
High-Throughput Machine Learning
Approaches for Network Attacks

Detection on FPGA

Duc-Minh Ngo, Binh Tran-Thanh, Truong Dang, Tuan Tran,
Tran Ngoc Thinh, and Cuong Pham-Quoc(B)

Ho Chi Minh City University of Technology, VNU-HCM, Ho Chi Minh City, Vietnam
cuongpham@hcmut.edu.vn

Abstract. The popularity of applying Artificial Intelligence (AI) to per-
form prediction and automation tasks has become one of the most con-
spicuous trends in computer science. However, AI systems usually require
heavy computational tasks and result in violating applications that need
real-time interactions. In this work, we propose a system which is a com-
bination of FPGA platform and AI to achieve a high-throughput network
attacks detection. Our architecture consists of 2 well-known and powerful
classification techniques, which are the Decision Tree and Neural Net-
work. To prove the feasibility of the proposed approach, we implement
a prototype on NetFPGA-10G board using Verilog-HDL. Moreover, the
prototype is trained and tested with NSL-KDD dataset, the most popu-
lar dataset for network attack detection system. Our experimental results
show that the Neural network core can detect attacks with speed at up to
9.86 Gbps for all packet sizes from 64B to 1500B, which is thoroughly 11x
and 83x times faster than Geforce GTX 850M GPU and i5 8th generation
CPU, respectively. The Neural Network classifier system can function at
104.091 MHz and achieve the accuracy at 87.3.

Keywords: Machine learning · FPGA platform · Network attacks

1 Introduction

In recent years, the capacity of a machine to imitate intelligent human behav-
iors called Artificial Intelligence (AI) [14] has become a prominent topic. AI
has achieved several successes in practical applications such as visual percep-
tion, decision-making, speech recognition, and also object classification. Like-
wise, Machine learning (ML) [10] is well-known as a subset of AI with the ability
to update, improve itself when exposed to more data; machine learning is flexible
and does not require human intervention to make certain changes.

One of the most practical applications of ML is to solve classification prob-
lems. Many ML models such as Linear Classifiers, Logistic Regression, Naive
Bayes Classifier, Support Vector Machines, Decision Trees, or Neural Networks
can be used to make predictions for new data. For instance, an artificial neural
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Published by Springer Nature Switzerland AG 2019. All Rights Reserved

P. C. Vinh and A. Rakib (Eds.): ICCASA 2019/ICTCC 2019, LNICST 298, pp. 47–60, 2019.

https://doi.org/10.1007/978-3-030-34365-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34365-1_5&domain=pdf
https://doi.org/10.1007/978-3-030-34365-1_5


48 D.-M. Ngo et al.

network (ANN) computation model which compose of multiple neuron layers,
connections, and directions of data propagation has ability to learn features of
data with multiple levels of abstraction by finding the suitable linear or non-
linear mathematical manipulation to turn inputs into outputs. The learning
processes, referred to as training phases, of a neural network are conducted to
determine the value of parameters as well as hyperparameters (such as the num-
ber of neurons in the hidden layer, the weights apply to activation functions and
the bias values) from training datasets. Based on results of these processes, each
neuron will be assigned the most suitable weight value to form the trained neu-
ron network. The entire network, then, can be used to compute corresponding
outcomes for new data. This is referred to as the inference phase.

Real-time applications usually require heavy computational tasks; thus, gen-
eral purpose processors (such as CPUs) are not efficient in system performance.
Therefore, hardware accelerators such as Graphics Processing Units (GPUs), and
Field Programmable Gate Arrays (FPGAs), have been employed to improve the
throughput of ML algorithms in recent years. Although GPUs are mainly used
for this purpose, they suffer from inflexibility in architecture due to hardwired
configuration. Meanwhile, Field-Programmable Gate Arrays (FPGAs) play an
important role in data sampling and processing industries due to its flexibility
in custom hardware, high parallelism architecture, and energy-efficiency. While
GPU is a good choice for the training phase of an ANN, FPGA is a promising
candidate for processing inference phase [5,12].

