l‘)

Check for
updates

1

How fascinating it would be if a person, who is not a programmer or coder,
in need of certain specific application or program and all he does is to tell
the computer about his requirements. The computer then creates the program
according to his needs. The question that arises that is it possible to build such
intelligent system? In couples of decades ago the answers were either no or quite
vague for generating programming language code from natural language. How-
ever these days, with the advancement of technology, there is possibility that
in near future people might come across such system that will facilitate them
to produce software by using their natural language. The programming tech-
niques are very tough for general users and, in today technology most of users
of computer and smartphone are aware of customized software. It requires a lot

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Text to Code: Pseudo Code Generation

Altaf U. Din'®) and Awais Adnan?

1 AWKUM, Mardan, Pakistan
altafkhattak@gmail.com
2 IMSciences, Peshawar, Pakistan
awaisadnan@gmail.com

Abstract. The evolutions in programming from machine language to
these days programming software have made it easy, to some extent,
to develop software but it is not as easy as programming in natural
language. In order to transfer natural language text to any programming
language code, it felt necessary to first transform natural language text
into pseudo code algorithm then with the help of right API library, such
algorithms can be transform into any programming language code. The
main aim of this research work is to produce pseudo code from text
however this work is very loosely bound to natural language processing.
Main components of this proposed work is text analyser that utilizes
language tools (spelling check, grammar check) to remove type errors and
then eliminate different ambiguities. For this step of ambiguity removal,
an adaptive solution is proposed that learning from manual assistance.
Once the text is cleared, pattern matching techniques is applied to it and
later on parsed into a pseudo code. The concept model is tested with
user scenario approach and also practically implemented by developing
a prototype. This model is examined using 100 examples of different
categories and achieved 73.

Keywords: Pseudo code generation + NL to programming code -
Intelligent system - Code extraction from text

Introduction

Published by Springer Nature Switzerland AG 2019. All Rights Reserved
P. C. Vinh and A. Rakib (Eds.): ICCASA 2019/ICTCC 2019, LNICST 298, pp. 20-37, 2019.
https://doi.org/10.1007/978-3-030-34365-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34365-1_3&domain=pdf
https://doi.org/10.1007/978-3-030-34365-1_3

Text to Code: Pseudo Code Generation 21

of tools and effort to write a program, but it needs a user to understand the
programming concepts. Moreover the programmers must be able to know more
than one programming language styles where their libraries, structure and syn-
tax might vary. Since the beginning of computing era, it is always in focus of
researchers to make programming easier. Assembly language was introduced to
use mnemonics and other prompts in order to get over with machine language
programming. But still it was not enough, high level languages were introduced
that could adjust most of the programming parts with words from English lan-
guage. The High Level languages did provide ease and comfy to programmers,
not only just making their code writing easy but it was also easy to learn as well.
However the issue that still exist is that a novice programmer still has a long
route to polish his skills in programming. An expert coder must have to keep
himself up to date with the advancement in technologies as well as updates in
programming languages. Moreover a layman is still paying huge sum of amount
in order to develop certain software or program that somehow reflects upon his
requirements. On the other hand the implementation style of different available
programming language is also different from each other. On the other hand the
implementation style of different available programming language is also differ-
ent from each other. [1] There is need to provide users with a conventional way
where they can state their requirement in natural language (i.e. English lan-
guage) and the system is able to process the text and provide output is some
form of pseudo code. Pseudo code can be transformed into any programming
language code with the help of appropriate libraries or API. From the current
advancement in other fields of computer science and enhanced techniques (for
instance machine learning techniques, data and text mining techniques, natu-
ral language techniques etc.) it is assumed that generating code from natural
language is possible now with so much development [2]. In this research work
a conceptual modal has been proposed that fulfills the purpose of collecting
requirement text, in natural language, from user and aims to provide a pseudo
code that could easily be transformed to any programming language. The model
is composed of four layers that are “Application Layer”, “Text Formalization
Layer”, “Translation Layer” and “Code Generation Layer”. The application
layer is the interface where user will input text as requirement of a particular
program. The text formalization layer is where the text is refined down for easily
transferred to pseudo code. The translation layer is where pseudo code will be
generated and code generation layer is where programming language code from
pseudo will be generated. This research work is a small contributory step into
long term vision of programming in natural language. The following is exploring
the model in detail and implementing the model in order to observe the result.

