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Abstract. It is considered an extended notion of the commutativity of the
encryption. Using the computational difficulty of the hidden discrete logarithm
problem, a new method and post-quantum probabilistic algorithm for commu-
tative encryption are proposed. The finite non-commutative associative algebra
containing a large set of the global left-sided unites is used as the algebraic
carrier of the proposed method and probabilistic commutative cipher. The latter
is secure to the known-plaintext attack and, therefore, efficient to implement on
its base a post-quantum no-key encryption protocol. Main properties of the
algebraic carrier, which are used in the commutative encryption method, are
described.
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1 Introduction

Currently the development of the practical post-quantum public-key cryptoschemes
attracts significant attention of the cryptographic community [1, 2]. A cryptoscheme is
called post-quantum, if it performs efficiently on ordinary computers and resists attacks
with using hypothetic quantum computers (quantum attacks). Post-quantum public-key
algorithms and protocols are to be based on some computationally difficult problems
that are different from the factorization problem (FP) and discrete logarithm problem
(DLP), since there are known polynomial in time algorithms for solving both the FP
and the DLP [3, 4].

Many different post-quantum public-key algorithms and protocols have been
designed and proposed as candidates for post-quantum public-key standards in frame of
the world competition announced by NIST in the end of 2016 [2]. One should mention
that the problem of providing post-quantum security relates also to the commutative
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encryption algorithms possessing security to the known-plaintext attacks. Commutative
ciphers possessing such property represent the base primitive of the no-key encryption
protocols that are attractive for different practical applications. Development of the
post-quantum commutative encryption algorithms is an open problem that is consid-
ered only in few papers. An interesting approach to the development of the post-
quantum commutative cipher is the use of the computational difficulty of the hidden
discrete logarithm problem (HDLP) [5]. However, the form of the HDLP defined in the
finite algebra of quaternions and introduced in [5] can be reduced to the ordinary DLP
in a finite field [6].

In the present paper it is introduced a new form of the HDLP that prevents the
reductionist method developed in [6]. The paper is organized as follows. Section 2
presents the base notion connected with the HDLP. Section 3 introduces the 4-
dimensional finite non-commutative associative algebra (FNAA) used as algebraic
support of the proposed post-quantum commutative encryption method. Section 4
presents the novel interpretation of the notion of commutativity of the encryption and
the proposed post-quantum commutative probabilistic encryption algorithm. Section 5
describes the post-quantum no-key encryption protocol based on the introduced
commutative encryption algorithm. Final remarks are presented in the concluding
Sect. 6.

2 Forms of the Hidden Discrete Logarithm Problem

The DLP consists in solving the equation Y 0 ¼ G0x (where Gʹ is the generator of the
group and Y 0 is a group element) in a finite cyclic group relatively the unknown x. The
HDLP is set in some m-dimensional FNAA, where m� 4 is an even number, which
contains many different cyclic groups as subsets of the m-dimensional vectors (alge-
braic elements). The HDLP is defined as selection a base finite cyclic group with the
generator G0, generation a random integer x, performing the base exponentiation
operation G0x, and mapping one of the values G0 and G0x or both of them, using
different map functions (operations) u Xð Þ and w(X). For example, (i) the values Y ¼
u G0xð Þ and G0, (ii) Y ¼ u G0xð Þ and G ¼ w G0ð Þ are given and in each of the last two
cases one should compute the value x.

The functions u Xð Þ and wðX) are called masking operations. To have possibility to
design some public-key protocols and algorithms with the use of the values Y ¼ u G0xð Þ
and G ¼ w G0ð Þ as parameters of the cryptoscheme, the masking operations should
possess respective properties. The main requirement for the masking function is the
mutual commutativity with the base exponentiation operation.

Finite non-commutative associative algebras of different types are very attractive
for using them as algebraic supports of the HDLP. Automorphism-map functions and
homomorphism-map function defined in some given FNAA can be used as masking
operations.

The specific form of the HDLP is determined by the choice of a particular pair of
the map functions u Xð Þ and wðX):
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The known form [5, 7] of the HDLP can be characterized as the case Y ¼
u G0xð Þ ¼ KG0xK�1 and G0 ¼ w G0ð Þ; where the values K and x are elements of the
private key; Y is the public key.

