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Abstract. With the development of wearable technology and inertial
sensor technology, the application of wearable sensors in the field of
sports is becoming more extensive. The notion of Body Sensor Net-
work (BSN) brings unique human-computer interaction mode and gives
users a brand new experience. In terms of smart sports, BSN can be
applied to table tennis training by detecting individual stroke motion
and recognizing different technical movements, which provide a train-
ing evaluation for the players to improve their sport skills. A portable
six-degree-of-freedom inertial sensor system was adopted to collect data
in this research. After data pre-processing, triaxial angular velocity and
triaxial acceleration data were used for table tennis stroke motion recog-
nition. The classification and recognition of stroke action were achieved
based on Support Vector Machine (SVM) algorithm after Principal Com-
ponent Analysis (PCA) dimension reduction, and the recognition rate of
five typical strokes can reach up to 96% using the trained classification
model. It can be assumed that BSN has practical significance and broad
application prospects.

Keywords: Body sensor network · Information fusion · Motion
recognition · Wearable computing · Micro-electro-mechanical sensor

1 Introduction

As the earliest innovative Technology in MIT media lab in 1960 s, wearable
computing technology is one of the most promising advanced technologies in
modern human-machine interaction domain. The technology combines sensors,
wireless communication, multimedia, signal process technologies, et al., and is
mainly used to provide data monitoring support and auxiliary decision-making
for users [1–4]. Traditional optical device based human motion tracking app-
roach and pressure sensor based methods universally suffer from high cost and
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rigorous requirements of testing setup, hence limited the larger scale applica-
tion in the field [5,6]. Wearable sensors not only have small volume and light
weight, but also have the characteristics of low power consumption, simple oper-
ation and wireless data transmission, which have been attracting a large number
of researchers’ attention. In the context of intelligence and big data era, the
ultra-miniaturization of electronic devices as well as the continuous progress
of forward-looking computing models have boosted microelectronics technology
and communication technology. At present, wearable technology is increasingly
widely used in intelligent sports, mainly in physical physiological information
detection, physical rehabilitation, physical education and research. Initial appli-
cations of wearable devices mainly include a simple pedometer, a heart-rate
device or other devices to collect various physiological parameters of the exer-
ciser [7,8]. With the continuous development and improvement of inertial sen-
sor technology, inertial sensors have been widely used in smart watches, smart
bracelets and other popular personal belongings, which can accurately obtain
the inertial data generated by the user’s daily activities and provide data for
identification and motion analysis [9–16].

As China’s “national sport”, table tennis is one of the most common sports
in Chinese society. According to the survey, there are tens of millions of Chinese
people who love playing table tennis, especially among teenagers. It is possible
for table tennis enthusiasts to apply wearable sensors during table tennis train-
ing to detect and evaluate individual stroke movements, so as to improve their
sport skills. In this paper, a wearable sensor system is applied to table tennis
training, and the wearer’s inertial sensor is used to collect table tennis players’
motion throughout the process. Angular velocity and acceleration signals are
used to generate the corresponding strokes classifier to complete the recognition
of various types of strokes. Recognition algorithm is introduced to classify and
recognize the typical stroke action of the players.

As for classification models, researchers have proposed many research meth-
ods, such as Decision Trees [17], K Nearest neighbor (KNN) [18], Bayes method
[18,19], Hidden Markov Models (HMM) [20], Support Vector Machine (SVM)
[21–23] and so on. In literature, various methods for dimension reduction of
high-dimensional features of samples in classification and recognition tasks are
proposed [24–29]. Current stroke action recognition researches based on wear-
able sensors is still at an initial stage due to the actual environment variable and
the diversity of stroke category, and there are still many problems need to be
solved.

2 Methodology and Materials

2.1 Hardware Platform Based on Wearable Inertial Sensors

In this paper, the wearable sensor system is used to collect the stroke movement
data in table tennis sport. This system consists of low cost six-axis inertial sensor,
which can obtain high-precision motion data and well meet the design needs.
The research focus on data preprocessing, sample feature extraction, classifier
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recognition process. Through the reasonable processing of data and classification
model training, it is expected to obtain high-precision recognition performance
at reasonable processing speed.