2 Literature

The concept of bringing down the technology, to the level, where a layman can
easily communicate with computer systems is not new. Since 1960 researches are
working to create more natural language adaptable systems and applications.

22 A. U. Din and A. Adnan

SHRDLU (3] is considered as one of the earliest interface that could answer the
questions of a user by manipulating the objects known as blocksworld. However
that was an application to step into understanding the natural language. The
intended work is more inclined toward programming with natural language.

People have proposed their work time to time that requires input in natural
language and transform into something that can be meaningful for program-
ming or software development for instance Deeptimahanti and Sanyal [4] have
proposed a semi-automatic technique in their work that helps developers to gen-
erate UML machine from normalize natural language requirements. Abirami et
al. [5] have conducted their study on a classifier that is supposed to separate
Functional Requirements (FR) from Non Functional Requirements (NFR), from
text that is written in natural language. Siasar djahantighi et al. [6] has worked
with same the theme of exploring natural language to produce SQL queries.
Their technique is mainly based on a parse tree that is able to identify verb,
noun and entities in a statement and generate SQL query. Moreover it is worthy
to mention the Natural Language Interface to a Database (NLIDB) [7]. That
is among one of the earliest concept mentioned for the ease of general mass to
use database application. As the user uses an interface with which they would
communicate in their own language with the database application. There is very
little related or similar work available where code is generated from plain text
in natural language. Price et al. [8] introduced naturaljava. The purpose of nat-
uraljava is to provide such interface for users where they are able to type a
command in natural language without any worry about the syntax and the out-
put will be produced in java code. The architecture of naturaljava is shown in
Fig. 1. NaturalJava is composed of three main components that are sundance,
PRISM and TreeFace. Sundance grabs the input in natural language and gen-
erate case frames. PRISM is the case frame interpreter that gathers operations
from case frames and Treeface is Abstract Syntax Tree (AST) manager. PRISM
uses Treeface to manage the syntax tree of currently java program in progress.
Vadas and Curran [9] have mentioned few problems related to naturaljava in
their work. According to them Naturaljava can process the accomplishment of

(3) Case frames (4) AST methods

— —
‘ ‘ TreeFace

(2) Sentence (5) Source code
(1) English T ¢ (6) Java source
command code
line
User

Fig. 1. Architecture of NaturalJava

Text to Code: Pseudo Code Generation 23

one sentence at a time and it can only produce code in java language and cannot
be adopted to any other language. Their proposed system architecture is given
below in Fig. 2. The input text will be parsed by Combinatory Categorical Gram-
mar (CCG) parser [10] and the output of CCG parser will be transformed into
more generic representation of text. Afterward a python code output will be gen-
erated. There is a dialog session with user in every step as to handle ambiguity
but there is no mechanism that will record the dialog session for future reference
so that the system should not repeat the same dialog session for any similar
scenario. Nadkarni et al. [11] have introduced a conceptual model that has app-
roach of writing an algorithm in natural language and it will be converted to
¢ language code. The input should not be in absolute natural language as they
tend to force semi natural language algorithms to be converted into ¢ language
code. The challenges for code generation from algorithm typed in semi natural
language are the polysemy of algorithms is hard to process, different structure
of different programming languages and flexibility. After the user provides input
through user module then next stage is to apply standard or basic language
processing steps in which each line is explored as well as each word of each line.
Then the interpreter section is divided into two steps the first step is to spot the

