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Abstract. In this paper, an online adaptive dynamic programming (ADP)
scheme is proposed to achieve the optimal regulation control of navigation
control systems subject to time delays with input constraints. The optimal
control strategy is developed in virtue of Lyapunov theories and neural networks
(NNs) techniques. From a robust control perspective, we investigate the stability
on navigation time delay systems concerning input constraints by means of
linear matrix inequalities (LMIs) and set up the optimal control policy, on which
basis that a novel NN-based approach is proposed. A single NN is used to
estimate the performance function, the constrained control and consequently the
optimal control policy with the weights online tuned. Finally, numerical
examples are demonstrated to illustrate our results.
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Nonlinear control � Navigation control system

1 Introduction

It is not exaggerated to say that the history of navigation control systems is a reflection
of the history of human civilization. Many scientific discoveries and technological
inventions are developed by the need of navigation control, such as meteorology [5],
Kalman filter method [9], satellite technology [12], micro-electromechanical technol-
ogy [27], to name a few, which greatly promote the development of navigation control
technology. Navigation control algorithm is a typical adaptive method, which can be
effectively applied in the intelligent environment. In [20], optimal control of an UAV
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autonomous navigation system was developed by using only on-board visual and
internal sensing information. [8] introduces a navigation planning algorithm for a robot
which is capable of autonomous navigation in a structured, partially known and
dynamic environment. [23] develops a nonlinear optimal control method to solve the
autonomous navigation of a truck and trailer system. Although various technologies
have been widely developed in navigation control case by case, the fundamental issue
on the robustness and control has been seldom studied.

Nowadays, optimal control theory has gained lots of progress with the development
of robust control theories and numerical methods (see [6, 24, 26, 29], and the refer-
ences therein). On one hand, the optimal control of linear systems has been well
investigated and numerous results are readily applicable, such as maximum principle
[1], dynamic programming [13], and convex optimization [4], to name a few. On the
other hand, the optimal control of nonlinear systems mainly relies on the solution of
Hamilton-Jacobi-Bellman (HJB) equation [22], which is difficult to solve analytically.
For few special nonlinear systems, analytical solutions such as state dependent Riccati
equation approach [21], alternative frozen Riccati equation method [15], etc., have
been derived. A majority of current results on nonlinear optimal control, nevertheless,
are carried out resorting to approximation linearization theory. In [14], an iterative ADP
algorithm was adopted to deal with the optimal control of nonlinear system with time-
delay, rendering a series of remarkable developments on optimal control of nonlinear
systems.

In addition, the predominating studies of optimal control are investigated without
considering actuator limitation. As for the navigation control systems, however,
neglecting such constraint may cause undesirable transient response and even system
instability [7, 30]. In the recent work [28] and [25], the optimal control method is
proposed for linear system with saturation actuator, while in [26] and [19], an iterative
heuristic dynamic programming (HDP) algorithm was introduced to solve the optimal
control for a class of nonlinear discrete system with control constraints. The optimal
control results refer to nonlinear navigation control time-delay systems with control
constraints still remain relatively minor. As a consequence, it is of fundamental sig-
nificance to study the optimal control of navigation control systems with control
constraints.

In this paper, we consider the nonlinear optimal control of navigation control time
delay systems with input constraints based on ADP algorithm. The navigation
parameters, namely position, velocity, and attitude, is framed into a nonlinear state-
space model on the basis of [2]. Large mathematical tools in robust control and optimal
control theories are thus readily available. To achieve the optimal control goal, the
appropriate performance index function under given constraints is constructed. A non-
quadratic index function is adopted to measure the constrained control input, and
consequently an approximate NN is introduced to estimate the performance function
and calculate the optimal control at the same time. Other than using two NNs as most
work does, we propose a novel NN-based optimal control strategy by using only one
NN. The tuning weights estimation errors of NN is proved to convergent to zero, thus
indicating the approximated NN-based optimal control policy for the navigation control
system with time delays actually converges to the real optimal control policy. It is
worth noting that the stability of the closed-loop navigation control system subject to
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time delays is guaranteed according to the Lyapunov stability theory. Numerical
examples show the effectiveness of the proposed method.

This paper is organized as followed. In Sect. 2, we formulate the optimal control
problem of nonlinear time-delay systems with control constraints. In Sect. 3, we pre-
sent the optimal control solution is obtained by NN. Section 4 presents two illustrative
examples and Sect. 5 concludes the paper.

