnn) pr(mlp) |se(mlp) |sp(mlp) |ac(mlp)
0.9575 [0.9783 |0.9889 |0.9911 |0.9362 |0.9565 |0.9889 |0.9852
0.9333 [0.9130 |0.9889 |0.9793 |0.8750 |0.9130 |0.9779 |0.9704
0.9545 [0.9348 |0.9924 |0.9852 |0.8936 |0.9130 |0.9820 |0.9734
0.9876 [0.9794 |0.9979 |0.9953 |0.9793 |0.9660 |0.9965 |0.9921
I 0.9959 [0.9877 [0.9993 |0.9976 |0.9862 |0.9728 |0.9976 |0.9941
HI 0.9836 [0.9877 |0.9972 |0.9959 |0.9755 |0.9835 |0.9958 |0.9941
TI 0.9916 [0.9793 |0.9986 |0.9959 |0.9714 |0.9794 |0.9952 |0.9929
WHTI| 0.9918 |0.9918 |0.9986 [0.9976 0.9876 |0.9835 |0.9979 |0.9959
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group of falls containing backward falls, forward hard falls, forward soft falls,
left falls and right falls. Note that, during the hard fall, SOI falls from vertical
standing to the ground directly. A soft fall refers to the SOI fall to their knee
before impacting on the ground. Regarding activities of daily livings (ADLs),
activities can be divided into 9 groups with 12 most common activities: sit down,
sitting (sitting on the chair and sitting on the sofa), walking (walking, walking
upstairs and walking downstairs), bending, bend to pick up items, standing,
squatting, squat to pick up items and laying. In this paper, the sample rate
of the whole pressure sensor array is 30 Hz. Data obtained from the wearable
devices accompanied with timestamps and videos which record the movements
and provide a precise determination of each event (ground-truth). The counter
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is a kind of time stamp used for checking the synchronization and missed data.
The fall detection system is validated on ten subjects with performing a set of
movements including 12 ADLs and 5 falls. Each experiment trail is performed
twice to ensure sufficient quantity and consistency. About 1.5s sliding windows
are utilized in the system to process the time-series sensor data. The time-series
data which have inherent local dependency characteristics and can represent the
activities such as gait, balance, and posture are collected by the smart insoles.
In the system, the time-series data are collected from the smart insoles on two
feet and are transmitted to a centralized data warehouse. For evaluating the
performance of the machine learning algorithms, the 5-fold cross validation as
the evaluation protocol is applied. As for the CNN architecture, it contains two
convolutional layers, two max-pooling layers, and three fully-connected layers.
six fully-connected layers build the MLP architecture in this paper.

Besides, the device that combines a 3-axis gyroscope, 3-axis accelerometer, 3-
axis magnetometer is also applied through contrast experiments which are placed
to thigh, waist, and hand as shown in Fig. 2. To acquire more precise information,
the orientation is calculated by the raw sensor data from the accelerometer
and the magnetometer. To further demonstrate the effectiveness of the system,
four machine learning algorithms, the k-nearest neighbor, the support vector
machines, the decision tree, and the discriminant are used for evaluating the
system.

4.2 Results and Analysis

Both quantitative and qualitative experiments are demonstrated in this paper to
prove the feasibility and effectiveness of the proposed fall detection system. As
shown in Table 1, the comparisons of sensor combinations through six machine
learning algorithm?s performances are illustrated. The input data are collected
from the smart insoles and the predictions are 2 classes, fall or no fall. In the
fall detection scenario, Using the Smart Insoles based on CNN achieve to the
higher accuracy than using a single device (3-axis gyroscope, 3-axis accelerom-
eter, 3-axis magnetometer) placed on the waist, right-hand or right-thigh with
the widely-used machine learning algorithms. It is obvious that combining smart
insoles with other sensors can achieve a better performance than using one single
sensor units. The smart insoles can improve the performance of fall classification
system. The smart insoles can acquire a higher precision than other single sensor
units, which indicates that the system based on smart insoles guarantees a low
risk regarding the daily activities as the fall.

This work proves that it is possible to achieve a high accuracy using smart
insoles. Using only smart insoles can achieve to a high performance on fall detec-
tion (98.76% precision, 97.94% sensitivity, 99.79% specificity and 99.53% accu-
racy), which is better than using one single device placed on the waist, hand or
thigh. Besides, for the combination scenarios, the best performance (99.59% pre-
cision, 98.77% sensitivity, 99.93% specificity and 99.76% accuracy) is achieved
using the combination of smart insoles with the devices that placed at the waist.
The waist sensor is close to the trunk. It has better performance than from the
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Fig. 3. The pressure changes and deep learning visualization for the time-series data of
smart insole inside one window. For each fall events, the top is the fall in real life, the

middle is the pressure changes of the smart insoles and the bottom is the corresponding
saliency maps.
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limbs because it is not easy to be affected by the interpersonal differences in the
body movement during the daily activities. The smart insole can provide the
pressure changes in various activities as shown in Fig. 3, the “pressure Array”
reflects such changes when the fall forward, fall backward and fall sideways
occurred.

As for the machine learning algorithms based on the input collected from the
pressure insoles, the ANN algorithm is approved and satisfactory due to the high
accuracy performance. The class of ANN covers several architectures including
the CNN and the MLP. CNN can get the highest accuracy of 99.53% in all
algorithms when using smart insoles. For the other machine learning algorithms,
the k-NN algorithm produces 98.93% classification accuracy for the smart insoles
and 98.28% accuracy with the single device that placed at the waist (the best
performance of single device attached to SOI’s waist, hand, and thigh). The
SVM and Decision Tree have similar results as the k-NN. The best result of
SVM can achieve to 99.41% when smart insoles units are used and Decision
Tree can achieve to 99.35%. Discriminant gives 98.34% for using smart insoles
to detect the fall. It is worthy to note that, CNN is more suitable for using only
smart insoles on fall detection.

