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Abstract. The Mekong Delta has made great progress in rice production over
the past ten years. Intensive cultivation with multi-cropping brings many benefits
to farmers as well as the food export industry. However, this is also an oppor-
tunity for raising epidemic outbreak, Brown Plant-hoppers can directly damage
by sucking the rice’s vitality, and they can cause the wilting and complete drying
of rice plants, a noncontagious disease known as “Hopper-burn”. In this article,
we propose the CDNN model for insect classification based on Neural Network
and Deep Learning approach. First, insect images are collected and extracted
features based on Dense Scale-Invariant Feature Transform. Then, Bag of Fea-
tures is used for image representation as feature vectors. Lastly, these feature
vectors are trained and classified using CDNN model based on Deep Neural
Network. The approach is demonstrated with experiments, and measured by a
large amount of Brown Plant-hoppers and Ladybugs samples.

Keywords: Bag of Features � Brown Plant-hoppers � Classification � Deep
neural network � Dense SIFT � Insect � Ladybugs

1 Introduction

Rice cultivation plays a very important role for farmers in Vietnam. There are many
insect pests attack rice tree [23], they would destroy the rice crop. Especially, Brown
Plant-hopper (BPH), a small insect pest causes extensive crop damages. It has high
reproductive capacities. Besides Hopper-burn, BPH also causes serious diseases in rice
crop, such as “Rice yellow dwarf disease”. In the other hand, predators (beneficial
insect such as ladybug, ladybird, and spider) kill and feed on several to many individual
insect pest during their lifetimes, they are bio-control groups in agriculture. Without
these predators, insect pests would grow and destroy crops quickly [8].

Classification of living insects is on the agenda for several reasons. First, due to
climate change, it is important to understand how insects distribute or response. Sec-
ond, the significant development of insects leads to unbalancing some surrounding
conditions. Nevertheless, it is necessary to have agricultural specialists to identify
insects. In case of lacking domain experts, a requests for insect recognition and clas-
sification to be carried out more efficiently have become pressing. In response, image-
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based technology is used to improve the wide range of applications especially in
agriculture, ecology and environmental science [5]. It generally can be utilized in
prevention of plant disease and insect pests, plant quarantine and as an essential part of
eco-informatics research. Insect classification has to be taken into a serious measure
because insect presents an especially severe threat and it can cause many negative
effects on agriculture in a short period of time.

This paper proposes a novel approach by developing a CDNN model of classifying
insects in images based on Neural Network [11, 20] and Deep Learning [3, 16, 35].
Image features are extracted by Dense Scale-Invariant Feature Transform (Dense SIFT)
[6] and represented as feature vectors by Bag of Features (BoF) [19, 26, 28, 29]. The
research contributes to building a sampling BPH light trap surveillance network in the
Mekong Delta, Vietnam [2], helping reduce crop damage caused by insect pests.

The rest of this article is presented as follows. Section 2 depicts some previous
work relating to insect image classification. Insect images representation based on the
BoF model is presented in the next section. System of insect classification is proposed
in Sect. 4. Section 5 illustrates some results of the classification method. The last
section is our conclusion and future plans.

2 Related Work

There have been many research of insect detection or classification in image data. Zhu
and Zhang [21] introduced a method to classify insects by using color histogram and
Gray Level Co-occurrence Matrix (GLCM) of wing images. First, the image of lepi-
dopteran insect is preprocessed to get the ROI (Region of Interest); then the color
image is converted from RGB (Red-Green-Blue) to HSV (Hue-Saturation-Value)
space, and the 1D color histograms of ROI are generated from hue and saturation
distributions. Afterward, the color image is converted to grayscale one, rotated and
transformed to a standard position, and their GLCM features are extracted. Matching is
first undergone by computing the correlation of the histograms vectors between testing
and template images. Then, their GLCM features are further matched when the cor-
relation is higher than certain threshold.

