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Abstract. In the last years, smart-shoes moved from the medical
domain, where they are used to collect gait-related data during reha-
bilitation or in case of pathologies, to the every-day life of an increasing
number of people. In this paper, a method useful to effortlessly authen-
ticate the user during gait periods is proposed. The method relies on the
information collected by shoe-mounted accelerometers and gyroscopes,
and on the distance between feet collected by Ultra-WideBand (UWB)
transceivers. Experimental results show that a balanced accuracy equal
to 97% can be achieved even when information about the possible impos-
tors is not known in advance. The contribution of the different informa-
tion sources, accelerometer, gyroscope, and UWB, is also evaluated.

Keywords: Gait · Authentication · Biometrics · Wearable device ·
Smart-shoe

1 Introduction

Wearable devices gained widespread popularity during the last years. Smart-
watches and smart-wristbands are daily used by a large fraction of people to track
their activities, estimate the amount of burnt calories, and as an unobtrusive
means for receiving notifications [2,20]. More recently, also smart-shoes started
being adopted by the general public. In fact, smart-shoes were initially used in
the e-health domain, to collect data about gait-related pathologies [7,9]. Now,
they are increasingly used by sports professionals and amateur athletes to track
their sessions and obtain detailed information about their performance. Several
major brands operating in the footwear sector now include smart-shoes in their
catalogs.

Smart-shoes are generally equipped with an Inertial Measurement Unit
(IMU) and a transceiver. The former is used to capture the movements of the
user, the latter to transmit the data to an external device, such as a smartphone.
In some cases, pressure sensors may be available as well [18]. Data collected by
means of smart-shoes are not only highly informative about the running/walking
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style of the user, they are also able to provide abundant information about the
identity of the user himself. Several studies demonstrated that accelerometric
information collected during gait periods can be used to identify or authenticate
the user [8,14,16]. In authentication, the goal is to automatically understand
if the current user is the legitimate one or not. In identification, the goal is
to automatically recognize the current user among a set of known ones [5,25].
Both possibilities can be extremely useful: authentication, to reduce the burden
required from the user of mobile devices, who is frequently asked to confirm
his/her identity through pins and/or passwords; identification, to customize the
parameters of operations of devices shared among a set of people.

In this paper, we focus on an authentication method based on smart-shoes.
Information provided by accelerometers and gyroscopes is used to understand
if the user is the legitimate one or not. Besides the information provided by
IMUs, the method also relies on distance information collected by means of
Ultra-WideBand (UWB) transceivers. The possibility of collecting distance infor-
mation via UWB was considered because of the increasing diffusion of IEEE
802.15.4-2011 in the wearable domain [23,24]. IEEE 802.15.4-2011 is a standard
for low-rate personal area networks that also includes a UWB physical layer.
Results demonstrate that reliable authentication of the legitimate user is possi-
ble also when the learning phase does not make use of other users’ gait samples.

2 Related Work

The limited input interfaces of wearable devices and their personal nature gave
rise to new challenges in the security domain. For this reason, the possibility
of using a person’s gait as an authentication behavioral biometrics has been
explored in recent years [17].

Some gait-based authentication methods relied on the acceleration signal col-
lected by a smartphone attached to the hip [6,15,16]. In other cases, acceleration
was collected using a wrist-worn device, as this position can be more comfortable
for the end users [4,10]. The security strength of a smartphone-based authenti-
cation system against zero-effort and impersonator attacks was studied in [13],
where professional actors tried to mimic the gait style of other users. Results
show that mimicking does not increase the chances of obtaining a false positive,
i.e. the erroneous recognition of another user as the legitimate one.

More recently, Fangmin et al. [21] proposed a speed-adaptive gait cycle seg-
mentation method and an individualized method for setting the threshold used
to distinguish the legitimate user from possible impostors. These mechanisms
make easier to identify gait cycles even in the presence of changes in gait speed.
In addition, adapting the threshold contributes to reducing the authentication
error. Finally, the proposed adaptive methods were compared with the ones
obtained by other state-of-the-art techniques. Results show improvements both
in gait recognition and user authentication.