3 Algebraic Support of the Proposed Post-quantum
Commutative Cipher

Let us consider a finite m-dimensional vector space defined over the ground finite field
GF(p). In the vector space there are defined two operations: (i) addition of vectors and
(ii) multiplying a vector by a scalar. If one defines the additional operation (denoted as
�) for multiplying arbitrary two vectors, which is distributive relatively the addition
operation, then the considered vector space represents a new algebraic structure called
finite m-dimensional algebra. Such complemented finite vector space is called finite
algebra. If the multiplication operation is non-commutative and associative, then the
algebra is FNAA. Suppose e0, e1; . . .; em�1 are the basis vectors. The vector A is
denoted in the following two forms: A ¼ a0; a1; . . .; am�1ð Þ and A ¼ a0e0 þ a1e1 þ
. . .þ am�1em�1, where a0; a1; . . .; am�1 2 GF pð Þ.

Usually the multiplication operation of two vectors A and B ¼ Pm�1
j¼0 bjej is defined

with the formula

A � B ¼
Xm�1

i

Xm�1

j

aibj ei � ej
� �

;

where products of all pairs of basis vectors ei � ej are to be substituted by a single-
component vector kek, where k 2 GF pð Þ is the structural constant, indicated in the so
called basis vector multiplication table (BVMT). The intersection of the ith row and jth
column defines the cell indicating the value of the product ei � ej.

For defining the HDLP of a new type we have set the BVMT describing the vector
multiplication operation in the finite 4-dimensional vector space, which is presented as
Table 1. This BVMT defines the 4-dimensional FNAA, containing p2 different global
left-sided units. To derive the formula describing the all such units one should solve the
following vector equation:

X � A ¼ A; ð1Þ

where A = (a0, a1, a2, a3) is a fixed 4-dimensional vector and X = (x0, x1, x2, x3) is the
unknown. Using Table 1 one can reduce the vector Eq. (1) to the following two
systems of two linear equations:

x1 þ x2ð Þa0 þ x0 þ x3ð Þa2 ¼ a0;
k x0 þ x3ð Þa0 þ x1 þ x2ð Þa2 ¼ a2;

�
ð2Þ
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x1 þ x2ð Þa1 þ k x0 þ x3ð Þa3 ¼ a1;
x0 þ x3ð Þa1 þ x1 þ x2ð Þa3 ¼ a3:

�
ð3Þ

Performing the variable substitution u1 ¼ x1 þ x2 and u2 ¼ x0 þ x3 one can estab-
lish that for all vectors A in the considered FNAA the set of the vectors L described
with the formula

L ¼ l0; l1; l2; l3ð Þ ¼ ðx0; x1; 1� x1;�x0Þ; ð4Þ

where x0, x1 = 0, 1, …. p − 1, represents solutions of the Eq. (1), i.e., each of the p2

different values L is the global left-sided unit of the algebra (global means that the unit
acts on each element of the algebra).

The right-sided units relating to some vector A can be computed from the vector
equation

A � X ¼ A ð5Þ

that can be reduced to the following two independent systems of two linear equations
with the unknowns x0, x2 and x1, x3 correspondingly:

a1 þ a2ð Þx0 þ a0 þ a3ð Þx2 ¼ a0;
k a0 þ a3ð Þx0 þ a1 þ a2ð Þx2 ¼ a2;

�
ð6Þ

a1 þ a2ð Þx1 þ k a0 þ a3ð Þx3 ¼ a1;
a0 þ a3ð Þx1 þ a1 þ a2ð Þx3 ¼ a3:

�
ð7Þ

The systems (6) and (7) have the same main determinant that is equal to

DA ¼ a1 þ a2ð Þ2�k a0 þ a3ð Þ2: ð8Þ

The value of the structural constant k is selected from the set of non-residues
modulo p (see Table 1), therefore only for p2 different vectors Aʹ, namely, for vectors
satisfying the conditions a01 ¼ �a02 and a01 ¼ �a03 we have DA0 6¼ 0. For all other
vectors A we have DA 6¼ 0. Such vectors we call locally invertible, since for every of
them Eq. (5) has one solution that defines unique local right-sided unit RA= (r0, r1, r2,

Table 1. Defining the multiplication operation in the 4-dimensional vector space (k is quadratic
non-residue in GF(p))