According to Hassan et al. [27], several methods used in machine vision learning in
detecting and classifying insects based on their features, colors, and shape. Each
method has the advantages and disadvantages in detecting insects. Among the method
used, color histogram seems to be the best approach in classifying and recognizing
species of insects. In the method, each acquired image is divided into several same size
squares and each of the square of images has its own histogram. Even though the
detected insects is not in the same position in the trained image, the system still can
identified which type of insect based on the color histogram.

To improve the classification accuracy, Xie et al. [12] develop an insect recognition
system using advanced multiple task sparse representation and multiple-kernel learning
(MKL) techniques. As different features of insect images contribute differently to the
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classification of insect species, the multiple-task sparse representation technique can
combine multiple features of insect species to enhance the recognition performance.

In [5], Lu et al. proposed a hybrid approach called discriminative local soft coding
(DLSoft) which combines local and discriminative coding strategies together. This
method used neighbor codewords for getting a local soft coding and class-specific
codebooks (sets of codewords) for a discriminative representation. On obtaining the
vector representation of image via spatial pyramid pooling of patches, a linear SVM
classifier is used for classifying images into species.

Shapes and sizes can be used to detect BPHs in images by using morphology
operations [7, 17]. The experimental results show that the proposed approach is suitable
for detecting and counting BPHs in images.

3 Insect Images Representation

3.1 Characteristics of Insect Images

Two interested insect species (see Fig. 1) are BPH [23] and Ladybugs [8], they have an
average size of about 4-10 mm, and their characteristics can be identified by mor-
phological. For example, BPH has a yellowish brown body and their head overhangs
towards the front, their wings are transparent and the front wings have a black spot on
the back side.

Insect images were taken by 1280 � 720 pixels resolution. Before extracting
feature, insect images were converted to grayscale and stored in grayscale image
matrix, each cell of matrix has value between 0 and 255 (see Fig. 2).

Fig. 1. RGB insect image: adult BPH [23] (a) and Ladybug [8] (b)
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3.2 Bag of Features Model

Insect image representation is the key step in classification, its performance directly
affects the insect classification results. Bag of Features (BoF) [19, 26, 28, 29] approach
can be motivated by an analogy to learning methods using the Bag-of-Words
(BoW) [36] representation for text categorization. BoF methods have been applied to
image classification, object detection, image retrieval, and even visual localization for
robots. BoF approaches are characterized by the use of an orderless collection of image
features. Due to its simplicity and performance, the BoF approach has become well-
established in the field.

BoF model is designed for representation insect image features as feature vectors.
The main idea is to reduce storage space and minimize computation. This model
includes 3 main functions as described in Fig. 3: (1) extracting insect image features
based on Dense SIFT algorithm, (2) vector quantization using the variant of the K-
means algorithm, and (3) constructing bag of features by applying the Spatial Pyramid
Matching framework.

Fig. 2. BPH grayscale image stored in a matrix

Fig. 3. BoF model for insect images representation
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Extracting Insect Image Features
Scale-Invariant Feature Transform (SIFT) [13] provides a set of features of objects in
an image. These features are invariant with the change of scale, rotation, view, noise or
light intensity in an acceptable level. This method archives high efficiency in image
recognition [14]. Four major stages of computation used to generate the set of image
features are involved in the following order:

• Scale-space extrema detection: the first stage of computation searches over all scales
and image locations. It is implemented efficiently by using a difference-of-Gaussian
function to identify potential interest points that are invariant to scale and
orientation.

• Keypoint localization: at each candidate location, a detailed model is fit to deter-
mine location and scale. Keypoints are selected based on measures of their stability.

• Orientation assignment: one or more orientations are assigned to each keypoint
location based on local image gradient directions. All future operations are per-
formed on image data that has been transformed relative to the assigned orientation,
scale, and location for each feature, thereby providing invariance to these
transformations.

• Keypoint descriptor: the local image gradients are measured at the selected scale in
the region around each keypoint. These are transformed into a representation that
allows for significant levels of local shape distortion and change in illumination.

Dense SIFT [1, 6, 31, 33] is derived from the SIFT [13, 14], the most significant
difference between them is that Dense SIFT assumes all the significant points are
evenly distributed. Therefore, the selection of keywords in all areas of the image is
dense and standardized.