Other authors studied the possibility of using One-Class Classification
(OCCs) to achieve biometrics-based continuous authentication [12]. Consistently
with the OCC philosophy, the approach relies on the availability of a sufficient
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Fig. 1. Overview of the authentication method.

number of positive (genuine) behavioral samples only, while ruling out the neg-
ative (impostor) ones. Four methods – Elliptic Envelope (EE), Vector Machine
(SV1C), Local Outlier Factor (LOF), and Isolation Forest (IF) – along with
their fusions were investigated. The performance was assessed on four distinct
behaviometric datasets, which comprised both motion and touch gesture pat-
terns. SV1C and LOF achieved the best results in terms of error rates. The
performance of OCC methods was also compared with the performance of eight
well-known multi-class classifiers. SV1C and LOF outperformed half of the inves-
tigated more traditional classifiers, therefore proving the feasibility of OCC for
continuous authentication.

Identification by means of inertial sensors attached to users’ feet was studied
in [11]. Gait data were collected in terms of 3-axial acceleration and 3-axial angu-
lar velocity at both feet. Features were extracted using discrete cosine transform
restricted to the low frequencies. Then, identification was carried out by means
of a random forest classifier, with a group of eight users.

Besides user’s authentication and identification, gait has been proposed as
a method for sharing a secret between devices worn by the same subject. In
particular, BANDANA is an authentication scheme that allows two wearable
devices, placed at random body location, to pair in a secure way through a fresh
secure shared secret extracted from user’s gait [19]. First, the data produced by
each sensor is rotated so that each z-axis is oriented in the opposite direction to
gravity, then the signal is denoised by a bandpass filter. A quantization process
produces fingerprint bits evaluating the energy difference between Zi and A,
where Zi is the ith gait cycle and A is the average gait cycle. The higher is this
difference, the more reliable the related bit is, then the least reliable ones are dis-
carded. Each device is then able to reach the same key using fuzzy cryptography.
Being the gait style unique, only devices on the same body are authenticated.

Differently from most of the above-mentioned works, we study the effec-
tiveness of gait-based authentication using information collected by means of
smart-shoes. We believe that this category of wearable devices will be even more
popular in the next future. In addition, our study does not only consider data
generated by IMUs, but also includes the distance between feet collected by
means of UWB. Finally, the proposed method does not rely on the availability
of possible impostors’ gait samples, but operates according to a realistic usage
scenario where only the data produced by the legitimate user is available during
the training phase.
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Fig. 2. Position of devices on users’ feet and orientation of axes of Shimmer devices.

Table 1. Volunteers’ physical characteristics.

ID Age Gender Height (cm) Weight (kg)

1 24 M 180 95

2 24 M 174 63

3 24 M 165 58

4 27 M 183 85

5 25 M 180 90

6 24 M 186 78

7 25 F 159 57

8 24 M 180 65

9 28 F 165 59

10 23 M 178 75

3 Method

Users’ gait is observed in terms of acceleration and angular velocity of feet,
and distance between feet. Data are segmented into non-overlapping windows
and pre-processed. Then, from each window, a set of features is extracted. A
one-class classifier is trained using only the data originated from the legitimate
owner. The trained system is evaluated against previously unseen users (the
possible impostors). An overview of the proposed method is depicted in Fig. 1.

3.1 Data Acquisition and Pre-processing

Data were collected from ten volunteers, two females and eight males, hav-
ing the physical characteristics shown in Table 1. The equipment consisted of
two Shimmer3 IMU devices - used to acquire inertial data from each foot - and
two devices from the DecaWave TREK1000 kit - used to acquire the distance
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Table 2. Configuration parameters of the Shimmer devices.

Sampling rate 102.4 Hz

Accelerometer range ±8 g

Gyroscope range ±500 dps

Table 3. Configuration parameters of the TREK1000 devices.

Sampling rate 10 Hz

Data rate 6.8 Mbps

Power source Tag: battery powered

Anchor: connected to portable PC via USB

between feet. Shimmer devices were configured to collect acceleration and angu-
lar velocity according to the parameters shown in Table 2. The four devices were
attached to volunteers’ feet and ankles as shown in Fig. 2. The orientation of the
axes of the accelerometer and of the gyroscope, with respect to the device case,
are also shown in Fig. 2. TREK1000 devices are equipped with a transceiver
compatible with the IEEE 802.15.4-2011 UWB standard. Each device is able to
estimate the distance towards other devices by using a technique based on two-
way ranging time-of-arrival. One of the devices from the DecaWave TREK1000
kit was configured as an anchor (right foot) and the other one as a tag (left foot).
Table 3 provides the other operational parameters.

