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Abstract. Intra coding of HEVC screen content coding has to evalu-
ate HEVC intra coding modes and additional modes for screen contents,
which poses a challenge for coding such a content on mobile devices.
Furthermore, the heterogeneous mobile devices have varying complex-
ity requirements. In this paper, a flexible screen content intra coding
scheme is proposed, which can trade between encoding complexity and
rate-distortion performance degradation via reinforcement learning (RL).
Through the design of states, actions, and more importantly, the reward
function for RL, the proposed scheme can learn a flexible coding pol-
icy offline. Experimental results show the effectiveness of the proposed
scheme.
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1 Introduction

New applications, such as virtual desktop, wireless displays, cloud gaming, and
massive online courses, generate an increasing demand in screen sharing between
mobile devices. Compared with traditional camera captured videos, screen con-
tent videos have a substantial amount of computer generated graphics and text.
Several distinguished properties, such as repeated patterns, irregular motions,
limited colors, are presented in screen content videos. These properties moti-
vate the screen content coding extension (SCC) of High Efficiency Video Coding
(HEVC) standard [10,13]. New coding tools such as intra-block copy (IBC) and
palette (PLT) mode are developed in HEVC-SCC, which make screen content
intra coding more complex than that in the computationally intensive HEVC.
Coding of such contents poses a great challenge for mobile devices with varying
limited computation capabilities.
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To address the complexity issue of screen content intra coding, fast intra pre-
diction methods have been proposed in the literature [3,4,7–9,14]. In [8], coding
units (CUs) are classified into natural content ones and screen content ones based
on the statistical information, where early termination of splitting operations are
performed accordingly. In [9], neighboring luminance gradient information and
coding bits are exploited to perform early skipping of depth decision and mode
prediction. Besides exploiting observed statistical information, machine learning
techniques can be utilized to design fast screen content coding schemes. In [3],
texture information of current CU and sub-CUs is utilized by neural network
to guide coding unit (CU) partition, while decision trees are used to determine
whether a CU is a natural image block or a screen content block, needs parti-
tioning or not, and selects directional or non-directional modes in [4]. In [14],
two classifiers are designed to determined whether the current CU is split into
sub-CUs and whether SCC modes or traditional intra modes are performed for
the unsplit CU, where texture information of current CU, coding information
of current and neighboring CUs are used as features. In [7], dynamic and static
information of current CU is utilized by decision trees to check either IBC or
PLT mode for screen content blocks.

In these existing works, the amount of complexity reduction is fixed for a
given screen content video, which cannot accommodate varying requirements of
heterogeneous mobile devices with different computing capabilities, e.g., mobile
phones, wireless head mounted displays (HMDs). In this paper, we propose a
flexible screen content intra coding scheme which can adjust between encoding
complexity reduction and rate-distortion performance degradation via reinforce-
ment learning (RL). RL tries to learn a policy which maximizes the total rewards
depending on inter-correlated decisions. It has been used in video coding for video
encoder control [5], rate control [6] and unit split decision [2]. As far as we know,
none of the existing works on screen content coding uses RL. The flexible screen
content intra coding which selectively searches through different modes accord-
ing to the capability of device is modeled as a RL problem. Motivated by the
work in [5], the trade-off between complexity and rate-distortion performance of
screen content intra coding is represented by a reward function in RL.

The rest of the paper is organized as follows. In Sect. 2, we provide prelimi-
nary information of screen content intra coding. The proposed flexible reinforce-
ment learning based screen content intra coding scheme is presented in Sect. 3.
Section 4 shows the experimental results, while Sect. 5 concludes the paper.

