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Abstract. Complex network is a network structure composed of a large number
of nodes and complex relationships between these nodes. Using complex net-
work can model many systems in real life. The individual in the system cor-
responds to the node in the network and the relationship between these
individuals corresponds to the edge in the network. The controllability of
complex networks is to study how to enable the network to arrive at the desired
state from any initial state by external input signals. The external input signals
transmit to the whole network through some nodes in the network, and these
nodes are called driver node. For the study of controllability of complex net-
work, it is mainly to judge whether the network is controllable or not and how to
select the appropriate driver nodes at present. If a network has a high control-
lability, the network will be easy to control. However, complex networks are
vulnerable and will cause declining of controllability. Therefore, we propose in
this paper a link prediction-based method to make the network more robust to
different modes of attacking. Through experiments we have validated the
effectiveness of the proposed method.
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1 Introduction

Social networking has brought convenience to our life but also brought some negative
effects, for example, traffic congestion and large area blackouts. So controlling the state
of a complex network is critical.

The research on the controllability [3] of complex networks focuses on controlling
the state of the entire network by controlling a few nodes. Due to the large scale of
complex networks and the vague information of individuals, traditional control theory
can’t be directly used to model. Liu et al. [1] put forward the theory of structural
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controllability [1], and define the concept of driver node which can control the state of
other nodes. But structural controllability cannot solve the problem of controllability of
networks with all known weights. Subsequently, Yuan et al. put forward the theory of
strict controllability [2] and perfected the theory of controllability of complex networks.

Strict controllability has been verified that the controllability of a network is
determined by its structure. In most cases, a change in the structure of the network
manifests itself in the loss of some links. And usually the dense network structure is
easy to control. Our experiments show that the loss of network links in most cases will
increase the difficulty of control, that is, the controllability becomes worse. So the most
direct way to improve network control is to add links. Due to a lack of purpose, the
effect of improvement on controllability is not obvious by adding links randomly in
most cases, we can only improve control by restoring the network as much as possible
to the pre-lost link structure.

To solve the problems of poor network controllability, in this paper, a link pre-
diction [13] method is proposed to improve the controllability of the network. In our
method we extract node properties and local structural features [17] according to
current network structure, using these properties and features to train a learning
algorithm and then predict the lost edges. Compared to adding edges randomly, link
prediction can restore the network as much as possible, and it is simple and the
execution efficiency is high. In the case of lost network links, link prediction can
effectively improve the controllability of most networks compared to other methods.
Our experimental results show that the higher the accuracy of link prediction, the better
the controllability improves. In order to improve the accuracy of link prediction, we put
forward a Reverse-training method when we don’t know the label of test data, this
method can effectively adjust learning algorithm and improve accuracy.

The rest of paper is organized as follows. In Sect. 2, we review the related work. In
Sect. 3, we introduce our link prediction model. The experimental results are provided
and discussed in Sect. 4. Finally, we conclude the paper in Sect. 5.

2 Related Work

2.1 Network Controllability Theory

At present, there are two kinds of controllability theories for complex networks:
structural controllability and strict controllability.

If the system matrix [15] A of the complex network system is determined,
according to the Kalman controllability criterion, the key to completely control the
whole system is to find the appropriate input matrix B and make the matrix C full rank.
According to Kalman criterion, Liu et al. put forward the theory of structural con-
trollability: A system is converted into a digraph, if the system is controllable, the
directed graph must not contain unreachable nodes and expansion, or it is made of
cactus.

The theory of structural controllability [20] can be used to determine whether a
network is controllable in most cases, but the foundation of its establishment ignores
the edge weight information in the network, and can not exclude that the side weight

Improving Complex Network Controllability via Link Prediction 85



combination of the network structure matrix A and the input matrix B happens to be ill
conditioned, which causes the network to be controllable theoretically but not con-
trollable in reality. According to Kalman criterion, Liu et al. put forward the theory of
structural controllability:

The minimum number of driver nodes required to achieve complete controllability
is ND equals to the largest geometric multiplicity of matrix A:

ND ¼ max l kið Þf g ð1Þ

l kið Þ ¼ N � rank kiIN � Að Þ ð2Þ

A is the system matrix, and ki is the eigenvalue of the matrix A.
To facilitate the measurement of the difficulty of controlling a network, we define

controllable nD to measure the difficulty of controlling the network:

nD ¼ 1� ND

N
ð3Þ

N is the total node number of the network, and ND is the minimum number of
driving nodes needed to control the network. The less the number of drivers needed to
control a network, the better the controllability of the network; the more the minimum
number of drivers needed, the worse the controllability.