Volunteers were asked to walk for five minutes keeping their normal pace. For
each volunteer, thirteen signals were collected: the acceleration and the angular
velocity along the three axes for each foot, and the distance between feet. An
example of such signals - acceleration and gyroscope for just one foot and the
distance between feet - is shown in Fig. 3.

The dataset is available at:
http://vecchio.iet.unipi.it/vecchio/data/.

The traces produced by the Shimmer and TREK devices were first synchro-
nized and trimmed. This last step was carried out to remove non-walking data at
the beginning and at the end of each trace. Signals were then filtered by applying
a low-pass Butterworth filter with a cut-off frequency of 15 Hz for inertial signals
and 4.9 Hz for the distance signal. In the end, 4 min and 30 s of clean, filtered
walking data were available for each user.

3.2 Feature Extraction

Traces were divided into fixed-duration windows. For each window, a set of fea-
tures commonly used in similar domains was extracted from all the thirteen
signals. The set of features is: mean, standard deviation, max-min, median abso-
lute deviation, average absolute variation [1], and mean crossing rate.

http://vecchio.iet.unipi.it/vecchio/data/
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Fig. 3. Acceleration, angular velocity, and distance data when walking.

A vector containing 78 features is then produced for each window (the above-
indicated six features computed on the 13 signals). Feature vectors are used to
train the one-class classifier and for its evaluation, as described later. Figure 4
shows the gait samples of one of the volunteers in the feature space, restricted
to two dimensions to make the image readable, against the other volunteers.
The user’s model produced by a trained OCC method is represented too. The
training phase was performed by using the samples coming from the examined
user only (the samples of the genuine/target user); the samples collected from
the other users (i.e. the impostors’ samples) were added to the scatterplot only
later.

4 Results

The performance of the proposed approach was evaluated by training an OCC
method using a portion of the data of one of the volunteers and then testing
the trained system on previously unseen data (produced by the same user, to
test the capability of the model to recognize the legitimate owner, and produced
by other volunteers, to test the capability of the model to reject the possible
impostors).

4.1 Impact of Window Size on Authentication Accuracy

As previously mentioned, gait data were divided into fixed-duration windows. To
understand the influence of the duration of windows on authentication results,



272 L. Brombin et al.

Fig. 4. A user’s model in a two-dimensional space, and gait instances of other users.

window sizes in the range from 1 s to 6 s were evaluated. Figure 5 shows the Bal-
anced Accuracy (BA) - a performance index which works well with imbalanced
data [3] - when varying the window size. In particular, the BA values depicted in
Fig. 5 are the average of the BA values obtained when using five different OCC
methods, operating according to different principles (to better understand how
this parameter impacts the classification accuracy in general, i.e. not relatively
to a single OCC method). The five considered methods are the OCC version
of the following classifiers: Gaussian, Minimum Spanning Tree (MST), k-Means,
k-Nearest Neighbors (kNN), and Auto Encoder [22]. The Gaussian OCC method
models the target class according to a Gaussian distribution; in MST, the dis-
tance from a minimum spanning tree derived from the training instances is used
as an indicator of distance from the class to be recognized; in k-Means, the class
to be recognized is modeled as k clusters; in kNN, the distance from the k nearest
neighbors is used to classify new instances; Auto Encoders are neural networks
trained to reconstruct the input at the output, then the difference between the
input and the output is used to identify the target class.

The performance was evaluated under the assumption that the gait model
of the legitimate user is learned automatically during the initial 2 min of walk.
The remaining part of the user’s trace (2.5 min) was used for testing the per-
formance of the trained classifier on previously unseen data. The capability of
the trained classifier to reject impostors was evaluated using the same amount
of data (2.5 min) extracted from every other user’s trace. Finally, results were
averaged across all users.

The best result is obtained when using windows with a duration of 3 s.
Therefore, this value is used for computing the results presented in the next
sections.
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Fig. 5. Balanced accuracy when varying the windows size.

Table 4. Average balanced accuracy of five OCC methods when varying the number
of dimensions.

# features BA

5 90%

10 93%

15 92%

20 88%

4.2 Reduction of the Feature Space

As mentioned, the number of features used to describe the gait style of users
is 78. The feature space was reduced to a smaller number of dimensions in
order to avoid overfitting and improve the efficiency of the classification model.
Reduction of dimensionality was obtained using Principal Component Analysis
(PCA). This method maps the entire features space in a new space that has a
smaller number of dimensions.