User 4

v

NL Input

v

Syntactic Analysis

v

Semantic Analysis

v

Function Identification

v

Code

Fig. 2. System architecture

24 A. U. Din and A. Adnan

keywords while in next step, if it is identified properly, then it will transformed
into code. Meanwhile the synonyms of the words will also be checked and on
top of that it will also facilitate users to mould the system according to their
algorithm writing style. They did their implementation through user scenario
example and in the end they concluded with showing how flexible their modal is
but the issue is that input should be provided that is projecting syntax in natural
language style hence the input mechanism is not flexible toward as ease of using
natural language. Thomas et al. [12] proposed a model of a compiler that will
convert natural language into source code of any programming language. They
have used the pipeline architecture that will utilize three different databases in
order to produce output. Their compiler works in three phases and each phase
will overcome the following three issues. proposed model showing natural lan-
guage compiler interaction. The first phase is named as “Find Meaning” where
an array will be created of the text and words will be checked against their
available commands and variables. The next phase name is “solve commands”
that will check for commands that may or may not need input or output. The
last phase is labelled as “Convert intermediate code” that is basically parsing
according to each pattern matched in above phases.

— Variations of word
— Context of word
— Generation code in any language

According to their work the NLP compiler has pipeline architecture hence it can
be modified a little and transform into a compiler that will convert natural lan-

Input ey
¢ Dictionary
ks g L
.E- 5 o < E
= Finding meaning
o
) 3
% * EEw =S
3 .
= Solving commandsﬂ— Definition
S 4 S
§ Conversion
2 to code 4 1
I 1 =
+ Language
code ke Elements

Fig. 3. NL compiler interactions

Text to Code: Pseudo Code Generation 25

guage into programming code. The Fig. 3 is the After going through the study of
previous work, it has been found that either the input method is not entirely into
natural language or the output generated is in a specific programming language.
The proposed method will tackle with the mentioned limitations of previous work
by accepting input as in pure natural language and output should be in some
form of vague code that could be translated to any other language easily. On the
other hand there is no mechanism that should explicitly handle the ambiguity.
Anjali and Babu Anto [13] argues that solution for ambiguities is very complex
task however different methods of NLP (such as machine learning techniques,
machine translation or methods of information retrieval) may provide a good
resolution in future.

3 Proposed Model

The conceptual model for generating code from plain text, written in natural
language, is composed of four different layers.

Application Layer

— Text Formalization Layer
— Translation Layer

— Code Generation Layer

Figure 4 shows the model of proposed solution in next sub section.

3.1 Application Layer

The application layer is actually the interface for the user. The UI should be user
friendly. Moreover the view of interface should have capacity for the following
basic points. “Input Space”: An input area for the user to type in their program
requirements in natural language. “Trigger”: Once a user is done with the input,
a trigger (a button for example) should be provided to grab user text from input
space and send it to processing. “Result display space”: After processing
text to mock code there should be space provided to display the pseudo code.
“Assistant wizard”: If the system is unable to generate pseudo code then it
should initiate Wizard for the user. The wizard will guide the user through
dialog session in order to figure out any issue. “Code generation trigger”:
After successfully generating pseudo code a trigger should be provided for users
to generate any specific programming language application. A trigger here can
be a dropdown list of different programming languages options (i.e. c++, java,
php etc.)

3.2 Text Formalization Layer

From text formalization it means to bring down the informal/usual form of text
into a standardized form. The reason for putting text into a proper format is that
it will make way easy for pseudo code generation. “Spelling and grammatical

26 A. U. Din and A. Adnan

mistakes removal” is quite easy these days with the advanced technique how-
ever “ambiguity removal” is still a challenge. There are some mechanisms
available to remove certain types of ambiguities but these techniques are not
enough and more work requires as it is complex area of field [14]. In this model
ambiguity removal have been placed explicitly as with the passage of time new
techniques can be added to the system in order to make it more robust. The
process of ambiguity removal is shown in Fig. 5. “Text refining”: The purpose
of text refining is to put the sentences in order as well as replace the “typical
words” with associated “programming word”. The term typical words are used
here to expresses bunch of words regarding any keyword that is usually used
in programming. For example Table1 shows keywords and the typical words
regarding keyword. The process of text refining stage is highlighted with the
help of Fig. 6.

= Input

4

Spelling mistakes removed
G ical mistakes

Grab first sentance

Grab next
sentance.