In this work, we study on designing and implementing classification mod-
els for high-speed network attacks detection on FPGA platforms. In details,
decision tree and neural network techniques are deployed into a NetFPGA-10G
board to detect network attacks based on the NSL-KDD dataset [3]. The main
contributions of this work are summarized as three folds.

– We design two classification models, the decision tree and neurons network,
for detecting network attacks using the NSL-KDD dataset.

– We propose an architecture for implementing the models on FPGA platforms.
– We implement the first prototype version on the NetFPGA-10G board and

validate the system with the NSL-KDD dataset. The experimental results
shows that we can beat both Geforce GTX 850M GPU and Intel core i5 8th
generation CPU in processing time.

The rest of this work is organized as follows. In Sect. 2, we discuss some
relevant work and classification techniques used in this work. Section 3 presents
our method to build and optimize machine learning models. Section 4 shows our
implementation on the NetFPGA platform. We evaluate and analyze our system
in Sect. 5. Finally, conclusion is discussed in Sect. 6.



High-Throughput ML Approaches for Network Attacks Detection on FPGA 49

2 Related Work and Background

2.1 Related Work

ID3 is a supervised learning algorithm which builds the tree based on attributes
of a given set and the resulting model is used to predict the later samples. The
more information it gains, the high precision the model is. However, researchers
in [6] pointed out that its sensitivity on large value will yield low conditional
values. C4.5 algorithm was proposed by the work in [1] to overcome the issues
left by the ID3 algorithm by using information gain computation which produces
measurable gain ratio. In order to increase its performance, researchers in [15]
determined another alternative form of DT classification which is accelerated in
the pipeline. The main idea is conducted on a binary decision tree in which input
values going in the model are decided which subset will be executed instead of
running through all the model at one time. After triggering the subset to execute,
another input going in the model is calculated to choose the branch of the model
while the previous subset is being executed.

In term of hardware-based, an implementation using FPGA approach is pro-
posed in [15] for accelerating the decision tree algorithm. The architecture is con-
structed by various parallel processing nodes. In addition, the pipeline technique
is applied to increase resource utilization as well as throughput. The proposed
system is reported to be 3.5 times faster than the existing implementation. In
recent years, classification and machine learning implementations are blockbuster
research trends on FPGA platform. A hardware-based classification architecture
named BV-TCAM, proposed in [16] aiming to implement a Network Intrusion
Detection System (NIDS). The proposed architecture is a combination of the
two algorithms, including Ternary Content Addressable Memory (TCAM) and
Bit Vector (BV). This combination helps to represent data effectively as well as
increasing system throughput.

There are various neural network implementations proposed on FPGA plat-
form to take full advantages of the ability in reconfiguration, high performance
and short developing time. The authors in [2] allows quickly prototyping different
variants of neural networks. Other works focus on maximize resource utilization
of FPGA hardware. Other works of James-Roxby [8] proposed an implementa-
tion of multi-layer perceptron (MLP) with fixed weights, which can be modified
via dynamic reconfiguration with a short amount of time. A similar exploration is
found in the work of [21]. On the one hand, in artificial neural networks (ANNs)
FPGA-based implementations, weights are mostly represented in an integer for-
mat. Special algorithms are proposed in [9] represents weights by power-of-two
integers. On the other hand, floating-point precision weights are also investi-
gated in the work of [11]. However, there is rarely implement of floating-point
weights on FPGA platform. In this paper, a MLP model is proposed with 32-bit
floating-point precision weights for classification purposes on NetFPGA plat-
form. In addition, a decision tree model is implemented for results comparison
and evaluation.



50 D.-M. Ngo et al.

2.2 Background

In this section, we introduce an overview of the two models, the decision tree
and neurons network, that we use for building our high-throughput network
attacks detection system. These models are used because they are efficient when
implemented on FPGA.

Decision Tree. A decision tree [13] is a tree-like model for classifying data
based on different parameters which are built as intermediate nodes. Each node
functions as a test that provides possible answers for classifying data. The process
is iterated until a leaf node is reached. The leaf nodes represent classifications
of input data.