2 Problem Formulation

In this paper, R, Rn, Rn
þ ;R

l�p refer to the space of real numbers, n-dimensional real
vectors, n-dimensional of positive real vectors, and l� p-dimensional real vectors,
respectively. For any real matrix and real function, ð�ÞT denotes its transpose. If A is a
Hermitian matrix, let k Að Þ denote its largest eigenvalue. The expression A� 0 means
A is non-negative definite, and A > 0 means it is positive definite. Let jjx(t)jj denote
the Euclidean norm of x(t), which is defined as

x tð Þj jj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xt tð Þx tð Þ

p

Navigation control systems usually consist of several subsystems, the framework is
as shown in Fig. 1. Based on [2] and [23], the state space expression of the navigation
control system is derived upon kinetics equations, and can be further represented by the
following nonlinear model

_x tð Þ ¼ Ax t � sð Þþ f t; x tð Þ; x t � rð Þu tð Þð Þ ð1Þ

where f t; x tð Þ; x t� rð Þð Þ 2 R
n�n is the nonlinear process model and satisfies Lipschitz

continuous with f t; 0; 0ð Þ ¼ 0. x tð Þ;2 R
n is the system state vector and u tð Þ is the input

vector, consisting of navigation parameters. s and r are constant but unknown time
delays. Assume that A is a positive definite constant real matrix with appropriate
dimension. To achieve high accuracy of attitude error, we use the second-order divided
difference filter (DDF2) proposed in [2]. The objective in this paper is to find the
constrained optimal control signal u� tð Þ that drives the system states to zero as well as
to minimize the following performance index function of the system state.

Fig. 1. A subsystem of navigation control systems.
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J x tð Þ; u tð Þð Þ ¼
Z 1

t
Lðx sð Þ; u sð Þds ð2Þ

where

L x sð Þ; u sð Þð Þ ¼ xT sð ÞQx sð ÞþU utð Þ ð3Þ

and Q is symmetric and positive definite and U utð Þ is a quadratic and positive definite
function without control constraints. Concerning the control constraint, we adopt the
following function [21]

U utð Þ ¼ 2
Z u

0
b�T U

�1
v

� �
URdv ð4Þ

where v; R 2 R
n is positive definite, and

b�1 utð Þ ¼ u�1 u1tð Þ;u�1 u2tð Þ; � � �u�1 umtð Þ� ��T

u�1 �ð Þ refers to the inverse of u �ð Þ, b�1 �ð Þ ¼ ðb�1ÞT . u �ð Þ is a bounded monotonic
odd function with

u �ð Þj j\1

and
u0 �ð Þj j\l, l is a positive constant

In this paper, we choose u �ð Þ ¼ tanh �ð Þ, and R ¼ diag c1; c2; � � � cmð Þ, with
ci [ 0; i ¼ 1; 2; � � �m to simplify the subsequent analysis.

The Hamilton function is given as

H x; u; tð Þ ¼ L x tð Þ; u tð Þð ÞþrJT xð Þ Axþ fuð Þ ð5Þ

with rJ xð Þ ¼ @J
@x referring to the partial derivative of the performance index function.

Obviously, based on the Bellman’s principle of optimal control theory [10], the optimal
performance index function J� x tð Þ; u tð Þð Þ satisfies the following HJB equation

J� x tð Þ; u tð Þð Þ ¼ min
Z 1

t
xTQxþ 2

Z u

0
b�T U

�1
v

� �
URdv

� �
ð6Þ

It can be solved d by taking partial differential of J�ðxðtÞ; uðtÞÞ with respect to uðtÞ.

@J� x tð Þ; u tð Þð Þ
@u tð Þ ¼ 2tanh�1 Uu

	 

URþ f T

@J
@x

¼ 0 ð7Þ

Hence, the optimal input is obtained as
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u� tð Þ ¼ �Utanh
1
2

UR
	 
�1

f T
@J�

@x

� �
ð8Þ

Consequently, the system (1) becomes the following when the optimal control is
achieved.

_x tð Þ ¼ Ax t � sð Þ � f ðt; x tð Þ; x t � rð ÞUtanh
1
2

UR
	 
�1

f T
@J�

@x

� �
ð9Þ

By employing the so-called model transformation [18], the original system (1) can
be rewritten as

d
dt

x tð ÞþA
Z t

t�s
x uð Þdu

� �
¼ Ax tð Þþ f t; x tð Þ; x x� rð Þð Þu tð Þ ð10Þ

Moreover, system (10) can be further equivalent to

d
dt

x tð ÞþA
Zt
t�s

x uð Þdu
 !

¼ Ax tð ÞþF t; x tð Þ; x x� rð Þð Þ ð11Þ

where F �ð Þ denotes a nonlinear function of x tð Þ with

F x; x tð Þ; x t � rð Þð Þ ¼ �f ðt; x tð Þ; x t � rð ÞUtanhð1
2

UR
	 
�1

f T
@J�

@x

In what follows, we shall examine the stability of (9) when the optimal control law
is achieved. To this end, the following assumption is required.