2.2 Network Attack

The attack modes [4] of complex networks are mainly divided into random attack and
selective attack. The random attack is to destroy nodes or edges in a network with some
probability. Holme [4] and others have done a more comprehensive study of complex
network attacks, divided the attacks into node attacks and edge attacks, each of which
contains 4 attack strategies.

① ID (initial degree) attack mode. The nodes (edges) are removed according to the
order of their degree in initial network.

② IB (initial betweenness) attack mode. The nodes (edges) are removed according to
the order of their betweenness in initial network.

③ RD (recalculated degree) attack mode. The nodes (edges) are removed according to
the order of their degree.in current network.

④ RB (recalculated betweenness) attack mode. The nodes (edges) are removed
according to the order of their betweenness in current network.

2.3 Link Prediction

Link prediction aims to predict the missing edges or possible links in the future based
on the current network structure. The method is divided into local similarity-based
approaches and global similarity-based approaches.

Local similarity-based [17] approaches use node neighborhood-related [5] struc-
tural information to compute the similarity of each node with other nodes in the
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network. These approaches have good results for link prediction and it is very efficient.
The existing methods includes Common Neighbors (CN) [6], Jaccard’s Coefficient
(JC) [7], and Adamic Adar (AA) [8]. CN is represented as the number of common
neighbors between two nodes. The more common neighbors two nodes have, the more
likely there is a link between them. Compared with the CN coefficient, the JC coef-
ficient takes into account the whole network structure. Adamic and Adar (AA) take into
account the correlation when deciding the strong correlation between the two nodes.

3 Model

3.1 Link Prediction Framework

When a complex network is attacked, the network loses some edges. We now consider
the problem of predicting the missing edges in the attack in our dataset. For undirected
unweighted networks, the essence of link prediction is a classification problem, which
can be solved by machine learning classification algorithm [16].

Local similarity-based approaches have good performance for link prediction [19]. In
our model, we try to combine these approaches with some attributes of the network as
feature for training learning algorithm. The features are divided into two classes. The first
class is based on the attribute of the edge. The second class is based on the local approach
of the network. For the edge (x, y), the first class we choose is the degree of x and y and
the shortest path between x and y; the second class we choose is JC, AA and CN.

We use a logistic regression classifier to combine the evidence from these indi-
vidual features into link prediction. Logistic regression learns a model of the form

P þ jxð Þ ¼ 1

1þ e�ðb0 þ
Pn

i
bixiÞ

ð4Þ

where x is a vector of features (x1; . . .; xn) and (b0; . . .; bn) are the coefficients we
estimate based on the training data. For every edge (u, v) with label 1 we sample a
random edge with label 0, which ensures that the number of the two labels edges in the
data we consider for training and prediction is balanced. Moreover, we also consider
two different evaluation measures: the classification accuracy and the area under the
ROC curve (AUC). For ease of exposition we focus on classification accuracy on a
balanced dataset.

3.2 Reverse-Training Method

The higher the accuracy of link prediction, the better the network recovery. So we now
consider the problem of improving the accuracy of link prediction. If we know the
labels of training data and test data, we can easily adjust to the best classifier. In
addition to the parameters of learning algorithm, the training data which is used to train
classifier also affects the accuracy of link prediction. We put forward a reverse-training
method here. Compared to the traditional method, this method is more efficient and it
shows a good effect in cases that we only know the labels of training data.
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This method is divided into two steps, the first step is clearing interfering data and
the second step is adjusting the parameters of learning algorithm.

To obtain good classifiers, good training data is required. Some sample features
can’t reflect the category labels it belongs to, these samples will affect the training of
learning algorithms. So we call these samples as interfering data. In filtering the inter-
fering data, we use the idea of data partition [11]. The algorithm is shown in Table 1.