Artificial Neural Networks - ANN. ANNs [7] are computing systems that
play an important role in variety of applications domain such as computer vision,
speech recognition, or medical diagnosis. In ANNs, artificial neurons are con-
nected through a directed and weighted connections and compute outputs based
on the internal state and inputs (activation function). Compared to recurrent
networks where neurons can be connected to other neurons in the same or pre-
vious layer, the feedforeword ones where neurons are formed a directed acyclic
graph are mainly used in computing.

Back Propagation has been dominated in the neural network as its effi-
ciency as well as its stable error-minimizing for activation functions. Since the
feed-forward is computed in the usual way, the back propagation depends on the
output calculated from the activation function. In FPGA, the activation function
will consume a huge amount of resources from hardware because of its compli-
cated exponential equation, instead, a simulated activation which is simpler and
implementable is applied in the model. To conduct the back propagation calcu-
lation, all the results of feed-forward computation from each node are cached so
that it can compute the error of the function and narrow the weights to their
most accurate values.

Weights in a neural network can be treated as input going to a single node
and fed to the network in feed-forward steps calculating the output of the single
neuron. The main idea of back-propagation is using that output to calculate the
error of the function and narrow the weights to their most accurate values. To
handle the back-propagation computation, there are two values must be stored
at each node:

– The output o of the node j in the feed-forward calculation
– The cumulative result of backward computation which is a back-propagated

error, denote by δ

These two values are part of the gradient computation. The partial derivative
of a function E respected to weight w is using the output of the neural network
to calculate the impact of related weight inputs to the whole network can be
express by Eq. 1.



High-Throughput ML Approaches for Network Attacks Detection on FPGA 51

∂E

∂wij
= oiδj (1)

We use Eq. 2 for calculating back-propagated errors, there are differences of
finding at output layer and hidden layer. With the back-propagated error at
output layer, the output target is required to compute using delta rule.

δ = (target − output) ∗ output ∗ (1 − output) (2)

With the back-propagated error at other layers, instead of finding difference
between target activate value and actual output to calculate δ, they requires the
total of multiplied back-propagated error of all nodes in the next layer and the
respected weight since all single nodes of current layer connect to all node of the
next layer.

δ = (
∑

δ(nextlayer) ∗ w) ∗ output ∗ (1 − output) (3)

Once the gradient is computed in Eq. 3, the change of weight (�w) can be
calculated in Eq. 4 by multiplying it with the learning rate γ. Learning rate is
a hyperparameter that controls how much weight it is adjusted in the network
with respect to the loss gradient. The lower the learning rate, the slower travel
on the slope of updating weight. It also means that it will take more time to get
coverage.

Δwij = −γoiδj (4)

Finally, new weight are calculated by using current weight of j-th node adding
the coverage of gradient respected to that weight in Eq. 5.

wnew = wold + Δwij (5)

3 Methodology

Our first prototype system on FPGA is developed to detect attacks on recorded
network data. We choose NSL-KDD dataset [3] to construct and evaluate our
design. Besides, the design of the FPGA-based approach which is parallel pro-
cessing hardware is quite different from the software-based approach. With
FPGA, hardware resources and tasks scheduling should be considered; thus,
we try to optimize and find suitable machine learning models by using software-
based before applying into FPGA. Furthermore, we can easily evaluate machine
learning models which are built on software then using these results to compare
with hardware in the same experiments (speed, accuracy test).

NLS-KDD [3] is chosen as the dataset for training and inference phases. For
running with Weka tool [18], the dataset must be changed to the .arff format
(ARFF stands for Attribute-Relation File Format). It is an ASCII text file that
describes a list of instances sharing a set of attributes. There are 41 features



52 D.-M. Ngo et al.

Table 1. The 6 features descriptions

Feature name Description

duration Length (number of seconds) of the connection

protocol type Type of the protocol, e.g. tcp, udp, etc.

src bytes Number of data bytes from source to destination

dst bytes Number of data bytes from destination to source

count Number of connections to the same host as the current
connection in the past two seconds

srv count Number of connections to the same service as the current
connection in the past two seconds

in the data-set, however based on the hardware resource constraints, the 6 out-
standing features [17] are selected due to their high impacts on the classification
accuracy. The 6 features descriptions are shown in Table 1.

We have trained the system using 6 out of 41 features of NSL-KDD dataset
as mentioned above to balance between accuracy and model size. The generated
models are also tested with NSL-KDD dataset.