Table 1. Inertial sensor array specification

Unit Accelerometer Gyroscope

Dimensions 3 axes 3 axes

Dynamic range ±18 g ±2000◦/s

Bandwidth (Hz) 50 40

Bias stability (unit 1σ) 0.02 1

Noise density (units/
√

Hz) 0.05 0.05

Alignment error (deg) 0.2 0.2

Figure 1(a) is a the portable motion tracking system developed by Manlyn
Ltd (Dalian, China). The lightweight design of sensor module is for the demand
of ambulatory and long time monitoring. Sensor array specification is shown in
Table 1. Figure 1(b) shows the table tennis stroke assessment scenario, in which
the subject may wear sensor nodes on each upper limbs, and their sport activities
will not be affected. Movement data from wearable sensors was recorded when
the subjects played table tennis. The embedded operating system collect the raw
sensor data and transmit the data to the host wirelessly. The 3D human upper
limbs model in Fig. 1(c) indicates the ground truth of motion tracking provided
by optical device (Made by Optitrack Ltd).

Fig. 1. Raw data collected from IMU (a) Inertial measurement Unit (b) Sensor instal-
lation (c) Ground truth provided by optical device (Made by Optitrack Ltd.)

2.2 Feature Extraction and Selection

After simple extraction, triaxial angular velocity and triaxial acceleration data
were used for actual motion recognition. Five typical table tennis stroke move-
ments including forehand stroke, flat push, forehand chop, backhand chop and
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smash, which are classified and identified respectively based on KNN algorithm
and SVM algorithm. The collected raw data needs to be converted into a numer-
ical matrix for subsequent recognition processing. Feature extraction is carried
out then and for each data sample we can get a 48-dimensional feature vec-
tor, that is to calculate the mean value, variance, kurtosis, covariance, skewness,
correlation coefficient, entropy and energy for the angular velocity data and
acceleration data in the direction of X, Y and Z axes, as shown in Table 2.

Table 2. Eight features extracted from inertial data

Type of features Statistical characteristics Computational formula

Time-domain Mean value
−
X = 1

n

n∑

i=1
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X )

2

n
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X )
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fi

n s4
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Frequency-domain Entropy H(X) = −
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Xi(k) logXi(k)
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N∑
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Xi (k)2

N

(Xi(k) =
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xi e
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Feature normalization is normally necessary. Common methods of feature
normalization include linear normalization and zero mean normalization as fol-
lows:

*

X
linear

=
x − xmin

xmax −xmin
(1)

*

X
zero

=
x − −

x

σ
. (2)

Compare the two normalization method, the linear normalization rely too
much on minimum and maximum values, while zero mean normalization can
get better recognition performance in the preliminary study. The characteristics
of the original sample differ greatly in numerical value. After the normalization
and dimensionality reduction, the characteristic values are limited to a certain
range with little numerical difference, and the characteristics of the sample data
represented by each feature are not changed.
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Fig. 2. Sample characteristic scatter plot (a) before PCA dimension reduction (b) after
PCA dimension reduction

The main advantage of PCA (Principal Component Analysis) is that the
principal components are orthogonal to each other after dimensionality reduc-
tion, which can eliminate the interaction between the components of the original
data. In addition, PCA is an unsupervised learning of information measured by
variance, which is not subject to sample label limit. Furthermore, its calcula-
tion process is simple and easy to realize. Figure 2 shows the effect of PCA
dimensionality reduction. Figure 2(b) is the characteristic scatter diagram after
dimensionality reduction of PCA. The aggregation number of the same type of
stroke data can be seen in the figure, and the degree of differentiation of different
actions is large, which lays a good foundation for the subsequent classification
by SVM.

Table 3. Recognition rate of classifier using KNN method

K value 1 2 3 4 5 6 7 8 9 10 11 12

Recognition accuracy (%) 93 92 94 92 91 90 89 88 86 84 82 82

When using KNN method, it can be clearly seen from Table 3 that the recog-
nition rate of classifier corresponding to different values of K (from 1 to 12 in this
study). the recognition rate of the corresponding classifier is obtained by 10-fold
cross validation. It can be concluded that when K = 3, the corresponding classi-
fier model has the highest recognition rate. Therefore, in the task of classifying
and recognizing the table tennis stroke action of players in this research, K = 3
is selected as the optimal value of K when using KNN method. Since the best
performance is still less than 94%, SVM method is hence adopted to complete
optimize recognition.