� e0 e1 e2 e3
e0 ke2 e3 e0 ke1
e1 e0 e1 e2 e3
e2 e0 e1 e2 e3
e3 ke2 e3 e0 ke1
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r3) related to the vector A. Solving the systems (6) and (7) one can derive the following
formulas describing the value RA:

r0 ¼ a0a1 � a2a3
DA

; r1 ¼ a1 a1 þ a2ð Þ � ka3 a0 þ a3ð Þ
DA

; ð9Þ

r2 ¼ a2 a1 þ a2ð Þ � ka0 a0 þ a3ð Þ
DA

; r3 ¼ a2a3 � a0a1
DA

: ð10Þ

One can easily show that the formulas r2 = 1 − r1 and r3 = −r0 hold true, i.e., the
vector RA is contained in the set (4). Therefore, actually RA is the local two-sided unit
relating to the vector A. Evidently, the vector RA is the local two-sided unit relating to
the vectors Ai for all natural values i. Let us consider the sequence of the values A, A2,
…, Ai, … (generated by the vector A such that DA 6¼ 0). This sequence is periodic and
do not contain the zero element O = (0, 0, 0, 0). Indeed, assumption that for some
minimum natural number j we have Aj�1 6¼ O and Aj ¼ O leads to the following (due
to the condition DA 6¼ 0):

A � Aj�1 ¼ O ) Aj�1 ¼ O;

Proposition 1. Suppose for some vector A we have DA 6¼ 0. Then for some minimum
natural number xA the condition AxA ¼ RA holds true and the set of the vectors
A;A2; . . .;Ai; . . .;AxA

� �
represents a finite cyclic group with the unit element RA.

Proof. Since the sequence A, A2, …, Ai, … is periodic, for some minimum natural
h > i we have Ah ¼ Ai

� � ) Ai � Ah�i ¼ Ai
� � ) RAi ¼ Ah�i

� �
: For the right-sided

unit RA corresponding to the element A we have Ai � RA ¼ Ai�1 � A � RAð Þ ¼ Ai
� � )

RAi ¼ RAf g ) RA ¼ Ah�i
� �

: Thus, we have RA ¼ AxA , where xA = h − i. Evidently,
the vector RA acts as two-sided unit on all elements of the set fA;A2; . . .;AxAg,
therefore the element Ax−i is inverses of the element Ai. Taking into account the
associativity of the multiplication operation we conclude the set fA;A2; . . .;AxAg is a
finite cyclic group with the unit element equal to RA. The Proposition 1 is proven.

Proposition 2. Suppose the vector L is a global left-sided unit. Then the map of the
FNAA defined by the formula uLðXÞ ¼ X � L, where the vector X takes on all values in
the algebra, is a homomorphism.

Proof. For two arbitrary vectors X1 and X2 one can get the following:

uL X1 � X2ð Þ ¼ X1 � X2ð Þ � L ¼ X1 � Lð Þ � X2 � Lð Þ
¼ uL X1ð Þ � uL X2ð Þ;

uL X1 þX2ð Þ ¼ X1 þX2ð Þ � L ¼ X1 � Lð Þþ X2 � Lð Þ
¼ uL X1ð ÞþuL X2ð Þ:

The Proposition 2 is proven.
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Proposition 3. Suppose A � B ¼ L. Then for arbitrary natural number t the equality
At � Bt ¼ L holds true.

Proof. At � Bt ¼ At�1 � ðA � BÞ � Bt�1 ¼ At�1 � Bt�1 ¼ At�2 � ðA � BÞ � Bt�2 ¼ At�2�
Bt�2 ¼ A � B ¼ L0. The Proposition 3 is proven.

Proposition 4. Suppose A � B ¼ L. Then the formula wL ¼ B � X � A, where the
vector X takes on all values in the considered 4-dimensional FNAA, sets the homo-
morphism map.

Proof. For two arbitrary 4-dimensional vectors X1 and X2 one can get the following:

wL X1 � X2ð Þ ¼ B � X1 � X2ð Þ � A ¼ B � X1 � L0 � X2ð Þ � A
¼ B � X1 � Að Þ � B � X2 � Að Þ ¼ wL0 X1ð Þ � wL0 X2ð Þ;

wL X1 þX2ð Þ ¼ B � X1 þX2ð Þ � A ¼ B � X1 � Að Þ
þ B � X2 � Að Þ ¼ wL0 X1ð ÞþwL0 X2ð Þ:

The Proposition 4 is proven.
We will use the homomorphism maps uL and wL as masking operations in the post-

quantum commutative encryption algorithm described in the next section. Evidently,
each of these operations is mutually commutative with the exponentiation operation.