Dense SIFT operation starts with segmenting a grayscale image into small segments,
each of these segment is further divided into smaller segments. For each of these
segments, which represent the neighborhoods around the feature point (center of the
segment), the image gradients were calculated. A smoothed weighted histogram of
eight orientation bins (corresponding to eight directions) is created based on the sum of
gradient value. Consequently, a descriptor of a local region (keypoint) is formed by
calculating the gradient magnitude and orientation around the keypoint.

These descriptors are set in a Gaussian window. They are accumulated into orien-
tation histograms in 4 � 4 sub regions of which the length of each arrow depicts the
number of orientation bins inside a region. A best results are achieved with a 4 � 4
array of histograms with 8 orientation bins in each, the local descriptor results in a 128-
dimensionl vector. After extracting, each insect image feature is represented by a
descriptors matrix.

Vector Quantization
Vector quantization [4] is a classical quantization technique from signal processing that
allows the modeling of probability density functions by the distribution of prototype
vectors. It works by dividing a large set of points (vectors) into groups having
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approximately the same number of points closest to them. Each group is represented by
its centroid point, as in K-means and some other clustering algorithms.

A variant of the K-means algorithm [9] is used for grouping descriptor vectors in
descriptors matrix to the set of clusters. K-means algorithm is a popular and unsu-
pervised learning algorithm. The goal of the K-means clustering algorithm is to min-
imize the sum of squared Euclidean distances [11] between each point and the nearest
cluster center. In this paper, Dense SIFT feature of each insect image has average
feature descriptors number about few ten thousand descriptors. Therefore, in this
section we initialize number of clusters with value 1000. Then, clustering process is
done by a variant of the K-means algorithm [9], this algorithm applies a technique
based acceleration the triangular inequality. Besides, we use k-dimensional tree algo-
rithm [18] for enhancing performance of vector quantization. The results of this phase
is the number of descriptor vectors in each cluster, and each cluster is a word in visual
words.

Constructing Bag of Features
Visual words is used for constructing feature vectors which represent insect images.
The number of descriptor vectors in each cluster are calculated and built a spatial
histogram of visual words. Visual words are associated into a spatial histogram by
applying the Spatial Pyramid Matching framework [28]. This method combines the
technique of generating visual words into the Pyramid matching plan. For each level of
space, the pyramid apply a method for matching a series of grids. At each level, the
number of histogram matches is counted in each grid and a weighted sum is collected
for all resolutions. The result is a histogram for each image taking into account the
relative location of image features. It should be pointed out that level of a spatial
pyramid L = 0 is equivalent to a standard BoF implementation. After this process, a
feature vector which represents an insect image Dense SIFT feature, is obtained.

4 Insect Classification

The system handles insect classification including 3 main phases with functions
described in Fig. 4:

• Data phase: real insects are caught and taken their pictures. Some preprocessing
tasks are done in order to remove unnecessary points in image.

• BoF representation phase: BoF model is used for image feature extraction and
representation as feature vectors.

• Classification phase: these feature vectors are trained by CDNN model and applied
for insect images classification.
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4.1 Data Phase

Insect image samples (see Fig. 5) are collected from adult BPH images and ladybug
images by using a camera with [1280 � 720] resolution in different views. After
preprocessing, information relating to these insects is kept, others are removed.

4.2 BoF Representation Phase

Bag of features (BoF) model is designed for representation phase. The number of
keypoints is used to form feature vectors. Therefore, feature vector F = {F1, F2,…,
F4000} represents for each insect image. The steps for BoF representation are as follows:

Fig. 4. System of insect classification

Fig. 5. BPH image samples
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Algorithm 1: BoF Representation
Input: Insect image
Output: Feature vector