SVM based machine learning toolbox Libsvm (Matlab) is adopted in this
study. Parameters train were completed through experimental tests. After sev-
eral experimental tests, parameters and types with better recognition perfor-
mance were finally selected, it turned out that C-svm was selected as SVM type
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Fig. 3. Contour map of SVM corresponding matrix with different c and g parameters

and Gaussian kernel (as shown in the following formula) was selected as kernel
function to achieve optimal recognition performance. Optimal punish coefficient
c and kernel function radius g were selected through actual tests where the
parameter c and g increasing gradually within a certain range. The test results
are expressed in matrix contour plot, as shown in Fig. 3. The horizontal and lon-
gitudinal axiss show the parameter c and g taking logarithm of 2, respectively.
The red numbers in the figure are recognition rates corresponding to different
parameter values of c and g. During actual tests, c and g were increased sharply
in the beginning, and the incremental amplitude range were gradually reduced
according to the test results. The final result can be seen in the figure. In the
end, the optimal output parameters are as follows: c = 2, g = 0.0625.

k(xi, xj) = exp(−||x − y||2
σ2

) (3)

When training the classification model, the method of 10-fold cross validation
is adopted to randomly divide the sample feature data into ten parts, one part
of which is taken as the test set and the other nine parts as the training set.
During training, the training set is divided into two parts: feature and label, and
the classifier is trained by the classification algorithm. When testing, input the
test set to output the recognition result and recognition rate. The flowchart of
the proposed recognition process is shown in Fig. 4.
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Fig. 4. The flowchart of proposed stroke motion recognition process

2.3 Experimental Results and Analysis

In the experimental stage, five different stroke actions of fifteen subjects were
collected with 10 times for each stroke. A total of 750 strokes were collected
and analyzed afterwards. The built-in low cost inertial sensor unit can measure
the x, y and z axes of acceleration and angular velocity of the player at the
same time, as shown in Fig. 5. The synchronization signal can be sent to each
acquisition nodes to realize the synchronous measurement of multiple nodes. The
data acquisition software can control the acquisition instructions and process the
data.

In this paper, the Confusion matrix is used to display the precision of the
classification results in a Confusion matrix by comparing the classification results
with the actual type. Each column of the obfuscation matrix represents the
prediction category, and the total number of each column represents the number
of data in that category. Each row represents the true category to which the
data belongs, and the total number of data instances for each row represents
the number of data instances for that class. The values in each column represent
the number of classes that the actual data is expected to be of. The correct
classification is located on the diagonal of the confusion matrix, while the wrong
classification is located outside the diagonal (Fig. 6 and Table 4).

It can be seen from the above mentioned recognition results that the KNN
classification algorithm can not meet the actual application accuracy require-
ments due to the lower recognition rate (94%). KNN directly compares test sam-
ples with training samples without training the model, which is time-consuming
and inefficient. In addition, the KNN method is largely dependent on the train-
ing sample size and has great limitations in practical application. Therefore, it
can be seen from the above that the KNN algorithm can not meet the practical
application requirements for the classification and recognition of table tennis
stroke actions. With regard to SVM algorithm, satisfactory classification and
recognition of stroke actions can be achieved. After the above processing of sam-
ple data, the recognition rate of the trained classification model can reach up to
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Fig. 5. Raw accelerometer data collected from IMU when a typical subject performs
forehand stroke (a) shoulder X axis (b) shoulder Y axis (c) shoulder Z axis (d) elbow
X axis (e) elbow Y axis (f) elbow Z axis (g) wrist X axis (h) wrist Y axis (i) wrist Z
axis

Fig. 6. Table tennis skilled movement recognition results (a) Confusion matrix of five
different strokes using KNN classifier (b) Confusion matrix of five different strokes
using SVM classifier
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96.86%. It is known that KNN method relies too much on the training sample
size and has great limitations in practical application. Therefore, SVM is more
suitable for the practical application of classification and recognition tasks in
the proposed research.

Table 4. Recognition rate of classifier using different feature dimension

Classifier 24 dimensions 48 dimensions Mean accuracy (%)

KNN 90.86% 94.12% 92.49%

SVM 92.28% 96.86% 94.57%

We can conclued that when using acceleration data and angular velocity data
for motion recognition, both algorithms have better performance than merely
using acceleration data, and the recognition rate is basically 4% ∼ 5% higher.
Therefore, this study adopted both triaxial acceleration and triaxial angular
velocity data to identify different strokes of table tennis sport, ensuring better
recognition performance.

3 Conclusions

In this paper, wearable sensors are applied to table tennis stroke recognition,
and the data collected by the wearable sensor is used to realize the recognition
of 5 different stroke actions. In the design of recognition process, the method of
machine learning is introduced, which reflects the advantage of machine learning
method to this kind of recognition task. Through the processing of angular veloc-
ity and acceleration data of various kinds of stroke motions collected by inertial
sensors, the recognition methods based on KNN and SVM are presented. In the
future, various machine learning methods would be studied. Meanwhile, other
features can be extracted to explore whether other features can better improve
the identification accuracy of the whole system.
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