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Abstract. Fall is the leading cause of death among elderly people worldwide.
In this work a low power portable continuous wave radar (CWR) system is
proposed to detect elderly fall. This paper presents experimental evaluation of
the system to detect human fall motion among various sitting, standing and
walking activities. Signals from three subjects with different heights and weights
engaged with the different movement activities including walking, sitting,
standing and fall in front of the proposed radar system are analyzed. Overall, 60
fall and 180 non-fall activities were recorded. The Short-time Fourier Transform
(STFT) is employed to obtain time-frequency Doppler signatures of different
human activities. Radar data is analysed by using MATLAB and an algorithm is
employed to classify the fall on the basis of analysed data. The results show that
the proposed portable CWR can be used to detect fall from non-fall activities
with almost 100% accuracy.
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1 Introduction

In recent years average life expectance of human beings has increased unprecedently.
By 2050 more than 50% of the total population of the world will be over 60+ age [1].
Each year approximately 37.3 million falls occur which require intense medical atten-
tion. Approximately 646,000 deaths occur every year due to fall and majority of these
are above age of 60 years [1]. In United States, unintentional fall of elderly people above
65 age is the leading cause of death. This situation is same among the less developed
countries [2]. Besides fatal injuries, fall also causes serious implications which affect the
quality of life of elderly people. Fractures resulted from a fall can reduce the mobility of
elderly people to bed only and most of them die within 1 year of fall [3]. Early and
accurate fall detection can significantly contribute towards immediate response and
proper care of the elderly people which will alleviate the risk of mortality [4].

Wearable and non-contact devices are the two most competing technologies for fall
detection. Wearable devices like accelerometer sensors can detect a fall by calculating
the vertical acceleration of the body [5]. Although wearable technologies;
accelerometer sensors or emergency push buttons are widely used, the major draw-
backs of such devices are that they have to be worn by a person all the time which may
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impede one’s daily routine. Moreover, elderly people are required to remember wearing
them all the time and they must be mentally conscious after the fall to press the push
button. Furthermore, these devices suffer from intrusiveness, fragility and degradabil-
ity. Cameras can be used to monitor movements of the elderly but in this way, their
privacy is compromised. The striking attributes of a radar system include nonintrusive
sensing, immune to lighting and weather conditions and preservation of privacy [6].

Radar back scatter by a moving object changes the frequencies of the radar signal
and this phenomenon is called Doppler Effect. A fall motion can be detected by a radar
by analyzing the back scattering caused by a fall. In literature target back scatterings
have been recorded for different types of motion [7–9]. To analyze these back-scatter
signals different processing techniques such as STFT [10], Wavelet Transforms [11]
and Fractional Domain Fourier Transform (FrFT) [12] have been employed. Depending
on the operating frequency and power of the equipment, unique Doppler signatures
have been achieved for different type of motions. Once the radar signals are analyzed,
their unique features are extracted and a fall is determined by using different classifiers.
Most common classifiers used are Support Vector Machine used in [13], k-nearest
neighbours used in [7] and machine learning based on Hidden Markov model has been
used in [14].

In this work a low power, low frequency, portable yet efficient Doppler radar
system to detect a human fall is proposed. In [6–14] the radar systems used were quite
large and expensive. A comparatively portable Doppler radar system was proposed in
[15] but for physiological parameter measurements. This paper presents experimental
evaluation of the system to detect fall motion in various sitting, standing and walking
activities. The proposed portable Doppler radar system can detect a fall very efficiently
from other human motions even with the events which involve immediate falls during
walk activity. Radar data is analysed by using MATLAB and an algorithm is employed
to classify the fall on the basis of analysed data.

The rest of the paper is divided in the following sections. Section 2 describes signal
model. Section 3 explains hardware model. Section 4 deals with signal processing.
Section 5 includes results and discussions. Section 6 concludes the paper followed by
references.