4 FPGA Implementation

In this section, we introduce our implementation of the proposed system, where
a number of classification techniques are deployed on FPGA platform. Figure 1
illustrates the overview architecture of our system that can be partitioned into
two layers, including CPU for running a software-based monitor tool and a device
for deploying the FPGA-based architecture.

The CPU layer consists of monitor tools as interfaces for communication
between administrators at the software level and the FPGA-based device. The
FPGA-based device accommodates our proposed classification techniques in
other to detect abnormal behaviors, including the following blocks:

1. The Classifier block is used to deploy classification techniques either deci-
sion tree or neural network. This block receives processed input features from
the Pre-processor module to extract necessary features of incoming packets.

2. The FIFO memory buffers raw packets to increase the system throughput
because of time-intensive of the Classifier block. This memory block is directly
connected to Packet Pre-processor and Packet Controller.

3. The Packet Controller module receives results from Classifier and processes
packets in the FIFO memory as well as sends alert signals based on decisions
to administrators.



High-Throughput ML Approaches for Network Attacks Detection on FPGA 53

Pr
e-

pr
oc

es
so

r

DMA Transfer/Receiver

Packet C
ontroller

Controller

Decision 
Trees

Neural 
Network Core n

Pkt_In
Classifier

Pkt_Out

FPGA-based architecture

FIFO

Monitor

Ethernet PacketSystem Bus DMA Communicate Bus

CPU

Fig. 1. First prototype system for applying classification techniques on FPFA

4.1 Decision Tree

The block diagram of the decision tree is represented in Fig. 2. There are 5
blocks in the architecture, including an input block, an output block, a recursive
decision tree (sub-tree), a left-hand-side block, and a right-hand-side block. The
input block is responsible for providing inputs to the recursive decision tree block
while the output block gets the predictions from it. The recursive decision tree
block decides which tree branch is enabled for making a prediction based on the
combination of inputs. The left-hand-side tree branch is implemented as the LHS
block while the right-hand-side tree branch is implemented as the RHS block.

Fig. 2. Decision tree block diagram



54 D.-M. Ngo et al.

4.2 Artificial Neural Network

In this section, we introduce our implementation for the proposed neuron-
network core.

Feedforward Phase. Figure 3 illustrates the general model of a fully connected
multiple layer neural network which is implemented on FPGA platform. The
neural network is constructed from 4 layers, including one input layer, two hidden
layers, and one output layer. Moreover, comparator and FIFO are added for
outputs estimating and storing purposes.

Fig. 3. Neuron network overview

There are 2 neurons in each hidden layer while only one neuron is imple-
mented in the output layer. In addition, each hidden and output layer has ded-
icated configurable bias value for fitting different dataset. Furthermore, weight
values in the two hidden and output layer are also adjustable for changing dataset
or updating (neural network) model purposes. The block diagram of the multiple
layer neural network is shown in Fig. 4.

Fig. 4. Neuron network block diagram

For supporting asynchronous communication between modules, the hand-
shaking mechanism is used in the neural network model. “Inputs” are passed



High-Throughput ML Approaches for Network Attacks Detection on FPGA 55

through hidden layers and output layer for producing “Prediction” basing on
weights and biases. These predictions are then written into a FIFO, waiting to
be read. Moreover, the pipeline technique is used for increasing throughput of
the system.

Update Weights Phase. As it can be seen in Fig. 5, there are two main ele-
ments in update weight implementation called delta calculator and weight calcu-
lator. The delta calculator must be executed in serial while the weight calculator
can be started when the delta calculation is finished. The delta calculating flow
top-down is ordered from the output layer back to the input layer.

Fig. 5. Update weight block diagram

Delta calculator consists of three types. The delta calculator at output layer is
the implementation of function in Eq. 2 while the other two is the implementation
of function in Eq. 3. The weight calculator is the implementation of function in
Eq. 5.

– Delta calculator at the output layer demands two inputs: result calculated
from the output layer and the expected output from testing samples. This
sub-module performs the back-propagated error calculation based on Eq. 2.