After clearing up the interfering data [9, 20], the second step is adjusting classifier.
The idea of dual-learning is used here [10]. Dual-learning has a good effect on Machine
Translation and solves the shortage of parallel training data.

Table 1. Interfering data filtering algorithm.

Algorithm 1 interfering data filtering algorithm
Input: T(training data), n(number of subset), m(division times), H(learning algo-
rithm)
Output: A(detected interfering subset of E)
1: A
2: for i = 1, …, m do
3: form n disjoint almost equally sized subset of Ei, where
4: for j = 1, …, n do
5:     form Et E\Ei
6: for k = 1, …, t do
7:     ues Et train H to classify Ei

8:     for every e Ei do
9:       if H incorrectly classifies e

10:         then A A e 
11:    end for
12:   end for
13:   end for
14: end for

Table 2. Classifier adjustment algorithm.

Algorithm 2 classifier adjustment algorithm
1:Input: T1(the training set after filtering interfering data), H(learning algorithm), 
T2(the test data), n(the number of T1) 
2: max = 0
3: repeat
4:     count = 0
5:   use T1 train H to classify T2 and get labels of test data, L1
6: use T2 and L train H to classify T1 and get labels of training data, L2\ 
7:   for i = 1, …, n do
8:   if L1i == L2i
9:   then count = count + 1

10:  end for
11: max = count
12: until convergence
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We use the training data to train the classifier, and classify the test data. Conversely,
we use the test data and the results as labels for the test data to train the classifier. We
get new labels of training data after classifying. By comparing the new labels and the
original labels of the training set, we can evaluate the performance of the classifier. If
most new labels and the original labels of the training data are identical, it can be
proved that the classifier is good. Just like Machine Translation, we convert a message
from language A to language B using a translation model. Then we convert the
received message from language B back to language A using another translation model.
If the message is consistent in language A, we can know whether the two translation
model perform well or not. We can adjust the classifier to repeat this process. This
process can be iterated for many rounds until the new label of the training set and the
original label of the test set have the maximum similarity. We can think the classifier is
the best at this time. The Algorithm of adjusting classifier is shown in Table 2.

4 Experiments

In this paper we use four real world networks: Airport, Ant, Jazz, Email, they are all
undirected and unweighted. Their network topology properties are shown in Table 3.

We remove a certain proportion of edges in the network according to the attack
mode, then calculate the controllability of the missing edge network. The ratio of edges
removed is called the attack ratio. The attack modes we used in the experiment are:
random attack mode, ID attack mode and IB attack mode. ID(IB) attack mode is
divided into ID-max(IB-max) mode and ID-min(IB-min) mode, which is defined as
removing the edge has the maximum degree (betweenness) in initial network and
removing the edge has the minimum degree (betweenness) in initial network. For each
network, we adopt different attack ratios and attack modes and analysis the maximal
connected subgraph after attacking. Taking into account the randomness of random
attack mode, we take the average of the results of the 10 experiments as a reference.

The controllability of each network varies little under random attack. Airport and
email have a little decline. When the attack ratio is low, the controllability of Ant has an
improvement, but has a decline when the attack ratio is over 15%. Jazz has an
improvement in controllability and controllability gradually converges to 1. Even if the
attack ratio reaches 40%, the controllability of Email changes very slightly compared to
other networks because Email has good controllability initially. Based on the topology

Table 3. The information of Network topology.

Network Node Edge Number of driver node

Airport 500 2980 132
Email-Enron 1133 5451 42
Ant 453 2040 27
Jazz 198 2742 7
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information of the network, the better the controllability of the network is, the smaller
the range of variation suffered by random attacks. The experimental results are shown
in Fig. 1.