1: Step 1: Extracting insect image features
2: Reading insect image
3: Converting insect image to grayscale
4: Standardizing image size
5: Calculating keypoints (KEYPTS) and (descriptors) DESCRS
6: [KEYPTS, DESCRS] = DSift.calculate(img)
7: Step 2: Vector quantization
8: Clustering descriptor vectors (WORDS)
9: WORDS = Elkan_Kmeans(DESCRS, numWords)
10: Building a k-dimensional tree (KDTREE)
11: KDTREE = build_kdtree (WORDS)
12: Step 3: Constructing bag of features
13: Computing a spatial histogram of visual words
14: HIST = compute_Histogram(KEYPTS, WORDS)
15: Reducing a spatial histogram to single
16: HIST = single(HIST / sum(HIST))

4.3 Classification Phase

Classification phase as described in Fig. 4 includes 4 main functions: (1) CDNN
model, (2) training system, (3) predicting system (testing system), and (4) evaluation.
In this section, CDNN model and training system are described. Predicting system and
evaluation will be presented in the next part.

CDNN Model
Deep neural networks [10, 16] are distinguished from the more commonplace single-
hidden-layer neural networks by their depth. The traditional neural network has at most
3 layers: input, hidden, output while a deep neural networks has more than 1 hidden
layers. The principle of deep neural networks is that nodes in a layer is trained by
specific features based on outputs of the previous layer. The more layers the network
has, the more complex features can recognize because it is able to combine features in
previous layers.

CDNN model which is designed for insect images classification consists of many
layers of interconnected neurons, it is a straight forward neural network as described in
Fig. 6. In this model, each layer has a specific role and responsibility.

• Input layer: plays an input role to match inputs relevant to feature vectors of insect
images. The number of nodes in the input layer is fixed with number of insect image
feature vectors. For example, feature vectors F = {F1, F2,…, F4000} represents for
insect images, the number of nodes in the input layer is n = 4000 nodes.

• Hidden layers: is the middle layers, the number of hidden layer and the number of
nodes in each hidden layer is designed for the purpose of increasing the accuracy of
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the model. CDNN model must has at least 2 hidden layers. In this paper, the
experiment is designed in two scenarios: using 2 hidden layers and 3 hidden layers.

• Output layer: is a linear classification which is relevant to the output space. The
number of nodes in the output layer is class numbers which needs for classification,
this model has two classes (PBHs and Ladybugs).

Training System
The training protocol of CDNN model applies parallel distributed and multi-threaded in
H2O Deep Learning [3]. Loss function based on Mean squared error loss [3]:

LðW;B jj Þ ¼
Pn

i¼1 tj � oj
� �

n

Where:

• W is the collection wif g1:N�1, where Wi denotes the weight matrix connecting
layers i and i + 1 for a network of N layers.

• B is the collection bif g1:N�1, where bi denotes the column vector of biases for layer
i + 1.

• j is training sample.
• n is number of training samples.
• tj is value the predicted output (target output).
• oj is output value of the network (actual output).

The process of minimizing the loss function LðW;B jj Þ is a parallelized version of
stochastic gradient descent (SGD). The gradient rLðW;B jj Þ updated with back-
propagation algorithm [34]. The SGD method is fast and optimal memory but not
easily parallelizable without becoming slow, Hogwild update method [15] is used for
resolving this problem.

Bias units are included in each non-output layer of the network. The weights linking
neurons and biases with other neurons fully determine the output of the entire network.
Learning occurs when these weights are adapted to minimize the error on the labeled
training data.

Fig. 6. CDNN model with 2 hidden layers
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Let the constant a is the learning rate to control the step sizes during gradient
descent. Avgn represents the final averaging of these local parameters across all nodes
to obtain the global model parameters and complete training. The following steps
outline the training protocol of CDNN model:

Algorithm 2: The training protocol of CDNN model
1: Step 1: Initialing global parameters: Weights (W) and Biases (B)
2: Step 2: Distributing training data T to all nodes
3: Step 3: Repeat until convergence criterion reached:
4: 3.1. For nodes n Tn, do in parallel:
5: Obtain copy of the global model parameters Wn, Bn
6: Select active subset Tna ⊂ Tn
7: Partition Tna into Tnac by cores nc
8: For cores nc on node n, do in parallel
9: Get training sample i Tnac
10: Update all weights wjk Tn, biases bjk Bn

11:

12:
13: 3.2. Updating global parameters
14: W , B = Avgn Wn , Avgn Bn
15: 3.3. Optionally score the model on train/validation scoring sets

In all of the CDNN model nodes, input data is distributed and training on all nodes,
weight and bias are calculated in parallel on each node until weights and biases (W, B)
obtained by averaging.