Assumption 1. The nonlinear function F t; x; yð Þ satisfies

F t; x; yð Þ � F t; x1; y1ð Þj jj j � a x� x1j jj j2 þ b y� y1j jj j2; ð12Þ

where t; x; y; x1; y1 2 R
n and a; b are some positive scalar.

In virtue of the famous contraction mapping theorem [3], we can conclude that the
original nonlinear navigation control system (1) has unique equilibrium if the following
in equation satisfies ffiffiffiffiffiffiffiffiffiffiffi

aþ b
p

A�1
  � 1: ð13Þ

3 Main Results

3.1 Stability Analysis on Nonlinear Time Delay Systems

In this section, drawing upon Lyapunov stability theory, we present sufficient stability
condition for navigation control time delay systems in terms of LMIs. The following
theorem is derived.
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Theorem 1. The navigation control system (1) subject to input constraint (8) is
asymptotically stable if for some positive real scalar a; b; g1 and g2, there exists a real
matrix P ¼ PT [ 0 such that the following LMIs hold

U\0; ð14Þ

where
U ¼ Q1 þ sQ2 þQ3

Q1 ¼ PAþATPþ g�1
1 P2 þ a g1 þ sg2ð ÞIþ sATPA

Q2 ¼ ATPAþ g�1
2 ATP2A;Q3 ¼ b g1 þ sg2ð ÞI

and I is the identity matrix with appropriate dimension.

Proof: Construct the Lyapunov-Krasovskii functional V tð Þ as
V tð Þ ¼ w1 tð Þþw2 tð Þ,

where

w1 tð Þ ¼ x tð ÞþA
Z t

t�s
x uð Þdu

� �T

P x tð ÞþA
Z t

t�s
x uð Þdu

� �
;

and

w2 tð Þ ¼
Z t

t�s

Z t

s
xT uð ÞQ2x uð Þdudsþ

Z t

t�r
xT uð ÞQ3x uð Þdu

In light of model transformation and Eq. (11), we are led to

_w1 tð Þ ¼ 2 x tð ÞþA
Z t

t�s
x uð Þdu

� �T

PðAx tð ÞþF t; x tð Þ; x t � rð Þð Þ

which is further bounded by

_w1 tð Þ� xT tð ÞQ1x tð Þþ
Z t

t�s
xT uð ÞQ2x uð Þduþ xT t � rð ÞQ3x t � rð Þ;

In the similar manner of [16], the time derivati ve of V2 tð Þ is computed as

_w2 tð Þ ¼ xT tð ÞðsQ2 þQ3Þx tð Þ �
Z t

t�s
xT uð ÞQ2x uð Þdu� xT t � rð ÞQ3x t � rð Þ;

Consequently, it yields to

_V tð Þ� xT tð ÞUx tð Þ
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According to Lyapunov stability theories, _V tð Þ is negative definite if U is negative
definite. As such, the nonlinear time-delay system with input constraint is stable if
condition (14) satisfies. This completes the proof. �

3.2 NN-Based Online ADP Algorithm

In the following section, we shall develop the NN-based optimal control scheme with
the aid of online ADP technique. As mentioned previously, most of past literatures use
two NNs to approximate the performance function and optimal control input respec-
tively so as to achieve the so-called optimal control goal. In this paper, however, we
propose a novel NN-based optimal control strategy for navigation control systems by
utilizing merely single NN other than two NNs, thus largely simplifies the whole
structure and decreases the running time. In addition, the performance index function
and optimal input are tuned at the same time.

Let Wc 2 R
l�p refer to the ideal weight matrix of NN, /c xð Þ refer to the activation

function and ec xð Þ the approximation error. It is necessary to make the following
assumption.

Assumption 2. (a) The approximation error of NN has positive upper bound as
ecj jj j � ecM ;
(b) The residual error eH has a positive upper bounded as eHj jj j � eHM ;
(c) The activation function of the NN has a positive lower and upper bound as

/m � /cj jj j �/M .
Upon above assumption, the performance index function J xð Þ is nearly approxi-

mated by

J xð Þ ¼ WT
x /c xð Þþ ec xð Þ ð15Þ

Be reminiscent of (5) and (15), we obtain the following equation

H x tð Þ; u tð Þ;Wcð Þ ¼ WT
c r/c xð Þ _xþ xTQxþ 2

Z u

0
tanhð1

2
Uv
	 
�1

URdvþrec xð Þ _x ð16Þ

where r/c xð Þ is the partial derivative of /c xð Þ with respect to x. That is,
r/c xð Þ ¼ @/c=@x. rec xð Þ is the partial derivative of ec xð Þ. Thus, the Hamilton
function is alternatively expressed by