Depending on the degree of the edge being removed, ID mode is divided into ID-
max and ID-min. The controllability of these real world networks has almost no change
under ID-max and varies greatly under ID-min, the experimental results are shown in
Fig. 2.
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Fig. 1. Controllability of every network under random mode with different attack ratio, the
horizontal axis is attack ratio and the vertical axis is controllability.
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Fig. 2. Controllability of every network under ID mode with different attack ratio, the horizontal
axis is attack ratio and the vertical axis is controllability. (a) is ID-max and (b) is ID-min.
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There are some edges have no influence in the controllability of network, and these
edges are called redundant edge. If a node has no influence on the controllability of the
network, it is said to be a redundant node and the degree of redundant node is usually
relatively large. Similarly, edges that have no effect on network controllability are
called redundant edge. The experimental results show that the controllability of these
networks has barely changed under ID-max mode, which prove that the degree of
redundant edge is also relatively large. Removing the edges with small degree will have
great influence on the network structure and the experimental results show that the
controllability of these networks varies greatly even if the attack ratio is low under ID-
min mode. It can be proved that the edges which have small degree are crucial for the
controllability of network.

Betweenness is also an important topological feature of complex networks. Edge
betweenness is defined as the proportion of the number of paths passing through the
edge in all shortest paths in the network to the total number of shortest paths. The
experimental results of IB mode are similar with which under ID mode, but the con-
trollability of the network under IB-max is not as stable as ID-max. With the increase
of attack proportion, the controllability of Airport even improves. It is possible that
some edges with large betweenness have certain obstacles to the controllability of the
network. Similar to the results under ID-min mode, the controllability of the network
under IB-min mode becomes worse with the increase of attack proportion, but the
decline rate is not as fast as that under ID-min mode. We can also infer that the small
betweenness of edges have an important influence on the controllability of the network.
The experimental results are shown in Fig. 3.
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Fig. 3. Controllability of every network under IB mode with different attack ratio, the horizontal
axis is attack ratio and the vertical axis is controllability. (a) is ID-max and (b) is ID-min.
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The controllability of all networks has a decline under ID-min mode and some
networks have a decline under random attack mode. Random addition of edges could
not improve the network controllability, so we tried to restore the network structure as
much as possible through link prediction. We use the model proposed in this paper to
extract attribute features from the network, and take the calculated results of CN, AA
and JC as local features. Finally, we use these features to train logistic regression
learning algorithm. The link prediction problem can be solved as a binary classification
problem. There is an edge between two nodes that belongs to category ‘1’, while there
is no edge that belongs to category ‘0’.

Our model is used to predict the restoration of three networks with reduced con-
trollability through links, and the comparison of the controllability of the network
before and after improvement is shown in Fig. 4.

We recorded the controllability curve of the network under different proportions
before link prediction as CBLP, and the curve after link prediction as CALP. Experi-
mental results are shown in Fig. 4. The experimental results show that the controlla-
bility of the three networks is improved significantly after link prediction under random
attacks. When the attack proportion of Ant network is low, the effect does not improve,
but decreases. When the attack proportion exceeds 20%, the controllability begins to
improve greatly. Compared with random attack mode, the controllability of the net-
work is not significantly improved after link prediction in ID-min mode, and only
improves a little when the attack rate is high. From the experimental results we can
infer that link prediction is helpful to improve the controllability of the network.

The prediction accuracy of each network through links under different attack modes
is shown in Table 4. The structures of every network are seriously damaged under ID-
min attack mode because this mode will generate many isolated nodes. So the accuracy
of link prediction under this attack mode is low. The function of link prediction is to
restore the structure of the network before the attack as much as possible. If the
network structure is restored more, the controllability of the network should be
improved.

We use the reverse-training method in this paper to improve the accuracy of link
prediction. The accuracy after improvement of every network are shown in Table 5.

From the experimental results, we can see that the accuracy of network link pre-
diction using our method has been improved to some extent. We recorded the con-
trollability curve of the network before improving the accuracy rate as CBIA, and the
curve after improving the accuracy rate as CAIA. Comparison results of network
controllability before and after link prediction accuracy improvement are shown in
Fig. 5.