Fall Forward

0 20 4 6 8 100 120 140 160 180

Fall Backward

Fig. 4. The major change of disciminative area during the critical phase in fall forward,
fall backward and fall sideways.
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To further explain how the system based on smart insoles with CNN algo-
rithm works in fall detection, the deep learning visualization approach is applied.
The saliency map gives the most discriminative part of the pressure array on
the smart insole through the whole fall events. As shown in Fig. 3, in the fixed-
length time-series data window, the “saliency map” is generated according to
the input (“pressure array”). 10 frames in a window (total 40 frames) is selected
to represent the variability in one fall incidents. Based on the results of combin-
ing the “pressure array” and “saliency map”, the critical phase shows the most
significant evidence among the entire falling process. During the critical phase,
the discriminative area has changed. When the SOI falls forward, the discrim-
inative area is changing roughly from the heel to the forefoot. As for the fall
backward and fall sideways (e.g. right fall), the discriminative area is changing
from the forefoot to the heel and from left to right. It is worthy to note that,
“saliency map” shows the first few frames (Pre-fall phase) has less effect on the
model to detect the falling incidents. The changes in the pressure array during
the falls become an important part for the CNN models to recognize the falls. To
make such changes more intuitive, the saliency map distribution for the critical
phase with a wire-frame mesh in a foot-shaped 3-D map is illustrated as shown
in Fig.4. The deep learning visualization gives a good explanation of how the
deep learning model recognizes fall during the fall detection. The change of the
discriminative area indicates that the deep learning model can learn the pressure
changes during the fall. From the result, to recognize the fall, CNN is based on
the identification of the variability in the pattern and the pressure distributions
under the foot through the foot-shaped sensor array. That is to say, the CNN
model can learn the trend of pressure changes during the falling process.

5 Discussion

To demonstrate the effectiveness of the smart insole, the confusion matrix of
the CNN of 13 classes including 9 ADLs-movement groups and a fall-movement
group. We can see that the proposed system has achieved high recognition per-
formance in the aspect of fall detection. Through entire movements, most of the
movements have been well recognized. The fall detection system based on smart
insole ensures the user’s convenience and is proved to be effective in the classifica-
tion of dynamic and static movements. To further demonstrate the effectiveness
of smart insoles, the comparison experiment is designed. In the experiment, we
mainly discuss the fall detection system based on paired smart insoles compared
to the system with only one smart insole for ten classes. As shown in Tables 2
and 3, the experimental result based on CNN for fall detection is summarized.
Generally speaking, the system with two insoles has better performance than
the system with only one insole. The system with two insoles has better accu-
racy, specificity, precision, and sensitivity for the fall detection and can classify
the ADLs movement more accurate. The system based on only one smart insole
is more likely to classify the “confounding activities” such as suddenly sitting
down into fall and identify the walk as fall, while two smart insoles mitigate this
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Table 2. The confusion matrix using CNN with only one smart insole as inputs.
CM-confusion matrix, Fa-Falling, SD-Sit Down, Wa-Walking, BP-Bend to Pick up,
St-Standing, Be-Bending, Si-Sitting, Ly-Lying, Sq-Squatting and SP-Squat to pick up

Confusion matrix |Fa |SD |Wa |[BP |St |Be |Si |Ly |Sq |SP
Falling 0.96]0.01/0.01,0.01/0 0 0 0.01/0 0
Sit Down 0.040.84|0.04|0.04|0.02/0.02|0 0 0 0
Walking 0.01/0 0.97/0.01/0.01|0 0 0 0 0
Bend to Pick 0 0 0 0.840.02/0.14 |0 0 0 0
Standing 0 0 0 0.03/0.96 0.01|0 0 0 0
Bending 0 0 0 0.01|0 0.99|0 0 0 0
Sitting 0 0 0 0 0 0 0.99/0.01|0 0
Lying 0 0 0 0 0 0 0.10/0.90|0 0
Squatting 0 0 0 0 0 0 0 0 0.92]0.08
Squat to pick 0 0 0.04 |0 0 0 0 0 0.17]0.79

Table 3. The confusion matrix using CNN with two smart insole as inputs.

Confusion Matrix |Fa |SD |Wa |BP |St |Be |Si |Ly |Sq |SP
Falling 0.980.01/0.01|0 0 0 0 0 0 0
Sit Down 0.04/0.88 0 0 0.04]0.04 |0 0 0 0
Walking 0 0 0.99 0 0.01/0 0 0 0 0
Bend to Pick 0 0 0 0.72/0.08/0.2 |0 0 0 0
Standing 0 0 0 0 0.99/0.01|0 0 0 0
Bending 0 0 0 0.010 0.99/0 0 0 0
Sitting 0 0 0 0 0 0 0.99/0.010 0
Lying 0 0 0 0 0 0 0 1 0 0
Squatting 0 0 0 0 0 0 0 0 0.880.12
Squat to pick 0 0 0 0 0 0 0 0 0.09]0.91

problem. The results show that using two paired smart insole for identifying fall
and ADLs is more desirable.

6 Conclusion

In this paper, we evaluate the effectiveness and feasibility of using smart insole
and ANN for fall detection. As expected, the experimental results show that
the smart insoles with the pressure sensor array make good performance on
fall detection. The advantage of capturing the pressure changes shows the huge
potential for using smart insoles to recognize the fall. Besides, the deep learning
visualization approach is applied to further demonstrate what model has learned
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and show the discriminative area as the fall event occurred. The results of deep
learning visualization provide potential hints for the future application design not
only the classification algorithm improvement but also the hardware upgrade.
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