2 Preliminary

Prior to the HEVC, the H.264/MPEG-4 AVC standard [12] supports nine
Intra 4×4, four Intra 16×16 and I PCM prediction modes for traditional 16×16
luma samples. The coding structure of the HEVC is more complicated than
that in H.264/MPEG-4 AVC. In the HEVC [11], variable-size coding tree units
(CTUs) are supported, where the size of luma coding tree blocks (CTBs) may be
equal to 16× 16, 32× 32, and 64× 64. Each CTB can be used as a coding block
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(CB) or further split into multiple CBs recursively using the quadtree syntax
until a minimum allowed luma CB size is reached. The prediction block (PB)
for intrapicture prediction is the same as the CB, except CBs with the smallest
size which can be further split into four PBs. For the transform blocks (TBs),
a luma CB can be further partitioned into multiple square TBs recursively,
where the maximum depth of the residual quadtree is constrained and indicated
in sequence parameter set (SPS). Figure 1 shows an example of CTB partition
using the quadtree syntax. For each CB, 33 different directional modes, a planar
prediction and a DC prediction mode are defined for intrapicture prediction,
where the neighboring TBs are used to form the reconstruction signal.

TBs that are split from a CB

TBs with the same size as CBs

(a) (b)

Fig. 1. An example of coding tree block partition using the quadtree syntax (a) Code
blocks. (b) Transform blocks.

Besides the above-mentioned coding framework of HEVC, the SCC extension
of HEVC introduces new coding tools, including IBC and PLT modes. IBC is
a new coding mode for CUs with repeated patterns, which uses similar recon-
structed blocks in the same picture as a prediction signal. PLT mode is designed
for blocks with limited colors, which lists all the color values and sends an index
of color for each sample instead of coding each sample. For each CU, mode deci-
sion of intra coding is determined by exhaustive search, and it is implemented in
the HEVC-SCC reference software as follow [7]. The IBC predictor is performed
first which uses a few options of block vector (BV) from most recently coded
CUs and neighboring CUs in the IBC mode. Then the intra coding modes of
HEVC are evaluated, followed by examining IBC merge and skip mode. The
IBC merge and skip mode is similar as those for interpicture prediction. Only a
skip flag and the merge index are sent in the skip mode, while the merge mode



762 Y. Xu and Q. Zeng

allows residual coding. If the IBC skip mode is not the best mode so far, the IBC
search is conducted. At last, the PLT mode is evaluated. Among all those modes,
the coding mode with the smallest cost, D + λR, is selected, where R, D, and
λ are the coding bits, the distortion, and a Lagrange multiplier, respectively. To
further complicate the intra coding procedure, the final partition of CTU into
CUs is determined by evaluating all the possible partitions and choosing the one
with the smallest cost. For each partition, intra coding modes for all of its CUs
have to be decided as mentioned above. Machine learning methods can be used
to develop fast intra coding scheme.

3 Reinforcement Learning Based Screen Content Intra
Coding

In this section, a flexible screen content intra coding scheme is proposed using
a RL approach. In the following, the framework of the proposed scheme is pre-
sented, followed by the design of feature selection and reward function for RL.

3.1 Framework

Since we want to take into account the cost of coding mode selection errors when
applying the coding strategy, RL is utilized which considers the classification
error in the reward function. The framework of the proposed RL based intra
coding scheme is presented in Fig. 2. In this framework, a mobile device passes
a trade-off coefficient between rate-distortion performance and complexity, μ,
to the RL module. For a given μ, a coding policy is learned offline via RL by
using the training set of screen content videos. The mobile device can use the
learned coding policy as a static part of the coding to speed its intra coding
mode decision procedure. Depending on the requirements of the mobile devices,
different adjustment factors μ can be used in the RL module to make a flexible
trade-off between coding efficiency and complexity. A mobile device with less
computational resources passes a larger value of μ, while a smaller μ is associated
with abundant computational resources. A learnt coding policy can be used for
all the mobile devices with the same type.

3.2 Coding Policy Learning via RL

The proposed fast scheme tries to learn a coding policy that reduces the number
of evaluated coding modes according to observed information of a CB. This cod-
ing policy is learned through RL module. In the RL module, the learning agent
interacts with the learning environment (coding using screen content videos
training set) repeatedly. The intra coding process can be seen as a series of
coding decision episodes that repeatedly evaluating selected intra coding modes.
At a time point t, the learning agent selects an action from the set of available
actions (evaluating selected coding modes) to act on the learning environment
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Fig. 2. Framework of the proposed reinforcement learning based intra coding scheme.

based on the environmental state information (sample features) st. After the
action is executed, the interpreter feeds back information about the new state
s(t+1) of the environment and reward r(t+1) (value of targeted optimization func-
tion) associated with the performed action. In the following, we will present the
design of features, actions, and reward function in the RL module.