5 Experimental Results and Discussion

In all experiments, the learning rate is a = 0.005 to control the step sizes during
gradient descent. Weights and biases are randomly initialized. Accuracy and error rate
are calculated by confusion matrix [30].

5.1 Data Used

Experiments were performed on BPH images and Ladybug images. All experimental
data are describe in Table 1.

Table 1. Experimental data.

Insect name Training sets Testing sets Total

BPH 200 100 300
Ladybug 200 100 300
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All insect images in the training dataset and testing dataset were extracted
Dense SIFT features and applied BoF model for feature vectors. Training feature
vectors and testing feature vectors are described in Tables 2 and 3. The test labels are
not assigned.

5.2 Tool Used

The experimental tool is installed in Matlab [22] and VLFeat 0.9.20 [33]. BOF model
is used to represent insect image as feature vectors. These feature vectors are imported
into R tools [25, 32] with H2O Deep Learning package [3] for classification. Experi-
ments are operated on the computer with the configurations: Intel Core i7-4710HQ,
CPU 2.50 GHz, Memory 16 GB RAM, Ubuntu 16.04 LTS operating system.

5.3 Scenario 1: Insect Classification in CDNN Model with 2 Hidden
Layers

In this scenario, we evaluate CDNN model with 2 hidden layers. A number of neurons
are customized in specific cases.

Table 2. Training feature vectors.

F1 F2 F3 … F3999 F4000 Label

I1 0.019979 0.009990 0.019979 … 0.098386 0.101874 BPH
I2 0.014746 0.029492 0.010427 … 0.261088 0 BPH
I3 0 0.017338 0 … 0.478497 0.484118 BPH
I4 0.022371 0.020009 0 0.255067 0.086062 BPH
… … … … … … … …

I398 0.017328 0.014149 0 … 0 0 LDBUG
I399 0.020026 0 0 … 0.440688 0.106440 LDBUG
I400 0.010005 0.017328 0.024506 … 0 0.159446 LDBUG

Table 3. Testing feature vectors

F1 F2 F3 … F3999 F4000 Label

I1 0.086084 0.026476 0.026476 … 0 0
I2 0 0.088023 0.191645 … 0 0
I3 0.011362 0.039360 0.093003 … 0.017302 0.028255
I4 0.415988 0.009997 0.009997 0 0.295634
… … … … … … …

I198 0.185016 0 0 … 0.102334 0.053099
I199 0.407395 0 0 … 0.145924 0.387371
I200 0.010005 0 0.015688 … 0.048343 0.016114
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Case 1. Each hidden layer has 10 neurons (10, 10). Figure 7 illustrates number of BPH
and ladybugs after classifying with the accuracy 91.5%.

Case 2. A number of neurons in each hidden layer are adjusted, each hidden layer has
20 neurons (20, 20). Figure 8 illustrates number of BPHs and ladybugs after classifying
with the accuracy 93%.

Continuing experiments by adjusting the number nodes in 2 hidden layers of CDNN
model. Table 4 shows the results of execution time and Mean squared errors (MSE) in
different neural networks, predictable result in 2 classes (BPHs and Ladybugs) based
on insect feature vectors, as well as the percentage of classification accuracy and the
error rate.

Fig. 7. Summary of classification in case 1:2 hidden layers (10, 10).

Fig. 8. Summary of classification in case 2:2 hidden layers (20, 20).

Table 4. Summary of classification in Scenario 1: CDNN model with 2 hidden layers

Id Number
of nodes

Execution
time (sec)

Mean squared
errors (MSE)

Result PBHs;
Ladybugs

Accuracy
(%)

Error
(%)

1 10, 10 3.437 1.304558e−09 117; 83 91.5 8.5
2 20, 20 3.568 1.111752e−10 114; 86 93.0 7.0
3 40, 40 4.631 2.224379e−11 114; 86 93.0 7.0
4 80, 80 6.224 7.733223e−12 111; 89 94.5 5.5
5 100, 100 10.276 2.35158e−12 109; 91 95.5 4.5
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The result in Table 4 concludes that, in the Deep neural network with 2 hidden
layers, the more the number of nodes in a layer is, the more the accuracy increases (but
the error decreases).