– Delta calculator at second hidden layer consists of the following inputs: the
result calculated by the current neuron and all pairs of delta and coordinated
weight of the right side layer that the neuron connects to. Because there
are three neurons in the hidden layer so three instances of this module are
required.

– Delta calculator at first hidden layer consists of the following inputs: the result
calculated by the current neuron and all pairs of delta and coordinated weight
of the right side layer that the neuron connects to. Because there are three
neurons in the hidden layer so three instances of this module are required.



56 D.-M. Ngo et al.

Weight calculator consists of three inputs which are the delta from the pre-
vious sub-module, the result from activation function and the weight respected
to the output of activation function. The function of this module is that it will
calculate the new weight based on the update function and the implementation
is the same in all three layers.

5 Evaluation

In this section, we discuss the synthesis results, then present our experimental
results for the proposed system. The classification cores are evaluated in two
different experiments which are throughput and accuracy test.

5.1 Synthesis Results

Our proposed system is deployed into NetFPGA-10G board including Xilinx
Virtex-5 xc5vtx240t device, which has a combination of 149,760 Registers,
149,760 LUTs, 324 BlockRAMs, and 37,440 Slice hardware resources in total.
The system is synthesized with the Xilinx XPS 13.4 [20] and optimized using Xil-
inx PlanAhead toolchain [19]. Because of the limitation in hardware resources,
we can not integrate both classification cores at the same time. Table 2 shows
the resources usage of the system with either decision tree or Neural Network
core.

Table 2. Resource usage

Resources Decision tree Neural network

Register 74,049
(49.45%)

117,078

LUT 67,552
(45.11%)

107,036
(71.47%)

BlockRAM 181
(55.86%)

181
(55.86%)

Maximum frequency 100.675 MHz 104.091 MHz

The results shows that the system with decision tree consumes nearly a
haft hardware resources of xc5vtx240t device and the minimum frequency is
100.675 MHz. Meanwhile, the system with neural network consumes up to
78.18% Registers of this device with minimum frequency at 104.091 MHz. This
result is one evidence that we have to separate decision tree from neural network
in other to satisfy the availability of hardware resources.



High-Throughput ML Approaches for Network Attacks Detection on FPGA 57

5.2 Experimental Setup

The testing model in Fig. 6 is used to evaluate our system. The test uses two
boards NetFPGA-10G with Xilinx xc5vtx240t device integrated into CPUs. Each
board functions as a high-speed network transfer/receiver:

– One board NetFPGA-10G is installed OSNT (Open Source Network
Tester) [4] which is responsible for sending packets at line-rate speed (up to
9.87 Gbps on each port) to our proposed system.

– Another board is our network attack detection system in which either the
neural network or decision tree core is integrated The system is directly con-
nected by network cable to the OSNT using SFP+ interface.

Port_1 (10 Gbps)

Port_2 (10 Gbps)

Port_3 (10 Gbps)
Virtex-5

XC5VTX240T
Port_4 (10 Gbps)

Port_1 (10 Gbps)

Port_2 (10 Gbps)

Port_3 (10 Gbps)
Virtex-5

XC5VTX240T
Port_4 (10 Gbps)Classifier

SFP+

SFP+

SFP+

SFP+

NetFPGA-10g NetFPGA-10gPort_1 (10 Gbps)

OSNT

CPU CPU

Fig. 6. Testing setup

Data using to test the system are attacking packets from NSL-KDD dataset
with different lengths: 64B, 128B, 256B, 512B, 1024B and 1500B. To evaluate
throughput of the system, we increase the sending rate of the OSNT board until
it exceeds the maximum responding speed of the system.

5.3 Experimental Results

The throughput is recorded by the OSNT monitor tool with the setup in Fig. 6.
Thank to the parallel architecture, decision tree on FPGA can achieve maxi-
mum throughput by up to 9.86 Gbps, as shown in Fig. 7. The throughput of the
decision tree module is closed to throughput of incoming packets without any
packet loss. Besides, the throughput of the neural network module gradually
increases in the first three types of packet, from 1.28 to 3.40 and 6.96 Gbps with
64B, 128B, and 256B packets, respectively. With larger packets, 512B, 1024B,
and 1500B, the processing throughput of both neural network and decision tree
approximate to throughput of incoming packets without any packet loss.