WT
c r/c xð Þ _xþ xTQxþ 2

Z u

0
tanhð1

2
Uv
	 
�1

URdv ¼ �rec xð Þ _x ¼ eH ð17Þ

where eH is the residual error caused by NN approximation. Let bWc 2 R
l�p refer to the

real weight matrix of NN. Then the estimation of performance index function is

Ĵ xð Þ ¼ bWT
c /c xð Þ ð18Þ
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As a result, the gradient of Ĵ xð Þ is computed by

rĴ xð Þ ¼ r/c xð Þð ÞT bWc ð19Þ
Meanwhile, the corresponding Hamilton function can be expressed as

H x tð Þ; u tð Þ; bWc

� �
¼ WT

c r/c xð Þ _xþ xTQxþ 2
Z u

0
tanhð1

2
Uv
	 
�1

URdv ¼ ec

Let ~Wc refer to weight estimation error

~Wc ¼ Wc � bWc

We define the objective function Ec tð Þ by

Ec tð Þ ¼ 1
2
e2c ð20Þ

We seek to find the optimal weight update law such that Ec tð Þ is minimized. The
gradient of objective function with respect to the NN weight estimate is given by

@E

@ bWc

¼ ec
@ec
@ bWc

¼ ec _xð ÞT r/cð ÞT ð21Þ

On the basis of back propagation (BP) neural network algorithm [32], the weight
update law of NN is derived as

_̂Wc ¼ �n
@ec
@ bWc

¼ ec _xð ÞT r/cð ÞT ð22Þ

With the learning rate n[ 0. As such, the ideal optimal control can be approxi-
mated achieved as

û� tð Þ ¼ �Utanh
1
2

UR
	 
�1

f T r/cð ÞTWc

� �
ð23Þ

Theorem 2. Consider nonlinear nagivation control system (1) with input constraint
(8). Assume the weight update law of NN is given by (22) and the control signal (23) is
applied to the nominal system (1). Then the system state x tð Þ and the NN estimation
errors bWc are uniformly ultimately bounded (UUB) respectively.

The proof herein shares the similarity as the proof in Theorem 1, thus is omitted
[11, 17, 31].

4 Examples

In this section, we illustrate our results by two numerical examples.
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Example 1. Consider the following second-order navigation control system

_x tð Þ ¼ �2 1
1 �1

� �
x t � sð Þþ sinx2 t � rð Þ

sinx1 t � rð Þ
� �

u tð Þ ð24Þ

with initial state x 0ð Þ ¼ 2 1½ �T .
We first examine the stability condition. As suggested in Theorem 1, the nominal

system (24) is asymptotically stable if s� 0:5 with r being arbitrarily large. From
Fig. 2 (a)–(b) we can see the state response of the system (24) converges to zero when
there is no delay and s ¼ r ¼ 0:5, where the state response of the delay free system
converges to 0 after 7 s, slightly shorter than that of the latter system. In contrast, from
Fig. 3 we can see the nominal plant becomes unstable when s ¼ 0:7.

(a) (b)

Fig. 2. State response of system (24).

Fig. 3. State response of system (24) with s ¼ r ¼ 0:7.
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Example 2. Specifically, we examine the NN-based optimal control law for the
case s ¼ r ¼ 0:5: We consider the system (24) with input constraints

u tð Þj j �U ¼ 0:1 ð25Þ

The optimal control objective is to drive the system state x tð Þ to zero quickly as
well as to minimize the performance function. By selecting Q ¼ R ¼ 1, the activation
function of NN is equal to

/c xð Þ ¼ x21 x1x2 x22
� �T

Assume the initial weights are

Wc ¼ 0:1 0:1 0:1½ �T

Let the learning rate of NN be n ¼ 0:5. The convergent trajectories of NN weights
are shown in Fig. 4.

Besides, the optimally controlled signals for system (24) without control constraint,
with input constraint (25), and with input constraint

u tð Þj j �U ¼ 0:2 ð26Þ

are respectively drawn in Fig. 5, from which we can see that for the circumstance
without constraint, control signal u varies within a relatively large range, while the
proposed scheme regulates the input signal effectively for both cases of input constraint
(25) and (26).

Fig. 4. Trajectories of NN weights for system (24) with input constraint (25)
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5 Conclusion

In this paper we propose a novel NN-based optimal control policy for navigation
control systems subject to time delay. Optimal control strategy is proposed under the
consideration of control constraints by applying a non-quadratic performance function.
We investigate the stability on nonlinear time delay systems in terms of LMIs in the
first. Afterwards, a novel NN-based optimal control policy is introduced to approximate
the optimal cost function and obtain the optimal constrained control signal using only
one NN. Finally, Numerical simulation shows the effectiveness of our results.
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