The algebra described in this section suits well as the algebraic support to imple-
ment an encryption algorithms based on the HDLP. The considered FNAA contains
very large number of the finite cyclic groups having the same value of the order, that is
equal to a divisor of the value p2 − 1. Respectively, the order xA of some locally
invertible vector A is a divisor of the value p2 − 1.

4 Commutative Encryption Algorithm

Some message to be encrypted is represented in the form of the 4-dimensional vector
M = (m0, m1, m2, m3) coordinates of which are elements of the field GF(p), where
p = 2q + 1 and q is a 256-bit prime number. Probability that DM ¼ 0 is negligible (is
equal to p−2), therefore we will consider that the vector M is locally invertible
ðDM 6¼ 0Þ. Like in the Pohlig-Hellman exponentiation cipher [8], the encryption/
decryption key is generated as the triple of non-negative numbers (e, d, t) such that
ed � 1 mod p2 − 1. Besides the used FNAA, two vectors A and B such that
A � B ¼ L0, where L0 is some given global left-sided unit, are specified as common
parameters of the proposed post-quantum cipher.

The encryption is performed as computation of two vectors RM and C. The value
RM represents the right-sided unit related to the vector M and is computed using the
formulas (9) and (10). To transform the message into the vector C, the single-use key in
the form of randomly selected global left-sided unit is generated and then the value C is
computed as follows:
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C ¼ Bt �Me � At � L: ð11Þ

In the last formula the value L is the single-use subkey that is selected at random,
i.e., the proposed encryption method relates to the probabilistic encryption procedures
for which the value of the ciphertext is not predetermined even in the case, when the
same source message is encrypted two times. The known interpretation of the com-
mutativity of the encryption relates to the deterministic encryption procedures, namely,
it is assumed that a cipher is commutative, if the double encryption of some fixed input
message on two different fixed keys produces the same ciphertext independently of the
order of using the keys [8, 9]. In the case of such definition of the commutativity of the
encryption no probabilistic commutative ciphers are possible.

Thus, in this paper we use the extended interpretation of the commutative-
encryption notion. We call an encryption algorithm commutative, if the double
encryption of some fixed input message on two different fixed keys produces the
ciphertext the can be correctly decrypted using the keys in each of two possible orders.
below it is shown that the formula (11) defines the commutative encryption process.

Decryption of the ciphertext (RM, C) is performed as computation of the vector Mʹ
with using the following formula:

M0 ¼ At � Cd � Bt � RM : ð12Þ

Correctness proof of the proposed encryption method is as follows:

M0 ¼ At � Cd � Bt � RM ¼ At � Bt �Me � At � Lð Þd�Bt � RM

¼ At � Bt �Med � At � Bt � RM ¼ L0 �M � L0 � RM ¼ M:

Let us show that the proposed encryption algorithm is commutative. Since the first
encryption with the key (e, d, t) and the second encryption with the key (e, d, s) relates
to the data having different size (because the ciphertext includes the vector RM as the
first part), we accept on definition that the value RM is computed in frame of the first
encryption and at the second encryption the value RM is not transformed.

The double encryption with the key (e, d, t) and then with the key ðe; d; sÞ produces
the ciphertext (RM, Cʹ), where Cʹ is computed as follows:

C0 ¼ Btþ s �Mee � Atþ s � L0; ð13Þ

where Lʹ is some random global left-sided unit used as the single-use key at the second
encryption.

The double encryption with the key ðe; d; sÞ and then with the key (e, d, t) produces
the ciphertext (RM, Cʺ), where Cʺ is computed as follows:

C00 ¼ Bsþ t �Mee � Asþ t � L00; ð14Þ

where Lʺ is some random global left-sided unit used as the single-use key at the second
encryption. The ciphertexts (RM, Cʹ) and (RM, Cʺ) are different, however one can easily

Post-quantum Commutative Encryption Algorithm 211



show that the double decryption of each of the ciphertexts (RM, Cʹ) and (RM, Cʺ)
outputs the source message M independently of the order of using the keys ðe; d; sÞ and
(e, d, t). For example, decryption of the ciphertext (RM, Cʺ) with the key ðe; d; sÞ and
then with the key (e, d, t) gives the following transformations:

C� ¼ As � C00d � Bs � RM

¼ As � Bsþ t �Mee � Asþ t � L00ð Þd�Bs � RM

¼ As � Bsþ t �Meed � Asþ t � L00 � Bs � RM

¼ As � Bt � Bs �Me � At � As � Bs � RM

¼ L0 � Bt �Me � At � L0 � RM ¼ Bt �Me � At � RM ;