For evaluating the accuracy of the neural network and decision tree core, we
measure the percentage of correct predictions over total packets received. The
testing set of NSL-KDD is used in this scenario. We also compare our cores
on FPGA with the same models in different platforms which are GPU GeForce
GTX 850M and CPU i5 8th generation with 16 GB RAM (Ubuntu 14.04). The
results are shown in Table 3.



58 D.-M. Ngo et al.

7.
44 8.

59 9.
26 9.
62

9.
81

9.
87

7.
42 8.

47 9.
19 9.
58

9.
79

9.
86

1.
78

3.
4

6.
96

9.
58

9.
79

9.
86

0

2

4

6

8

10

64B 128B 256B 512B 1024B 1500B

Th
ou

gh
pu

t (
G

bp
s)

Packet Types

Incoming Speed Decision Tree Neural Network

Fig. 7. Testing throughput

Table 3. Comparisons of three platforms in term of accuracy and processing time

Platform Accuracy (%) Processing time (s)

NN DT NN DT

GPU GeForce GTX 850M 91.230 97.550 0.140 0.050

CPU i5 8300 with 16 GB RAM 87.300 95.102 1.007 0.405

FPGA with xc5vtx240t device 87.300 95.102 0.012 0.004

The accuracy values reported in Table 3 show that FPGA produces the same
results as CPU does but faster than CPU for both cores. While GPU needs 0.14 s
to finish the NN computation, the FPGA only need 0.012 s. In other words,
speed-up of 11.6× is achieved when compared to GPU.

6 Conclusion

In this paper, we design and implement high-throughput machine learning tech-
niques which are decision tree and neural network on FPGA platform to detect
network attacks. The proposed system not only could examine network pack-
ets to detect various types of network attacks but also are flexible when dif-
ferent core can changed to adapt attacking types. We implement our proposal
in Xilinx xc5vtx240t device with two detection cores: decision tree and neural
network. The implemented neural network can detect attacks at 1.78 Gbps and
up to 9.86 Gbps with packets size from 64B to 1500B, which thoroughly faster
than Geforce GTX 850M GPU and i5 8th generation CPU 11x and 83x times,
respectively. The neural network detection core can function at 104.091 MHz and



High-Throughput ML Approaches for Network Attacks Detection on FPGA 59

achieve the accuracy at 87.3% while these numbers are 100.675 MHz and 95.1%
for the decision tree core.

Acknowledgements. This research is funded by Ho Chi Minh City University of
Technology - VNU-HCM, under Grant number T-KHMT-2018-25.

References

1. RuleQuest Research 2017: Is See5/C5.0 Better Than C4.5? https://rulequest.com/
see5-comparison.html. Accessed 27 June 2019

2. Cox, C.E., Blanz, W.E.: GANGLION-a fast field-programmable gate array imple-
mentation of a connectionist classifier. IEEE J. Solid-State Circuits 27(3), 288–299
(1992)

3. Canadian Institute for Cybersecurity: NSL-KDD dataset. https://www.unb.ca/
cic/datasets/nsl.html. Accessed 27 June 2019

4. Github: OSNT 10G Home. https://github.com/NetFPGA/OSNT-Public/wiki/
OSNT-10G-Home. Accessed 27 June 2019

5. Guo, K., Zeng, S., Yu, J., Wang, Y., Yang, H.: [DL] a survey of FPGA-based neural
network inference accelerators. ACM Trans. Reconfigurable Technol. Syst. 12(1),
21–226 (2019). https://doi.org/10.1145/3289185

6. Hssina, B., Merbouha, A., Ezzikouri, H., Erritali, M.: A comparative study of
decision tree ID3 and C4.5. Int. J. Adv. Comput. Sci. Appl. 4(2), 13–19 (2014)

7. Jain, A.K., Mao, J., Mohiuddin, K.: Artificial neural networks: a tutorial. Com-
puter 3, 31–44 (1996)

8. James-Roxby, P., Blodget, B.: Adapting constant multipliers in a neural network
implementation. In: Proceedings 2000 IEEE Symposium on Field-Programmable
Custom Computing Machines (Cat. No. PR00871), pp. 335–336. IEEE (2000)