Fig. 4. Ambiguity removal

Table 1. Programming word and its matches

Programming word | Typical words

if Condition, whether ... etc.

else Otherwise, if not, ... etc.

loop Iterate, repeat, recur ... etc

Text to Code: Pseudo Code Generation 27

Input

rammatical mistakes removed

Spelling mistakes removed
G
Ambiguity removed

[Grab first sentence]

| Grabfristword |«fffel Grab next sentance |-fff

»] Check*Typical Word" |

I Replace]

A

| Grabnextword |

No Next
ta
NP

Fig. 5. Text refining

Yes

3.3 Translation Layer

The translation layer is divided in two different phases that are pseudo code
generation phase 1 and phase 2. In “Pseudo code generation phase 1”7 the “word
patterns” will be matched and replaced. Word pattern is actually occurrence
of certain words in such an order that will comply with syntax of a program-
ming style. Considering the example of if-else statement. The syntax of if-else
statement is

If (condition)
-do something-
Else
-do something else-

28 A. U. Din and A. Adnan

Now processing the statement “if answer is 1 then print Earth else print rest
of the Universe.” The pattern here is, anything between word “if” and “then”
is usually condition. Anything between word “then” and “else” has to happen
when condition is true. Anything between “else” and full stop has to happen
if condition does not meet as expected. So looking at the word patterns in the
above statement, the pseudo code it will generate as

if (answer is 1) Print Earth else Print rest of the Universe

Figure 7 shows the process of phase 1.

In the “pseudo code generation phase 2” the generated pseudo code so
far will be checked if each line is in arrangement of a programming code style.
If there is any line that does not confirm the style then wizard will be invoked
to get the issue out of that line. Figure 8 shows the process of phase 2.

Input

!

Text Formalization Layer

Grab frist sentance

Check words pattern

Grab next sentance

Fig. 6. Pseudo code generation phase 1

Text to Code: Pseudo Code Generation 29

Input

\

Text Formalization Layer
Mock code generation

Grab fist line

Check if comply With <eif——

programming syntex

Grab next line

Fig. 7. Pseudo code generation phase 2

3.4 Code Generation Layer

The code generation is subjected to be completed in future as the main aim of
this work is to deliver pseudo code from natural language input. Because if a
system is able to convert requirement provided in natural language into algo-
rithm then, with the aid of right API and library, it will not be difficult to
generate any programming code from algorithm. Apart from the layers there are
three main components to the system that are data dictionary, variable check
points and assistant wizard. Data Dictionary The data dictionary is actually
the database of the system. Variable checkpoints Variable checkpoints are
the way to handle variable declaration. First check point for variable declara-

30 A. U. Din and A. Adnan

tion will be after text refining stage. At this point all the noun words will be
declared as variable. The next variable checkpoint is after pseudo code genera-
tion phase 2. At the stage the system will discard all the noun variables that are
not used. Meanwhile it will declare some more variables that are in use but not
declared. Assistant Wizard Assistant Wizard is a dialogue session with the
user. Assistant Wizard will be initiated when the system is unable to process
the text provided. It will guide the user as well as collect information from the
user and with the successful completion of session it will record the scenario for
future reference.

4 Implementation

A user scenario approach of implementation should be carry out before practical
implementation in order to understand the mechanism thoroughly.

4.1 User Scenario Approach

The following text should be processed out through each layer of the model
manually. “A user is enter marks. Check for marks if it is great than 49 then
disply pass otherwise it should disply fail.”

