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Abstract. Map-matching is a fundamental pre-processing step for many
applications which aligns a trajectory represented by a sequence of sam-
pling points with the city road network on a digital map. With the help
of GPS-embedded devices, a lot of GPS trajectories can be collected.
However, the raw positions captured by GPS devices usually can not
reflect the real positions because of physical constraints such as GPS
signals blocked by buildings. And low-sampling-rate data is another chal-
lenge for map-matching. Although many approaches have been proposed
to solve these problems, unfortunately, most of them only consider the
position of the object or the topology structures of the road network. So
it becomes significant to accurately match GPS trajectories to road net-
work. We propose a method called BMI-matching (map-matching with
bearing meta-information) which not only considers the two factors above
but also focuses on the moving object bearing. Based on bearing, we can
calculate the direction similarity between moving object and road seg-
ments to determine selecting which road segment is appropriate. We
conduct experiments on real dataset and compare our method with two
state-of-the-art algorithms. The results show that our approach gets bet-
ter performance on matching accuracy.
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1 Introduction

In recent years, with the advance of diverse location-acquisition technologies,
mining object trajectories have attracted lots of researcher’s attention. Map-
matching deals with the problem of matching a series of GPS points to the city
roads on a digital map. It is fairly useful for many applications, such as under-
standing urban mobility [8], discovering critical nodes in road network [19], pop-
ular routes finding [17], exploring the Urban Region-of-Interest [16] and travel
plan recommendation [9]. Nevertheless, the raw position data collected by GPS
devices may not report the real position of moving objects. Noisy data and low
sampling rate data [14] are usually the big challenges for map-matching problem.
The positions measured by GPS devices are not accurate. Especially when vehi-
cle enters a tunnel or an urban canyon, the GPS is experiencing particularly high
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noise. GPS error can be described as a two dimensional Gaussian distribution.
In Fig. 1, if we regard the sampling position as the origin, the distribution of real
position is an ellipse or a circle, which depends on the variance and expectation
of each dimensionality and correlation coefficient of two dimensionalities. The
height represents the possibility of the real position. High noise means the real
position is far away from the sampling point and makes map-matching more
difficult. Low sampling rate may lead to the uncertainty of an object’s moving
track. Let us consider two sampling points p1, p2. If the sampling time interval
is t and the object moving speed is v, the moving distance between these two
points is l = v ∗ t. In Fig. 2, p1, p2 are two foci of the ellipse, and l1 = l2 = l are
two paths where object may travel. Generally, if the sampling rate is low (large
t), the number of possible paths will be large, which means huge uncertainty of
track between these two points.

And we perform an analysis on the taxi trajectory dataset collected in Shang-
hai, China. The taxis often report their positions to the dispatching center with
low sampling rates for saving energy and communication cost. The sampling
rates usually vary from a few seconds to minutes. Owing to kinds of factors
(sensor failure, transmission error, etc.), the location reported by devices may
be noisy. As shown in Fig. 3, the sampling time interval in our data exceeds
2 min. In Fig. 4, the green lines represent road network, and the trajectory is
represented by yellow points. Obviously, the trajectory misses many sampling
points. It will be challenging to match these data on road network.

A number of approaches have been proposed for map-matching problem.
Some conventional map-matching methods employ local or incremental algo-
rithms [4] to map current or neighboring positions. But it may fail for low sam-
pling rate data. A few methods match the trajectory exploiting global relation-
ship to deal with the low sampling rate data [7,17]. But they can not perform well
on complex environments such as thick road network. Although other methods
for low-sampling-rate data [10,11] and noisy data [11] perform well, they need
particular conditions such as complete information of road network which may
not be available in practice.

Overall, in this paper, we make three contributions summarized as follows.

• We propose a method called BMI-matching which considers the bearing of
the moving object besides the location of object and the topology structures
of the road network. Based on moving object bearing, we can compare the
direction similarity between moving object and road segments.

• In the complex road network, it is hard to query the candidate segments
in a short time. We exploit spatial access method R-tree to accelerate the
search process. Calculating shortest path is computationally high. We com-
pute shortest paths covering hotspots in advance and save as an index table.

• We conduct experiments on real dataset and compare our algorithm with
two state-of-the-art algorithms of ST-Matching [10] and HMM-Matching [11]
in matching accuracy. The results show that the our algorithm gets better
performance on accuracy.
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Fig. 1. Illustration of noisy data Fig. 2. Illustration of low sampling
rate data

Fig. 3. The form of taxi data Fig. 4. A trajectory visualized on dig-
ital map (Color figure online)

2 Related Work

Researchers pay more attention on mining moving objects trajectories to under-
stand resident mobility, discover the functionality of different regions in a city
[16] and construct the smart city. The fundamental step of all these applications
is map-matching. A number of map-matching algorithms have been developed
using different techniques. There are two approaches to classify map-matching
methods, based on additional information used, or the range of sampling points
considered in a trajectory.

