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Abstract. In this paper, we study fuzzy graph represents by using
model theory. We use hedge algebra and linguistic variables for mod-
eling and aggregating two graphs. We prove theorem of limiting in mod-
els state space. We also figure out preserved property of aggregation
operator.
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1 Introduction

In everyday life, people use natural language (NL) for analysing, reasoning, and
finally, make their decisions. Computing with words (CWW) [5] is a mathemat-
ical solution of computational problems stated in an NL. CWW based on fuzzy
set and fuzzy logic, introduced by Zadeh is an approximate method on interval
[0, 1]. In linguistic domain, linguistic hedges play an important role for gener-
ating set of linguistic variables. A well known application of fuzzy logic (FL) is
fuzzy cognitive map (FCM), introduced by Kosko [1], combined fuzzy logic with
neural network. FCM has a lots of applications in both modeling and reasoning
fuzzy knowledge [3,4] on interval [0, 1] but not in linguistic values, However,
many applications cannot model in numerical domain [5], for example, linguis-
tic summarization problems [6]. To solve this problem, in the paper, we use an
abstract algebra, called hedge algebra (HA) as a tool for computing with words.

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Published by Springer Nature Switzerland AG 2019. All Rights Reserved

P. C. Vinh and A. Rakib (Eds.): ICCASA 2019/ICTCC 2019, LNICST 298, pp. 215–222, 2019.

https://doi.org/10.1007/978-3-030-34365-1_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34365-1_17&domain=pdf
https://doi.org/10.1007/978-3-030-34365-1_17


216 N. Van Han et al.

The remainder of paper is organized as follows. Section 2 reviews some main
concepts of computing with words based on HA in Subsect. 2.1 and describes
several primary concepts for FCM in Subsect. 2.2. Section 3 reviews modeling
with words using HA. Important Sect. 4 proves a new method to model fuzzy
graph from model theory. Section 5 presents aggregation method to combine two
fuzzy graphs. Section 6 outlines discussion and future work.

2 Preliminaries

This section presents basic concepts of HA and FCM used in the paper.

2.1 Hedge Algebra

In this section, we review some HA knowledges related to our research paper
and give basic definitions. First definition of a HA is specified by 3-Tuple
HA = (X,H,≤) in [7]. In [8] to easily simulate fuzzy knowledge, two terms
G and C are inserted to 3-Tuple so HA = (X,G,C,H,≤) where H �=
∅, G = {c+, c−}, C = {0,W, 1}. Domain of X is L = Dom(X) = {δc| c ∈
G, δ ∈ H∗(hedge string over H)}, {L,≤} is a POSET (partial order set) and
x = hnhn−1 . . . h1c is said to be a canonical string of linguistic variable x.

Example 1. Fuzzy subset X is Age, G = {c+ = young; c− = old}, H =
{less;more; very} so term-set of linguistic variable Age X is L(X) or L for short:

L =
{
very less young; less young; young;more young; very young; very very young . . .

}

Fuzziness properties of elements in HA, specified by fm (fuzziness measure) [8]
as follows:

Definition 2.1. A mapping fm : L → [0, 1] is said to be the fuzziness measure
of L if:

1.
∑

c∈{c+,c−} fm(c) = 1, fm(0) = fm(w) = fm(1) = 0.
2.

∑
hi∈H fm(hix) = fm(x), x = hnhn−1 . . . h1c, the canonical form.

3. fm(hnhn−1 . . . h1c) =
∏n

i=1 fm(hi) × μ(x).

2.2 Fuzzy Cognitive Map

Fuzzy cognitive map (FCM) is feedback dynamical system for modeling
fuzzy causal knowledge, introduced by Kosko [1]. FCM is a set of nodes,
which present concepts and a set of directed edges to link nodes. The
edges represent the causal links between these concepts. Mathematically,
a FCM bis defined by.
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Definition 2.2. A FCM is a 4-Tuple:

FCM = {C, E, C, f} (1)

In which:

1. C = {C1, C2, . . . , Cn} is the set of N concepts forming the nodes of a
graph.

2. E : (Ci, Cj) −→ eij ∈ {−1, 0, 1} is a function associating eij with a
pair of concepts (Ci, Cj), so that eij = “weight of edge directed from
Ci to Cj. The connection matrix E(N × N) = {eij}N×N

3. The map: C : Ci −→ Ci(t) ∈ [0, 1], t ∈ N

4. With C(0) = [C1(0, C2(0), . . . , Cn(0)] ∈ [0, 1]N is the initial vector,
recurring transformation function f defined as (Fig. 2):

Cj(t + 1) = f(
N∑

i=1

eijCi(t)) (2)

Fig. 1. A simple FCM

FCMs have played a vital role in the applications of scientific areas, includ-
ing expert system, robotics, medicine, education, information technology,
prediction, etc. [3,4].