The spelling and grammatical mistakes are deliberately left there for demon-
stration purpose. The first layer is “application layer”. A user will be able to
provide the text through application layer. Next is the text formalization layer.
The first section of text formalization is to remove the spelling mistakes. The
underlined words have spelling mistakes in the input text. “A user is enter marks.
Check for marks if it is great than 49 then disply pass otherwise it should disply
fail.” After removing spelling mistakes the statement will be converted to: “A
user is enter marks. Check for marks if it is great than 49 then display pass
otherwise it should display fail.” Then grammatical mistakes will be removed
as the underlined parts in the statement have grammatical mistakes. “A user is
enter marks. Check for marks if it is great than 49 then display pass otherwise
it should display fail.” After removing grammatical mistakes the statement will
be converted to “A user will enter marks. Check for marks if it is greater than
49 then display pass otherwise it should display fail.” After getting rid of gram-
matical and spelling mistakes, the ambiguity will be checked. Looking at the
statement the ambiguity lies where it says “it should display fail.” The system
will not be able to decide where “it” directs to. So removing the ambiguity the
statement will take the face as:

“A user will enter marks. Check if marks is greater than 49 then display pass
otherwise display fail.” The next stage is “Text Refining” where the typical
words is spotted and replaced. The underlined words in the statement includes
typical words. “A user will enter marks. Check if marks is greater than 49 then
display pass otherwise display fail.” The typical words can be replaced as enter
to input, is greater than to >, display to print, if remains as if and otherwise
to else. The text will be converted to: “A user will input marks. Check if marks

Text to Code: Pseudo Code Generation 31

> 49 then print pass else print fail” The variable checkpoint will declare words
user and marks as variable as they are noun and proceed to translation layer.
In the first phase of pseudo code generation the system will check for the words
pattern and replace it with the vague code accordingly. For instance in the above
statement the word phrase of first sentence that says “A user will input marks.”
The word input indicated there should be variable around where value should
be stored. At the left side of word input is “will” which is a modal verb that
is kind of base for the verb and not noun while on the right side “marks” is
noun and there is no preposition etc. between the word input and marks hence
marks should be a variable. As the word “input” indicates someone will enter
the input through keyboard because if there was word phrase “stores”, “have
value”, “keeping number” and so on that would meant to store some value in
marks variable. So the pseudo code for it will be “input marks= from keyboard”.
The full stop indicates to jump to new line. And the word phrase in next sentence
is “if marks > 49 then” the word “if” indicates there is conditional statement
of if-else. Usually anything between if and then is considered as condition and
should be put in small brackets e.g. if(marks >49). Anything between then and
else is body of the if statement section when condition is true and it should be
kept between and . So getting the phrase of then to else and put it in order it
will be displayed as print pass. There is else word included then the word phrase
is anything between else and full stop is body of else. This in this example is
print fail. Putting it all together, after adding start and end to the algorithm
generated, the output of the pseudo code generation phase 1 will be

Start
Input marks=from keyboard
if (marks > 49)
{
Print pass
}

else

{

Print fail
}
End

The next phase of pseudo code generation it will be checked if it complies
with programming code style.

After successfully passing through phase 2 the variable checkpoint will dis-
card “user” variable as it is not used (Table 2).

4.2 Practical Implementation

For practically implementing the proposed model, an initial prototype applica-
tion was developed using mySql and netBeans IDE. Around 20 people were asked
to provide at least 10 different statements regarding four simple mathematical
functions (addition, subtraction, multiplication and division) between two val-
ues. About 200 statements were collected and placed in their respective group of

32 A. U. Din and A. Adnan

Table 2. Generated pseudo code to programming code

Generated pseudo code Programming code style
Start Start of the program
Input marks=from keyboard | Input by user

if(marks > 49) if(condition)

{ Print pass } { Do something }

Else Else

{ Print fail { Do something else }

} }

End End of the program

addition, subtraction, multiplication and division. Most of the statements were
almost similar but there were few statements that actually helped in building
up small data dictionary of typical words regarding the four basic mathematical
operations. A simple statement of “deduct var2 from varl and show result to
user” was processed through it and the resulting algorithm was successfully gen-
erated by the prototype application. Figure9 shows the resulting pseudo code
generated for the above mentioned statement. Likewise “twinkle twinkle little
stars.” was provided as input and Fig. 10 shows the result of invoking assistant
wizard. Later on the database was updated more in order to process natural lan-
guage text including conditional statements of if-else and “if studentl is greater
than student2 then display studentl has gotten high marks.” was provided as
input to the prototype. Figure 11 shows it successfully processed the text.