According to the range of sampling points, map-matching algorithms can be
classified into two groups: local/incremental and global methods. Some conven-
tional map-matching methods employ local or incremental algorithms [4] to map
current or neighboring positions. These approaches are fast in computation and
work well when sampling frequency is very high. However, their performance
is susceptible to the decrease of sampling frequency. Global algorithms aim to
match an entire trajectory with a road network. Usually global methods are more
accurate than local methods, but it may take long time and is often applied to
offline tasks.

From the perspective of additional information used, map-matching algo-
rithms can be classified into four categories: geometric, topological, probabilistic
and advanced techniques. For geometric algorithms, they exploit the geomet-
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ric information of the road network by only considering the shape of the links
[2,4], such as matching a GPS point to the nearest road segment. A topologi-
cal method for map-matching pays attention to the connectivity of the roads.
The method proposed in [20] aims to find a minimum weight path based on
edit distance. Method proposed in [1] utilizes the Fréchet distance to measure
the fit between a GPS sequence and candidate road segment sequence. Prob-
abilistic methods consider various error sources associated with the navigation
sensor and the road network data quality [13]. Other advanced algorithms use
Kalman filter [12], fuzzy logic [15], or the application of Hidden Markov Model
[11]. Some variants of HMM based algorithm have been proposed in [10,21]. The
ST-Matching algorithm proposed in [10] combines spatial analysis and temporal
analysis which is based on the speed constraint of the road. However, the speed
constraint of the road is the maximum speed, and moving objects have different
travel speeds at different time of the day. Our algorithm is inspired by the HMM
algorithm and considers the bearing of the moving objects.

3 Preliminary Knowledge

In this section, we will give some basic definitions.

Definition 1. A sampling point(p) is a tuple denoted as <lon, lat, speed,
bearing, timestamp>, which stands for the longitude, latitude, speed, moving
direction of object and generation time of p.

For representing the bearing, a basis and a positive direction are needed. We
define the north as the basis and the clockwise as the positive direction. The
bearing is the angle between the basis and the moving direction. As shown in
Fig. 5, Y-axis denotes the basis and the moving direction of sampling point pt is
d , so the bearing can be represented as the angle θ (θ ∈ [0, 2π]).

Fig. 5. The bearing of sampling point p at time t
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Fig. 6. Candidate segments and segment projection points (Color figure online)

Definition 2. A GPS trajectory(tr) is a series of sampling points with the
time interval between any consecutive sampling points not exceeding a certain
threshold ΔT . tr = {p1, p2, ..., pn},where p1 is the start point and pn is the end
point.

Definition 3. A segment(sg) is a directed edge with two terminal
points(sg.sp, sg.ep) on road network, where sg.sp is the start point and sg.ep is
the end point. Each segment also has two attributes of ID( sg.ID ) and length(
sg.l ) .

Definition 4. A road network is a directed graph G(V,E), where V is a set
of nodes representing the intersections and terminal points of the road segments,
and E is a set of directed edges representing road segments.

Definition 5. A route(r) is a set of segments. r = {sg1, sg2, ..., sgn}, where
r.sp = sg1.sp and r.ep = sgn.ep

Definition 6. A segment projection point(ci,j) of a sampling point(pi) on
the segment(sgi,j) is a point such that ci,j = arg min∀km∈sgi,j dist(pi, km), where
km is any point on sgi,j and dist(pi, km) is the distance between the sampling
point and the point in segment.

As shown in Fig. 6, red point and green points represent sampling point and seg-
ment projection points respectively, and segments sgi,1, sgi,2, sgi,3 are candidate
segments within radius R.

4 Framework

With the preliminary knowledge above, our improved algorithm is presented in
this section. The application logic of our method is demonstrated in Fig. 7.



BMI-Matching: Map-Matching with Bearing Meta-information 717

GPS 
trajectory 

Road Network

Build R-tree and 
serialize it to disk

Candidate Segments Selection Transition Probability

Improved Measurement 
Probability

Matching Result

Candidate Segments Computation HMM for map-matching Results

OSM digital map
Error 

Probability 
Direction 

Probability 

Route

Fig. 7. System overview

HMM for map-matching: a hidden Markov model can be considered a
generalization of a mixture model where the hidden variables, which control the
mixture component to be selected for each observation, are related through a
Markov process rather than independent of each other. As shown in Fig. 8, the
observations are time sequence data and each observation may involve many pos-
sible states. there is a transition probability(tra pro) between states and a mea-
surement probability(mea pro) between observation and state. Hidden Markov
models are especially known for their application in temporal pattern recognition
such as speech recognition, machine translation, gene prediction and so on.

As illustrated in Fig. 9, there is a trajectory marked with a sequence of sam-
pling points p1, p2, ..., pn called observations and each point has a list of candi-
date road segments sg1, sg2, ..., sgm called states. The goal of HMM algorithm
in map-matching problem is to find an optimal path in many feasible paths by
picking one road segment for each sampling point.

Fig. 8. HMM model Fig. 9. HMM for map-matching

Candidate Segments Selection: first, this component accepts a GPS tra-
jectory as an input. Then, it retrieves all candidate segments within radius R
and adjusts the number of candidate segments according to N for each sampling
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point. Next, segment projection point is computed on each segment. It finally
outputs the list of candidate segments and segment projection points.