3 Modeling with Words

Fuzzy model, based on linguistic variables, is constructed from linguistic
hedge of HA [10,11].
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Definition 3.1 (Linguistic lattice). With L as in the Sect. 2.1, set
{∧, ∨} are logical operators, defined in [7,8], a linguistic lattice L is
a tuple:

L = (L, ∨, ∧, 0, 1) (3)

Property 3.1. The following are some properties for L:

1. L is a linguistic-bounded lattice.

2. (L, ∨) and (L, ∧) are semigroups.

Definition 3.2. A linguistic cognitive map (LCM) is a 4-Tuple:

LCM = {C, E, C, f} (4)

In which:

1. C = {C1, C2, . . . , Cn} is the set of N concepts forming the nodes of a
graph.

2. E : (Ci, Cj) −→ eij ∈ L; eij = “weight of edge directed from Ci to Cj.
The connection matrix E(N × N) = {eij}N×N ∈ L

N×N

3. The map: C : Ci −→ Ct
i ∈ L, t ∈ N

4. With C(0) = [C0
1 , C

0
2 , . . . , C

0
n] ∈ L

N is the initial vector, recurring trans-
formation function f defined as:

Ct+1
j = f(

N∑

i=1

eijC
t
i ) ∈ L (5)

Fig. 2. A simple LCM
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Square matrix:

M = (mij ∈ L)4×4 =

∣
∣
∣
∣
∣
∣
∣
∣
∣

0 L true 0 0
0 0 0 M true

0 M true 0 V true

L true 0 0 0

∣
∣
∣
∣
∣
∣
∣
∣
∣

.

is the adjacency matrix of LCM. Causal relation between ci and cj is mij,
for example if i = 1, j = 2 then causal relation between c1 and c2 is: “if c1
is true then c2 is M true is L true” or let P =“if c1 is true then c2 isM true”
be a fuzzy proposition FP [9] then truth(P) = L true

Definition 3.3. A LCM is called complete if between any two nodes
alway having a connected edge (without looping edges).

4 LCM Modeling with Binary Structure

We use logical structures with relational symbols to represent LCM. For
specifying vetex set and edge set, we utilize relations whose arity are
whole number. A relational signature G is a set of relational symbols.

Definition 4.1. A binary relational signature G as:

G = {labα, succβ} (7)

In which α ∈ L and β ∈ L. labα, succβ are relational symbols.

Structures are generated from G called struct[G ]. By using struct[G ], vetex
set C and edge set E of LCM can be formalized as follow:

Definition 4.2. A C struct[G ] is a tuple:

C = 〈C, labCα, succCβ〉 (8)

Where:

• Set C is domain of C
• labCα is a unary relation: {∃C ∈ C | labCαC}, α ∈ L

• succCβ is a binary relation: {C1, C2 ∈ C | succCβ(C1, C2)}, β ∈ L. C2 is
a sucessor of C1 and (C1, C2) is a directed edge.

We denote graphs on HA by GR[HA] and represent LCM by using
struct[G ].
Give a C struct[G ] in (8), the complexity of C is proportion to ‖C‖, ‖labα‖
and ‖succβ‖ - The sign ‖.‖ is short for size of.
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Fig. 3. A simple LCM on struct[G ]

Theorem 4.1. There are:
22×(‖C‖+1

2 ) (9)

different C struct[G ] of size ‖C‖.
We prove Theorem4.1 by using combinatorial relations, symbol P(.) is
power set.

Proof. Because a n−ary relation on a set C is a subset of
n times

︷ ︸︸ ︷
C × C × . . . × C,

therefore:

• Monadic relation labα has ‖labα‖ = ‖P(C)‖ = 2‖C‖

• Binary relation succβ has ‖succβ‖ = ‖P(C × C)‖ = 2‖C‖2

• QED: ‖P(C)‖ × ‖P(C × C)‖ = 22×(‖C‖+1
2 )

�

5 Aggregating Two LCMs

LCMs allow a aggregation of knowledge constructed from a few experts
to form the final LCM which reduce potentially errors. We study a aggre-
gation procedures for combining multiple LCMs preserved its properties.

Definition 5.1. Suppose A = 〈A, labAα , succAβ 〉 and B = 〈B, labBα , succBβ 〉
are struct[G ].