9. Marchesi, M., Orlandi, G., Piazza, F., Uncini, A.: Fast neural networks without
multipliers. IEEE Trans. Neural Netw. 4(1), 53–62 (1993)

10. Mitchell, T.M.: Machine Learning, 1st edn. McGraw-Hill Inc., New York (1997)
11. Nichols, K.R., Moussa, M.A., Areibi, S.M.: Feasibility of floating-point arithmetic

in FPGA based artificial neural networks. In: CAINE. Citeseer (2002)
12. Nurvitadhi, E., et al.: Can FPGAs beat GPUs in accelerating next-generation

deep neural networks? In: Proceedings of the 2017 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, FPGA 2017, pp. 5–14. ACM,
New York (2017). https://doi.org/10.1145/3020078.3021740

13. Quinlan, J.: Simplifying decision trees. Int. J. Man-Mach. Stud.
27(3), 221–234 (1987). https://doi.org/10.1016/S0020-7373(87)80053-6.
http://www.sciencedirect.com/science/article/pii/S0020737387800536

14. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn. Pren-
tice Hall Press, Upper Saddle River (2009)

15. Saqib, F., Dutta, A., Plusquellic, J., Ortiz, P., Pattichis, M.S.: Pipelined decision
tree classification accelerator implementation in FPGA (DT-CAIF). IEEE Trans.
Comput. 64(1), 280–285 (2013)

16. Song, H., Lockwood, J.W.: Efficient packet classification for network intrusion
detection using FPGA. In: Proceedings of the 2005 ACM/SIGDA 13th Interna-
tional Symposium on Field-Programmable Gate Arrays, pp. 238–245. ACM (2005)

https://rulequest.com/see5-comparison.html
https://rulequest.com/see5-comparison.html
https://www.unb.ca/cic/datasets/nsl.html
https://www.unb.ca/cic/datasets/nsl.html
https://github.com/NetFPGA/OSNT-Public/wiki/OSNT-10G-Home
https://github.com/NetFPGA/OSNT-Public/wiki/OSNT-10G-Home
https://doi.org/10.1145/3289185
https://doi.org/10.1145/3020078.3021740
https://doi.org/10.1016/S0020-7373(87)80053-6
http://www.sciencedirect.com/science/article/pii/S0020737387800536


60 D.-M. Ngo et al.

17. Tang, T.A., Mhamdi, L., McLernon, D., Zaidi, S.A.R., Ghogho, M.: Deep learn-
ing approach for network intrusion detection in software defined networking. In:
2016 International Conference on Wireless Networks and Mobile Communications
(WINCOM), pp. 258–263. IEEE (2016)

18. T.U. of Waikato: Weka 3: Machine Learning Software in Java. https://www.cs.
waikato.ac.nz/ml/weka/. Accessed 27 June 2019

19. Xilinx: PlanAhead Design and Analysis Tool. https://www.xilinx.com/products/
design-tools/planahead.html. Accessed 02 Aug 2018

20. Xilinx: Xilinx Platform Studio (XPS). https://www.xilinx.com/products/design-
tools/xps.html. Accessed 02 Aug 2018

21. Zhu, J., Milne, G.J., Gunther, B.: Towards an FPGA based reconfigurable com-
puting environment for neural network implementations (1999)

https://www.cs.waikato.ac.nz/ml/weka/
https://www.cs.waikato.ac.nz/ml/weka/
https://www.xilinx.com/products/design-tools/planahead.html
https://www.xilinx.com/products/design-tools/planahead.html
https://www.xilinx.com/products/design-tools/xps.html
https://www.xilinx.com/products/design-tools/xps.html

	High-Throughput Machine Learning Approaches for Network Attacks Detection on FPGA
	1 Introduction
	2 Related Work and Background
	2.1 Related Work
	2.2 Background

	3 Methodology
	4 FPGA Implementation
	4.1 Decision Tree
	4.2 Artificial Neural Network

	5 Evaluation
	5.1 Synthesis Results
	5.2 Experimental Setup
	5.3 Experimental Results

	6 Conclusion
	References