M ¼ At � C�ð Þd�Bt � RM

¼ At � Bt �Me � At � RMð Þd�Bt � RM

¼ At � Bt �Med � At � RM � Bt � RM

¼ L0 �Med � L0 � RM ¼ M:

Thus, we have proposed the post-quantum commutative cipher suitable for
implementing the no-key encryption protocol. However, we interpret the term “com-
mutativity” in the extended sense. Namely, we call the encryption algorithm com-
mutative, if the double encryption on two different keys produces the ciphertext that
can be correctly decrypted using the keys in a different order.

From the formula (11) one can see that the known-plaintext attack on the described
commutative cipher, which assumes finding the value e, represents the HDLP that is
characterized in masking the vector Me, i.e., the output of the base exponentiation
operation, with two consecutive homomorphism maps wL0 and uL.

5 Post-quantum No-key Encryption Protocol

Notion “no-key encryption” relates to implementing a secure communication session
without using some pre-agreed key. No-key protocol uses some commutative
encryption function EK(M), where M is the input message and K is the encryption key,
which is secure to the known plaintext attacks [9]. Usually the encryption function is
called commutative, if the following equality holds:

EKA EKB Mð Þð Þ ¼ EKB EKA Mð Þð Þ

where KA and KB (KB 6¼ KA) are different encryption keys. Shamir’s no-key protocol
includes the following three steps [9]:

1. The sender (Alice) of the message M generates a random key KA and calculates the
ciphertext C1 ¼ EKA Mð Þ: Then she sends C1 to the receiver (Bob) via an open
channel.
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2. Bob generates a random key KB, encrypts the ciphertext C1 with the key KB as
follows: C2 ¼ EKB C1ð Þ ¼ EKB EKA Mð Þð Þ. Then he sends the ciphertext C2 to Alice.

3. Alice, using decryption procedure D = E −1, calculates the ciphertext

C3 ¼ DKA C2ð Þ ¼ DKA EKB EKA Mð Þð Þð Þ ¼ DKA EKA EKB Mð Þð Þð Þ ¼ EKB Mð Þ

and sends C3 to Bob.

Bob discloses the message as follows: M ¼ E�1
KB

C3ð Þ:
If one uses the Pohlig-Hellman exponentiation cipher [8] as the function EK(M) in

this protocol, then the protocol is as secure as the DLP is hard. However, security to
quantum attacks is not provided.

Using the post-quantum commutative encryption algorithm described in Sect. 4
one can propose the following post-quantum version of the no-key protocol:

1. Alice generates a random key (e, d, t), the single-use key L and calculates the
ciphertext (RM, C1), where C1 ¼ Bt �Me � At � L: Then she sends (RM, C1) to Bob
via a public channel.

2. Bob generates a random key (e, d, s), the single-use key Lʹ and encrypts the
ciphertext C1 as follows: C2 ¼ Bs � Ce

1 � As � L0 and sends C2 to Alice.
3. Alice generates the single-use key Lʺ and decrypts the ciphertext C2 obtaining the

ciphertext C3: C3 ¼ At � Cd
2 � Bt � L00: Then she sends C3 to Bob.

Using the received ciphertext C3 the receiver (i.e., Bob) recovers message M ac-
cordingly to the formula M ¼ At2 � Cd2 � Bt2 � RM :

The practical application of the no-key protocol relates to sending confidential
messages via public (insecure) channels without using pre-agreed keys. Since security
of the no-key protocol is based on the hardness of the underlying difficult problem
(HDLP in the proposed version of the no-key protocol), only conditional (practical)
security is provided. To provide unconditional (theoretical) security one should use
secure communication channels and protocols of other types, for example, the quantum
three-stage protocol [10] that is based on the quantum physics laws.

6 Conclusion

For the first time it is proposed a probabilistic commutative encryption method and a
post-quantum commutative cipher based on the introduced method. Security of the
proposed cipher is based on computational difficulty of the HDLP set in a new form
using the 4-dimensional FNAA containing a large set of the global left-sided units as
the algebraic support of the proposed encryption algorithm. The proposed commutative
cipher have been used to design a post-quantum version of the no-key encryption
protocol.

The proposed encryption method is very attractive to be combined with the pseudo-
probabilistic method propose earlier in the papers [11, 12].
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