2 Signal Model

The signal transmitted by the radar is given by

Tx tð Þ ¼ A cos xctð Þ ð1Þ

where xc ¼ 2pfc is the central operating frequency of the CWR. The signal received
by the radar at any time interval t is given by

Rx tð Þ ¼ Tx t � / tð Þð Þ ð2Þ
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where

/ tð Þ ¼ 2
c

do � vtð Þ ð3Þ

Where d0 be the distance of the body from the radar at time t0 and v is the target
velocity component. Substituting (1) and (3) in (2)

Rx tð Þ ¼ Mcos 2p fct� fc
2do
c

þ 2fcvt
c

� �� �
ð4Þ

where M is a constant and the phase given by

H ¼ 2pfc
2do
c

� � � ð5Þ

The doppler frequency is given by

fD ¼ 2fcv
c

ð6Þ

The in-phase and quadrature components are given by

I tð Þ � cos xo þHþ fDtð Þ ð7Þ

and

Q tð Þ � sin xo þHþ fDtð Þ ð8Þ

STFT is computed by

R a; bð Þ ¼
Xm

n¼1
x n½ �x� nT � aTð Þe�ixtbFn. . . ð9Þ

where a is the time index, b is the frequency index, T is sampling period, F is
frequency step size, x (.) is Hamming window function, and * denotes complex
conjugate [14].
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3 Hardware Model

Radar hardware is shown in Fig. 1.

As described in Fig. 2, an 887 MHz signal was generated using a voltage control
oscillator (VCO) with 10dBm power. The signal is then passed through a low pass filter
(LPF) to remove high frequency noise components of the VCO, which may cause non-
linearity at the receiver side. The signal is then amplified by a low noise amplifier
(LNA) and split by using a two-way power splitter. One part of the signal goes to
transmitter antenna while the other goes to a local oscillator (LO) input of an in-phase-
quadrature (I/Q) demodulator. Radar back scatter received by the receiver antenna are
very low in power, so an amplifier of 16 dB gain is applied. Finally, to eliminate
unwanted frequency components the signal is passed through a bandpass filter
(BPF) before down-converted to baseband signal.

Ultrawideband (UWB) patch antennas are used for transmitter and receiver pur-
poses with return loss lower than −10 dB at operating frequency.

Fig. 1. Radar hardware

Fig. 2. Radar hardware block diagram
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3.1 Data Experimental Setup

Figure 3 shows the experiment setup. Radar uses 887 MHz center frequency, as the
system is portable it can be placed anywhere in a room. For this setup, the antennas
were setup at a height of 2 m above the ground. Three subjects with different heights
and weights volunteered for different movement activities including walking, sitting,
standing and fall in front of the radar. All of these activities are monitored within a
distance of four meters in front of the Radar. Four different experiments were con-
ducted involving the above-mentioned activities. In the first experiment the subjects
were asked to stand in front of the radar system and fall on a mattress, then stand up
and again perform fall. Ten number of falls for each subject were recorded. In the
second experiment the subjects were asked to walk in front of the radar and then fall on
the mattress, again ten number of falls for each subject were recorded. To distinguish
between walk and sit with a fall, in the third experiment the volunteers were asked to sit
on a chair in a fast manner while walking. Each subject was asked to sit ten times while
walking. Finally, in the fourth experiment the subjects were asked to sit and stand
quickly on the chair, again each subject was asked to sit and stand ten times. Overall,
60 fall and 180 non-fall activities were recorded.

In all these experiments the data was recorded for a duration of three minutes for
each experiment and activities were performed at different locations in front of the
radar system.

4 Signal Processing

Figure 4 surmises the signal processing unit. A MATLAB program was developed to
fetch data from the radar system. The in-phase (I) and quadrature (Q) data were
sampled at 1000 samples per second and stored in a m.file for signal processing.

Fig. 3. Experimental setup
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First of all, in order to remove background noise or dc level, the I and Q signals
were subtracted with the data recorded without any activity and sampled at same rate
i.e. 1000 samples per second. As STFT proved to be very effective in obtaining time-
frequency signatures of Doppler radars [16], the main goal was to get the time- fre-
quency signature of the radar by applying STFT. To do so, different filtering techniques
were applied to remove additional frequency components from the signals. At the end
an algorithm was developed to detect fall on the basis of features generated by STFT.
Power spectral density in dB/Hz was extracted from STFT and an algorithm was
applied making decision based on the value of dB/Hz on extreme frequency compo-
nents. For instance, a low pass infinite-impulse response IIR filter was first applied with
cut-off frequency of 100 Hz. After that a constant noise was noticed at 50 Hz, so a
notch filter with 50 Hz center frequency was applied on I and Q channels.