5 Analysis

The system was able to produce output for different natural language text input
against different programming statements. Although it did call upon wizard in
order to resolve some issues that is due to the lack of mature data dictionary at
this stage as well as no proper ambiguity resolution mechanism attached to the
system, as the prototype is in initial phases.

100 different basic statements are tested on the proposed system out of which
73% are understood correctly and for the rest of 27% wizard was prompted.
Details about the statement and corresponding result are illustrated in the
Table 3 below.

Following are a few results observed from the above cases. Words like display,
Print, Show, Get, Input, Output, subtract are identified with 100 Some words,
which initially were considered simple, showed high level of error. One such word
is times, which confuses multiplication and loop. Another such example is divid-
ing. Initially it was considered simple words but experimental results shoes that
system was confused between multiplication (e.g. divide 10 apples among 5 stu-
dent 10/5 identified correctly, divide 2 cakes in to 10 pieces each, identified as

Text to Code: Pseudo Code Generation

[_loix|

f Please type here:

i deductvar2 from vart and show the answer to user

| Generate Code

Result

Start

declare var2
declare var1
declare result
result=var1-var2
display result

|| End

Fig. 8. Result for subtraction algorithm

Table 3. Results with and without wizard prompts

Type of statements|Statements tested|Result without wizard|Wizard prompted
Input statements 10 10 0
Output statements| 10 9 1
Addition 10 9 1
Subtraction 10 9 1
Multiplication 10 7 3
Division 10 8 2
If statements 10 8 2
If-else 10 6 4
For loop 5 3 2
While loop 5 2 3
Do-while loop 5 1 4
Switch statements 5 1 4
Total 100 73 27

33

34 A. U. Din and A. Adnan

[N =lofx|

Please type here:

twinkle twinkle little stars.

|' Generatecm
x|

Result:
6 Wizard ...

Fig. 9. Assistant wizard invoke

2/10, where is actual formula should be 2 * 10). Similarly the word do, which
means do something whereas in computers sciences this word is used for loop.
Most of the errors were observed in conditional statements especially in multi
branching (switch statement). It is worth to mention that the proper data dic-
tionary development and ambiguity are the core obstacle in programming with
natural language in general. After implementation it can be said that there are
three different situational cases can occur with the system that are:

Best Case

When the system produces output smoothly for provided input.

Average Case When the system initiate assistant wizard for provided input.
Worst Case

When the assistant wizard is not able to help user and directs him to application
layer to provide more clear input. Figures 12, 13 and 14 shows best, average and
worst case scenario respectively.

Text to Code: Pseudo Code Generation

Please type here:

=1o|x]

if student1 is greater than student2 then display student! has
gotten high marks.

Result:

Generate Code

Start

declare student1
declare student2

if(student1 =student2)
{ print student1 has gotten high marks. }

End

Fig. 10. Conditional statement result

=0

User input
text over
application
layer.

Text is
forwarded to
the system
to generate
code.

J System gene
and produce
output

Fig. 11. Best case

rates code
s the

35

36 A. U. Din and A. Adnan

USER
System initiated
User I Ii assistant wizard

OUTPUT

inserts text Textis

via forwarded

application to the fl\lizard sums up
layer system the result,

Wizard generated
output is displayed to
user.

r—
G

Fig. 12. Average case

System
initiates the
U assistant
oel Textis wizard
enters
passed on
text.
to the
system. |
The wizard
) o is unable to
System produce
takes the result
user back to
input
section

Fig. 13. Worst case

6 Conclusion

Code generation from natural language text should be considered as big system.
This research work is a small contribution toward making such big system possi-
ble. The initial prototype test provided promising results at minute level however
it is not claimed that the proposed model is absolute solution. It is intended to
put more efforts in future in order to make it more reliable system. Moreover in
future, more work need to tackle down ambiguity issue; proper assistant wizard
and programming language code generation from pseudo code is recommended.

Text to Code: Pseudo Code Generation 37

References

10.
11.

12.

13.

14.