Table 4 shows how the BA varies when the number of dimensions of the PCA
space is changed. The BA value is the average of the BA obtained by the same
five OCC methods. The best results are obtained when setting the PCA space
to 10–15 dimensions.

4.3 Techniques for One-Class Classification

The accuracy that can be achieved by some popular OCC techniques was eval-
uated. In particular, besides the already introduced five OCC methods, also the
following classifiers were assessed: MCD Gaussian, where a minimum covariance
determinant density is fit onto the data; Naive Parzen, where Gaussian ker-
nels are centered on training instances and used for estimating the probability
density [22].

For each classifier, the evaluation was carried out again using 2 min of walking
for training and 2.5 min for the evaluation, with a preliminary reduction to a
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Table 5. Balanced accuracy obtained with different OCC methods.

Method BA (%, mean ± std.dev.) FPR (%) FNR (%)

Gaussian 93.0 ± 4.6 ∼0 14.0

MCD Gaussian 94.1 ± 3.6 5.2 6.6

k-NN 90.1 ± 9.2 16.9 3.0

MST 97.0 ± 1.4 2.4 3.6

k-Means 92.3 ± 5.7 9.0 6.4

Naive Parzen 92.4 ± 3.4 6.3 9.0

Auto Encoder 93.8 ± 2.8 0.4 12.0

Table 6. Balanced accuracy obtained by MST when using the different sources of
information.

Sensor BA

Accelerometer 92.8%

Gyroscope 89.7%

UWB 77.8%

feature space with 10 and 15 dimensions. In addition to BA, the OCC methods
were evaluated also in terms of False Positive Rate (FPR) - an impostor being
incorrectly classified as the legitimate user - and False Negative Rate (FNR) -
the legitimate user being incorrectly classified as an impostor.

Table 5 reports the BA values obtained by averaging the results across all
the users in the dataset. For every user, the remaining ones were used as pos-
sible impostors. Only the best BA value obtained with 10 and 15 dimensions is
reported.

MST is the method that provides the best results, with a BA of 97%. Also,
the standard deviation of BA is small, this means that the method operates
consistently across all users.

4.4 Contribution of the Different Sensors

As stated in Sect. 3, data were acquired from three different typologies of sensors:
accelerometers (both feet), gyroscopes (both feet), and UWB transceivers (to
estimate the distance between feet).

We evaluated the contribution of the different information sources to the
authentication process. To this purpose, the best OCC method found in the
previous section - MST - was evaluated again on data originated from a sin-
gle information source at a time. PCA feature selection was applied to the set
of accelerometric features to reduce the number of dimensions from 36 to 10.
The same was done to the features extracted from the data produced by the
gyroscope. For UWB, all 6 features were used. Results are shown in Table 6.
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A BA of 92.8% can be achieved - by an MST classifier - when using the data
produced by the accelerometers only. The BA that can be obtained when using
information produced by the gyroscopes is relatively close. Distance collected
via UWB seems to be less useful as, in the absence of the two other informa-
tion sources, is able to reach a BA value of 77.8%. However, it is important
to note that distance is collected at 10 Hz (the maximum frequency allowed by
the adopted hardware solution), whereas acceleration and angular velocity are
collected at a much higher rate (102.4 Hz). It is thus possible that the limited
sampling rate is unable to capture all the details of an individual’s gait style.

5 Conclusion

Smart-shoes, which are increasingly used by common users, can be extremely
useful to achieve passive, effortless authentication. Experimental results show
that a balanced accuracy as high as 97% can be reached when using IMUs and
UWB transceivers as sources of information and adopting a one-class classifica-
tion approach.

It is important to note that, differently from most of the existing literature on
authentication based on smart-shoes, the training phase of the system has been
carried out using only the data of the legitimate user. This makes the training
phase simpler, as there is no need for other users’ data to create a model of the
possible impostors.

Of the three considered sensors, accelerometers proved to be the most useful
information sources for authentication purposes. However, the contribution of
gyroscopes and UWB transceivers is not negligible, as they make possible to
increase the balanced accuracy from 92.8% to 97%. This highlights the benefits
achieved by approaches based on sensor fusion.

Our study considered only users walking at a normal pace, but it would be
interesting to evaluate the performance of the proposed technique when varying
the walking speed or in case of changes in the physical condition of the user (for
example after intense fatigue).
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