D = A
⋃

B = 〈D, labDα , succDβ 〉 (10)

On the conditions that:
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• D = A ∪ C

• labDα ={
labAα = labBα if labAα = labBα

labAα ∨ labBα if labAα �= labBα

• succDβ ={
succAβ = succBβ if succAβ = succBβ

succAβ ∨ succBβ if succAβ �= succBβ

Example 5. Using Eq. (10), graph in Fig. 3 is a aggregation of two graphs
below:

CL
1 true CV

2 true

CV
3 true

V V true

V
V
tru

e

CL
1 true CV

2 true

CV
3 true CL

4 true

V V true

V
V
tru

eV V true

V
V
tru

e

V M true

Property 5.1. The aggregation operator defined in (10) preserved causal
relation properties, that is:

succDβ (labDρ , labDδ ) |= succAβ (labAρ , labAδ ) ∨ succBβ (labBρ , labBδ ) (11)

6 Conclusions and Future Work

We have study a new method to present LCM using model theory. The
impotant theorem in complexity of model space limited by expression
22×(‖C‖+1

2 ).
We also introduce a method for aggregating fuzzy graphs. This aggre-

gation operator preserves causal relation properties. Our next study is as
follow:
Suppose LCMs are fuzzy graphs on:

GR[{X, H, {c+, c−}, {0, W, 1}, ≤}] (12)

so that:
LCM = 〈V LCM, succLCM, labLCM〉 (13)

Let H be all string generated from GR[.]. V LCM is the finite set of vertices;
Relation succLCM ⊆ V LCM×H×V LCM saying that if two vertices are linked
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by an edge with label in H. Total map labLCM : V LCM → H assigning a
label in H to each vertex of LCM.
The set of all LCM over H is denote LCMH, and the set of all graphs
isomorphic to LCM is denote [LCMH]. A graph language L is a subset
L ⊂ [LCMH].

References

1. Kosko, B.: Fuzzy cognitive maps. Int. J. Man-Mach. Stud. 24, 65–75 (1986)
2. Osoba, O.A., Kosko, B.: Fuzzy cognitive maps of public support for insurgency

and terrorism. J. Def. Model. Simul. Appl. Methodol. 14(1), 17–32 (2017)
3. Glykas, M.: Fuzzy Cognitive Maps: Advances in Theory, Tools and Applications.

Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-03220-2
4. Papageorgiou, E.I.: Fuzzy Cognitive Maps for Applied Science and Engineering:

From Fundamentals to Extensions and Learning Algorithms. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-642-39739-4

5. Zadeh, L.A.: Computing with words: Principal Concepts and Ideas. Studies in
Fuzziness and Soft Computing. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-27473-2

6. Kacprzyk, J., Wilbik, A., Zadrożny, S.: Linguistic summarization of trends: a fuzzy
logic based approach. In: The 11th International Conference Information Process-
ing and Management of Uncertainty in Knowledge-based Systems, pp. 2166–2172
(2006)

7. Ho, N.C., Wechler, W.: Hedge algebras: an algebraic approach to structure of sets
of linguistic truth values. Fuzzy Sets Syst. 35, 281–293 (1990)

8. Ho, N.C., Van Long, N.: Fuzziness measure on complete hedge algebras and quanti-
fying semantics of terms in linear hedge algebras. Fuzzy Sets Syst. 158(4), 452–471

9. Phuong, L.A., Khang, T.D.: Generalized if... then... else... inference rules with
linguistic modifiers for approximate reasoning. Int. J. Comput. Sci. Issues (IJCSI)
9(6), 184–190 (2012)

10. Van Han, N., Vinh, P.C.: Modeling with words based on hedge algebra. In: Cong
Vinh, P., Alagar, V. (eds.) ICCASA/ICTCC -2018. LNICST, vol. 266, pp. 211–217.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-06152-4 18

11. Van Han, N., Vinh, P.C.: Toward modeling and reasoning with words based on
hedge algebra. EAI Endorsed Trans. Context-Aware Syst. Appl. 5(15), e5 (2018)

https://doi.org/10.1007/978-3-642-03220-2
https://doi.org/10.1007/978-3-642-39739-4
https://doi.org/10.1007/978-3-642-27473-2
https://doi.org/10.1007/978-3-642-27473-2
https://doi.org/10.1007/978-3-030-06152-4_18

	Toward Aggregating Fuzzy Graphs a Model Theory Approach
	1 Introduction
	2 Preliminaries
	2.1 Hedge Algebra
	2.2 Fuzzy Cognitive Map

	3 Modeling with Words
	4 LCM Modeling with Binary Structure
	5 Aggregating Two LCMs
	6 Conclusions and Future Work
	References