Stefik, A., Siebert, S.: An empirical investigation into programming language syn-
tax. ACM Trans. Comput. Educ. (TOCE) 13(4), 19 (2013)

Lieberman, H., Liu, H.: Feasibility studies for programming in natural language.
In: Lieberman, H., Paterno, F., Wulf, V. (eds.) End User Development, vol. 9, pp.
459-473. Springer, Heidelberg (2006). https://doi.org/10.1007/1-4020-5386-X_20
Winograd, T.: Understanding natural language. Cogn. Psychol. 3(1), 1-191 (1972)
Deeptimahanti, D.K., Sanyal, R.: Semi-automatic generation of UML models from
natural language requirements. In: Proceedings of the 4th India Software Engi-
neering Conference, pp. 165-174. ACM (2011)

Abirami, S., Shankari, G., Akshaya, S., Sithika, M.: Conceptual modeling of non-
functional requirements from natural language text. In: Jain, L.C., Behera, H.S.,
Mandal, J.K., Mohapatra, D.P. (eds.) Computational Intelligence in Data Mining
- Volume 3. SIST, vol. 33, pp. 1-11. Springer, New Delhi (2015). https://doi.org/
10.1007/978-81-322-2202-6_1

Norouzifard, M., Davarpanah, S., Shenassa, M., et al.: Using natural language
processing in order to create SQL queries. In: 2008 International Conference on
Computer and Communication Engineering, pp. 600-604. IEEE (2008)
Androutsopoulos, I., Ritchie, G.D., Thanisch, P.: Natural language interfaces to
databases-an introduction. Nat. Lang. Eng. 1(1), 29-81 (1995)

Price, D., Rilofff, E., Zachary, J., Harvey, B.: Naturaljava: a natural language inter-
face for programming in Java. In: Proceedings of the 5th International Conference
on Intelligent User Interfaces, pp. 207—211. ACM (2000)

Vadas, D., Curran, J.R.: Programming with unrestricted natural language. In: Pro-
ceedings of the Australasian Language Technology Workshop, pp. 191-199 (2005)
Steedman, M.: The Syntactic Process, vol. 24. MIT Press, Cambridge (2000)
Nadkarni, S., Panchmatia, P., Karwa, T., Kurhade, S.: Semi natural language
algorithm to programming language interpreter. In: 2016 International Conference
on Advances in Human Machine Interaction (HMI), pp. 1-4. IEEE (2016)
Thomas, J., Antony, P.J., Balapradeep, K.N., Mithun, K.D., Maiya, N.: Natural
language compiler for English and Dravidian languages. In: Shetty, N.R., Prasad,
N.H., Nalini, N. (eds.) Emerging Research in Computing, Information, Commu-
nication and Applications, pp. 313-323. Springer, New Delhi (2015). https://doi.
org/10.1007/978-81-322-2550-8_31

Anjali, M.K., Anto, P.B.: Ambiguities in natural language processing. Int. J. Innov.
Res. Comput. Commun. Eng. 392-394 (2014)

Sag, I.A., Baldwin, T., Bond, F., Copestake, A., Flickinger, D.: Multiword expres-
sions: a pain in the neck for NLP. In: Gelbukh, A. (ed.) CICLing 2002. LNCS, vol.
2276, pp. 1-15. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45715-
11

https://doi.org/10.1007/1-4020-5386-X_20
https://doi.org/10.1007/978-81-322-2202-6_1
https://doi.org/10.1007/978-81-322-2202-6_1
https://doi.org/10.1007/978-81-322-2550-8_31
https://doi.org/10.1007/978-81-322-2550-8_31
https://doi.org/10.1007/3-540-45715-1_1
https://doi.org/10.1007/3-540-45715-1_1

	Text to Code: Pseudo Code Generation
	1 Introduction
	2 Literature
	3 Proposed Model
	3.1 Application Layer
	3.2 Text Formalization Layer
	3.3 Translation Layer
	3.4 Code Generation Layer

	4 Implementation
	4.1 User Scenario Approach
	4.2 Practical Implementation

	5 Analysis
	6 Conclusion
	References