Once the noise components were filtered then the arctangent demodulation was
performed to get the best of I and Q signals. Finally, for linear time-frequency analysis
STFT was employed. The results from the spectrogram obtained clearly distinguished a
fall from other non-fall activities.

For STFT following settings were employed: window size of 1024, 1000 non-
overlap, sampling frequency of 1000 samples per second and minimum threshold of
0db were set. The values of window size and non-overlap sample were set to get best
temporal resolution. The threshold level was set to eliminate weak reflections as we
were concerned with only gross motor activities to detect fall.

For fall classification features such as, extreme frequency components, power
spectral density per frequency and time span of event were extracted and sent to a
decision-making algorithm.

Fig. 4. Signal processing flow chart for fall detection
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5 Results and Discussions

Figure 5 shows different time-frequency Doppler signatures of human activities in the
form of the spectrogram. The spectrogram is computed using Hamming window of
1024 point, logarithm scale and 0 dB power/frequency threshold. This threshold is set
to record only those reflections which contain sufficient amount of energy. The highest
frequency component with at least 0 dB power is below 25 Hz because at low center
frequency, 887 Hz in our case, most of the energy is reflected back by the target on
lower frequency components [14]. The results of all the spectrograms in Fig. 5 are
consistent with previous works [10–14] yet with low power, low frequency and por-
table equipment.

Figure 5(a) represents the spectrogram of the first experiment. The peaks in the
spectrogram at different time intervals are the falls in the experiments. The reflected
energies are concentrated to lower frequencies but at the time of fall maximum dis-
placement can be observed in the frequency axis with at least 0 dB power. As
described in [17], after a fall no higher energy was received due to negligible move-
ment. Figure 5(b) represents the spectrogram of the second experiment in which falls
during walk were detected. The peaks in the spectrogram at different time intervals are
the falls in the experiments. The reflected energies are concentrated to lower fre-
quencies but again at the time of every fall maximum displacement can be observed on
the frequency axis.

As explained in [16], detecting a fall from walk is very challenging due to
movement of the whole body. It can be seen in the Fig. 5(b) that due to acceleration of
a fall high Doppler frequency components can still be easily distinguished from high
energy walk t-f signatures.

Figure 5(c) shows the spectrogram of third experiment. It can be easily observed that
sitting after walk generates high Doppler frequency but these are low as compared to fall
during walk motion, hence can easily be distinguished from each other. Figure 5(d) is
the spectrogram based on the fourth experiment. First spike represents sitting followed
by standing and the subsequent spikes follow the same pattern. The Doppler frequencies
of these motions are less than the ones of fall.

Based on the frequency components having high power spectral density and time
information obtained from spectrogram an algorithm is developed to classify a fall from
non-fall activities. Table 1 shows the fall detection based on the extracted features.
Accuracy is determined by dividing the correctly detected activities with total activities.

Table 1. Fall detection based on extracted features

Experiment Total activities Actual falls Detected fall % Accuracy

1. Stand and Fall 60 30 30 100
2. Walk and Fall 60 30 33 95
3. Walk and Sit 60 0 2 96.6
4. Stand and Sit 60 0 0 100
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6 Conclusion

This work demonstrates that a low power and portable CWR can be effectively used to
detect fall among other human activities. Unique time-frequency signal for a fall are
obtained by applying STFT on radar’s sampled data. Based on the power spectral
density and time information of the spectrogram, an algorithm analyzing radar signals
has been developed to classify a fall. The results verified that a fall can be classified
with high accuracy from the proposed system and processing techniques.

All of the experiments are conducted within a distance of four meters from the radar
system and the classification algorithm makes decision on the basis of power spectral
density and time information only. High gain amplifiers and appropriate filters can be
used to maximize the fall detection range. A more powerful and efficient classification
algorithm utilizing more features can be trained to minimize false detection of the
system.

Fig. 5. Spectrogram of experiments: (a) Stand and Fall (b) Walk and Fall (c) Walk and Sit
(d) Stand and Sit
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