About the actions in the RL, all the coding modes associated with HEVC-
SCC are roughly divided into three categories, which are HEVC coding modes,
IBC mode, and PLT mode. Correspondingly, three actions are allowed for cod-
ing mode evaluations, which correspond to evaluating the HEVC intra mode,
IBC mode, and PLT mode, respectively. Note that the IBC mode includes its
predictor mode, merge and skip mode, and IBC search mode. Although only
three actions are defined in this paper, the proposed work can be extended to
the case with more actions.

About the feature design, we uses statistical information of a CB according
to the allowed actions. For screen content coding, CBs with limited number
of colors and the coding unit with sharp boundaries are usually coded with
the PLT mode. The area of screen contents where the hue is discontinuous is
usually encoded using IBC or palette mode. A uniform region usually uses an
intra coding mode. Therefore, the following features of a CB are used: variance,
the number of colors, the largest number of pixels with the same value, the
maximum run length of pixel values horizontally, and the maximum run length
of pixel values vertically.

The trade-off between rate-distortion performance and coding complexity of
intra coding is achieved by designing a reward function for RL. The goal of
RL is to maximize the expected reward in the future real coding process. The
learning algorithm of this scheme estimates the reward through experiments on
a set of N training samples

∑
i ri, where ri is the reward for CB i. The reward
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of performing one of the three actions for CB i can be defined as follows

ri = −(ci − ci,min)/ci,min + μ(ti,sum − ti)/ti,sum, (1)

where ri, ci, ti are the reward of performing action ai for the CB i, the minimum
coding cost (D + λR) of coding modes associated with ai, and the total time
expense of evaluating coding modes associated with ai, respectively. ti,sum is
the consumed time in evaluating all of traditional intra modes, IBC mode, and
PLT mode for the CB i, while ci,min is the cost of the best mode in terms of
rate-distortion performance for the CB i. The reward of a coding strategy on the
i-th training sample consists of two parts: the rate-distortion cost reduction and
the coding complexity reduction. μ (μ > 0) is the weight of the encoding com-
plexity. The larger the weight is, the more the encoder limits the computational
complexity. By adjusting this weight, trade-off between the coding efficiency and
complexity can be flexibly adjusted to suit the needs of different applications.
For, example, smartphone-based HMD devices should use a larger weight than
computer-based HMD devices.

3.3 Coding Policy Learning Algorithm

With the above design of features, actions, and reward function, we use Q-
learning to learning coding policy. Due to the aim of RL is to speed intra coding
of screen content, a simple ternary classifier is used to represent the relationship
between the value of features and selected action. The input layer consist of 6
nodes, while the output layer consists of 3 nodes. The three outputs correspond
to three allowed actions. The classifier is configured by θ. The coding policy
learning via RL can be summarized in Algorithm 1.

Algorithm 1. coding policy learning via RL
1: Initialize the classifier parameter θ
2: Initialize the learning parameter γ = 0.9
3: for samples i = 0 → N − 1 do
4: Calculate the values of features, si
5: Choose the action with the maximum value ai = argmaxaiQ(si, ai; θ)
6: Execute action ai, observe the reward ri
7: Update θ with the new Q′(si, ai; θ) = Q(si, ai; θ) + γ(ri − Q(si, ai; θ))
8: Decrease γ
9: end for

After the coding policy, i.e., fixed parameter θ for classifier, is learned, it is
sent to the mobile device and implemented as static part for coding on such a
device. During the intra coding procedure on a mobile device, only the coding
modes associated with the following action for each CU are evaluated.

ai = argmaxai
Q(si, ai; θ) (2)
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4 Experimental Results

The experimental results are obtained implementing the proposed method in the
HEVC-SCC reference software HM-16.18 SCM 8.7. The all intra (AI) configura-
tion is used. The coding performance is compared with the anchor that exhaus-
tively searches through all the coding options in SCM 8.7. The video sequences
used for coding policy learning are listed in Table 1, where TGM, M, and CC
represent text and graphics with motion, mixed content, and camera-captured
content, respectively.