5.4 Scenario 2: Insect Classification in CDNN Model with 3 Hidden
Layers

In this scenario, we evaluate CDNN model with 3 hidden layers. A number of nodes in
hidden layers are also adjusted in specific cases. Table 5 shows the summary of
classification in Deep neural network with 3 hidden layers.

The result in Table 5 shows that when adjustment the number of nodes in the Deep
neural network with 3 hidden layers, the rate of accuracy classification increases. The
best result (accuracy rate 97% with smallest MSE) achieves with the number of nodes
(100, 100, 50). However, when the number of nodes in 3 hidden layers adjusts to (200,
100, 100), the accuracy classification rate decreases (95.5%). This problem is called
overfitting [24], a large number of nodes in hidden layers affects classification results.

5.5 Discussion

In comparing the accuracy, Fig. 9 illustrates the accuracy prediction (percentage) of the
classification in different networks. In Deep neural network with 2 hidden layers, the
accuracy increases corresponding to the increment of number of nodes. Similarly, in 3
hidden layers network, there is a rise of accuracy when the number of nodes increases.
However, when increasing the number of classes to (200,100,100), the accuracy pre-
diction rate tends to decrease. There is a distinction between the accuracy of 2 hidden
layers and 3 hidden layers network. Obviously, accuracies of 3 hidden layers network
are better than those of 2 hidden layers ones since they require one more layer to train
and classify feature vectors. In short, the accuracy of a network is ratio with the number
of hidden layers as well as the number of nodes in a hidden layer (with the appropriate
number of nodes).

Table 5. Summary of classification in Scenario 2: CDNN Model with 3 Hidden Layers

Id Number of
nodes

Execution time
(sec)

Mean squared errors
(MSE)

Result PBHs;
Ladybugs

Accuracy
(%)

Error
(%)

1 50, 50, 50 17.554 0.04597361 114; 86 93.0 7.0
2 100, 50, 50 22.214 0.03883661 106; 94 97.0 3.0
3 100, 100, 50 28.162 0.02325019 106; 94 97.0 3.0

4 100 ,100, 100 28.312 0.02747581 107; 93 96.5 3.5
5 200, 100, 100 58.002 0.03568920 109; 91 95.5 4.5

CDNN Model for Insect Classification Based on Deep Neural Network Approach 139



In comparing the execution time, Fig. 10 demonstrates convincingly that when the
number of nodes in the hidden layer increases, the execution time increases as well.
Further more, in all cases of experiment, execution times in 3 hidden layers network are
longer than those in 2 hidden layers network.

6 Conclusion

We have advocated proposed the CDNN model to classify insect images using Bag of
features and Deep Neural Networks approach. Insect image features are extracted and
saved to descriptors matrix based on Dense SIFT. Vector quantization is done with a
variant of the K-means algorithm, each cluster is a vocabulary of visual words.
A spatial histogram is built with spatial pyramid matching, feature vector is the result at
the end of this process. These feature vectors become the input of CDNN model which
is applied for classifying insect image. The accuracy of the classification process can be
increased by adjusting the number of nodes in a layer as well as the number of hidden
layers in a network. Experiments show that the model is suitable for classification in
static insect images. The best result (accuracy rate 97% with smallest MSE) achieves in
case of using CDNN model 3 hidden layers with the number of nodes (100, 100, 50).

Fig. 9. Comparing the accuracy (%)

Fig. 10. Comparing the execution time (sec)
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We believe that there would be tremendous benefit to an insect identification
application and hope that this work will provide a starting point for further work on
such a technology. It is intended that the proposed method will serve as a corner stone
for research into real-time monitoring and tracking insects or other living organisms
with the participation of experts in the field of information technology and agriculture.
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