92 R. Wei et al.



(a)  (b) 

0.65
0.66
0.67
0.68
0.69
0.70
0.71
0.72
0.73
0.74
0.75

0.050.100.150.200.250.300.350.40

CBLP CALP

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.050.100.150.200.250.300.350.40
CBLP CALP

                              (c)                                                              (d) 

                              (e)                                                               (f)               

0.65
0.66
0.67
0.68
0.69
0.70
0.71
0.72
0.73
0.74
0.75

0.050.100.150.200.250.300.350.40
CBLP CALP

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.050.100.150.200.250.300.350.40
CBLP CALP

0.80
0.82
0.84
0.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00

0.050.100.150.200.250.300.350.40
CBLP CALP

0.05

0.15

0.25

0.35

0.45

0.55

0.65

0.75

0.85

0.050.100.150.200.250.300.350.40
CBLP CALP

Fig. 4. Comparison of controllability before and after network link prediction. (a) and (b) are
comparison of controllability of Airport before and after link prediction in random attack mode
and ID-min mode respectively; (c) and (d) are comparison of controllability of Email before and
after link prediction in random attack mode and ID-min mode respectively; (e) and (f) are
comparison of controllability of Ant before and after link prediction in random attack mode and
ID-min mode respectively.
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The experimental results show that under random attack mode, the controllability of
the three networks has been improved after the improvement of link prediction accu-
racy. The controllability of the three networks hardly changed when the attack pro-
portion was low in the ID mode, also because the accuracy of the link prediction in the
ID mode was low.

Table 4. Accuracy of link prediction under random and ID-min mode

Mode Random

Metric Accuracy
Attack ratio 5% 10% 15% 20% 25% 30% 35% 40%

Airport 0.876 0.884 0.869 0.878 0.876 0.867 0.852 0.869
Email 0.810 0.812 0.796 0.801 0.813 0.800 0.800 0.781
Ant 0.831 0.823 0.812 0.825 0.828 0.783 0.803 0.805

Mode ID-min

Metric Accuracy
Attack ratio 5% 10% 15% 20% 25% 30% 35% 40%

Airport 0.445 0.439 0.445 0.492 0.512 0.512 0.550 0.539
Email 0.502 0.521 0.511 0.513 0.497 0.509 0.498 0.497
Ant 0.472 0.450 0.467 0.469 0.473 0.477 0.482 0.480
Jazz 0.524 0.579 0.550 0.486 0.480 0.485 0.496 0.497

Table 5. Accuracy of link prediction after improvement under random mode and ID-min mode

Mode Random

Metric Accuracy
Attack ratio 5% 10% 15% 20% 25% 30% 35% 40%

Airport 0.889 0.900 0.896 0.891 0.893 0.884 0.883 0.879
Email 0.842 0.842 0.835 0.828 0.814 0.799 0.800 0.781
Ant 0.896 0.878 0.858 0.855 0.851 0.842 0.838 0.836

Mode ID-min

Metric Accuracy
Attack ratio 5% 10% 15% 20% 25% 30% 35% 40%

Airport 0.454 0.446 0.447 0.544 0.579 0.582 0.627 0.620
Email 0.647 0.526 0.519 0.528 0.531 0.539 0.509 0.509
Ant 0.637 0.615 0.495 0.469 0.493 0.480 0.486 0.490
Jazz 0.544 0.605 0.562 0.525 0.500 0.506 0.496 0.505
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Fig. 5. Comparison of controllability before and after the accuracy of link prediction improved.
(a) and (b) are comparison of controllability of Airport before and after improving in random
attack mode and id-min mode respectively; (c) and (d) are comparison of controllability of Email
before and after improving in random attack mode and id-min mode respectively; (e) and (f) are
comparison of controllability of Ant before and after improving in random attack mode and id-
min mode respectively.
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5 Conclusion

The controllability of complex network is usually reduced after being attacked, which
affects the control of the whole network. Therefore, the study of controllability of
complex network is very important. For the problem of controllability of network
reduction under attack, this paper proposes link prediction model to solve it and the
effect is remarkable in most cases. The controllability of most networks is improved
under different attack modes. We found that the higher the network restoration degree,
the better the controllability improvement effect. In order to improve the accuracy, this
paper proposes reverse-training method according to dual-learning algorithm. If the
labels of test data are unknown, reverse-training method can adjust the learning
algorithm well. Experiments show that the two models both have a good effect. In the
future, we will continue to study the controllability of complex networks.
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