Table 1. Training video sequences

Resolution Sequence name Category

1920 × 1080 sc FlyingGraphics 1920 × 1080 60 8bit TGM

1280 × 720 sc Programming 1280 × 720 60 8bit TGM

1280 × 720 sc SlideEditing 1280 × 720 30 8bit 420 TGM

832 × 480 BasketballDrillText 832 × 480 50 M

1280 × 720 KristenAndSara 1280 × 720 60 CC

416 × 240 BlowingBubbles 416 × 240 50 CC

In the RL module, the training data for neural network are obtained in coding
training video sequences using HM-16.18 with SCM 8.7. Specifically, for each CB,
the rate-distortion costs and the consumed time measured in microseconds are
collected for the cases of performing IBC predictor, HEVC intra, IBC merge and
skip, IBC search, and PLT modes. Note that the time complexity of IBC mode is
the sum of those performing IBC predictor, IBC merge and skip, and IBC search,
while the rate-distortion cost of IBC mode is the minimum cost associated with
the above options. A subset using the a cropped window on the first frame of
these sequences are used as training data. 8000 training samples are generated
and randomized. The coefficients are learned using varying training steps with
μ = 0.5.

Table 2. Test video sequences

Resolution Sequence name Category

1920 × 1080 sc desktop 1920 × 1080 60 8bit TGM

1920 × 1080 MissionControlCllip3 1920 × 1080 60p 8b444 M

1280 × 720 sc web browsing 1280 × 720 30 8bit 420 r1 TGM

1280 × 720 sc SlideShow 1280 × 720 20 8bit TGM

1920 × 1080 Kimono1 1 1920 × 1080 24 10bits CC
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After the coding policies are learned, they are implemented in the intra cod-
ing of testing video sequences as listed in Table 2. Performance of the proposed
scheme is compared with the benchmark of HM-16.18 SCM 8.7 for testing video
sequences. Bjøntegaard delta rate (BD-rate) [1] is used to measure the rate-
distortion performance degradation, in terms of the percentage of bitrate sav-
ing (negative values) or increasing (positive values). The coding complexity is
measured by the percentage of encoding time saving. The comparison results
using different video sequences are listed in Table 3. Among the screen con-
tent video sequences, the performance of the proposed scheme is better for the
“WebBrowsing” than the other sequences, because most of training sequence
are 4:2:0 sequences whose color format is the same as the one for “WebBrows-
ing” sequence. In our experiment, we also found that mode selection among
traditional Intra modes, IBC mode, and PLT mode hardly affects the rate-
distortion performance of camera captured sequences. Therefore, the camera
captured “Kimino” sequence achieves almost 31% reduction in encoding time
with only a slight BD-rate increase of 0.1%. The coding time comparison with
varying QP values is shown in Table 4. It can be seen from the table that the
proposed scheme can achieve up to 31.5% savings in coding complexity reduc-
tion for a fixed QP value. Performance of the proposed scheme gets better as
the value of QP gets smaller.

Table 3. Coding performance compared with HM-16.18 SCM 8.7

Sequence BD-rate Encoding time

Desktop 12.1% −17.7%

MissionControlClip3 10.1% −19.0%

WebBrowsing 2.8% −18.8%

SlideShow 14.1% −7.0%

Kimino 0.1% −31.0%

Average 7.8% −18.7%

Table 4. Coding time comparison with HM-16.18 SCM 8.7 using varying QP

QP Encoding time

37 −12.9%

32 −16.1%

27 −21.6%

22 −31.5%

Average −20.5%
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5 Conclusion

In this paper, a flexible screen content intra coding scheme is proposed to address
the varying complexity requirements of heterogeneous mobile devices. In this
scheme, a coding policy can be learned for a targeted type of devices through
RL offline. The trade-off between encoding complexity and rate-distortion per-
formance degradation is controlled by designing a reward function for RL. The
learned coding policy is then utilized as a static part of coding at mobile devices
to speed the intra coding of screen contents. The effectiveness of the proposed
scheme is verified by the experimental results.
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