Improved measurement probability: it considers the bearing of the mov-
ing object and the distance between the sampling point and the coordinate seg-
ment projection point.

Transition probability: we assume that the driver would follow the short-
est path to obtain maximum interest. Some transitions will be more likely and
vice versa. For instance, different segments with the same way ID or much closed
to each other have high transition probability.

Matching result: this component evaluates all possible routes using prob-
ability information and gives the optimal route for the GPS trajectory.

5 Algorithm Details

In this section, we show our BMI-matching algorithm in details.
Candidate Segments Selection: given a GPS trajectory tr =

{p1, p2, ..., pn}, we retrieve all candidate segments of each sampling point pi
within radius R. Then we compute the segment projection point on each seg-
ment. Sometimes the city road network may be large and complicated, so it is
hard to retrieve all candidate segments of each sampling point in a short time.
To speed up the algorithm,we can use spatial access methods R-tree [5]. Because
there are enough candidate segments within radius R, we set another parameter,
number of candidate segments N , to reduce the execution time.

As shown in Fig. 6, the sampling point pi has three candidate segments
sgi,1, sgi,2 and sgi,3. Projection point is computed simultaneously. The geome-
try projection point of pi onto segment sgi,2 is beyond endpoints, and we choose
the nearest point ci,2 as the projection point. Algorithm 1 shows the detailed
procedure.

Improved measurement probability: in improved measurement proba-
bility, we make full use of geometric information of the road network and the
bearing of the moving object. For map-matching, given a location of the sam-
pling point pt, there is an error (GPS error) probability N(pt|sgi) and a direction
probability D(pt|sgi) for each candidate segment sgi. We can model GPS error
as normal distribution N(μ, δ2) based on previous work [3]. Formally, we define
error probability N(pt|sgi) of the sampling point pt for the candidate segment
sgi as

N(pt|sgi) =
1

δ
√

2π
e
−

(xi
t − μ)2

2δ2 (1)

where xi
t is the distance between pt and segment projection point ct,i on segment

sgt,i. We can easily determine the road segment when comparing the direction
of moving object to the direction of road segment. We define the direction prob-
ability D(pt|sgi) of the sampling point pt for the segment sgi as

D(pt|sgi) = log(1 + exp(−a))
a = min( |diff(Θpt

, Θsgi)|, 2π − |diff(Θpt
, Θsgi)| )
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where Θpt
and Θsgi are the bearing of moving object at time t and road segment

sgi respectively, and diff(Θpt
, Θsgi) is the difference of bearing between them.

With the error probability N(pt|sgi) and direction probability D(pt|sgi), we
define the improved measurement probability of the sampling point pt for the
segment sgi as

I(pt|sgi) = N ∗ D (2)

Algorithm 1. Candidate segments Selection
Pre-processing: build the R-tree of the city road network and serialize it to

disk.

Input: road network G < V,E >, GPS trajectory tr, radius R, number of
candidate segments N

Output: list of candidate segments SG and segment projection points C

1: for each point pi in tr do
2: retrieve the all candidate segments as a list SGi in G within R
3: if len(SGi) > N then
4: select N segments sgi,n from SGi.
5: compute projection point in each segments as a list ci,n.
6: SG.append(sgi,n)
7: C.append(ci,n)
8: if 0 < len(SGi) < N then
9: compute projection point in each segments as a list Ci.

10: SG.append(SGi)
11: C.append(Ci)
12: return SG,C

Initial state probability: for map-matching, initial state probablity π gives
the probability of the vehicle’s first road segment over all segments. With the
definition of improved measurement probability, we describe the initial state
probability as the first improved measurement probability:

πi = I(z1|sgi) = N(z1|sgi) ∗ D(z1|sgi) (3)

In practice, it is less possible to match the sampling point into the road segment
which is far from it. So, we set to zero any error probability from a road segment
that is more than radius R away from the sampling point.

Transition probability: given two sampling point pt and pt+1, transition
probability is the probability of a vehicle driving between two candidate road
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segments at these two times. We assume that the driver would follow the short-
est path to obtain maximum interest. The route distance will be computed by
method of shortest path. Thus, the transitions whose great circle distance is
about the route distance between two sampling points may be more possible. As
shown in Fig. 10, there are four segments sg1, sg2, sg3 and sg4 and two sampling
points pt and pt+1. ct,1, ct,2 and ct+1,1 are projection points of the sampling point
pt and pt+1 respectively. Red dashed line represents the great circle distance
between pt and pt+1 denoted as greatCD. Green line and orange line represent
the route distance denoted as route1 and route2 respectively. greatCD is much
closer to route2 rather than route1. In other words, the true path is route2. We
define the transition probability as

p(sgt+1|sgt) = e−dt

dt = |greatCircleDis(pt, pt+1) − routeDis(ct,i, ct+1,j)|
where sgt and sgt+1 are the candidate segments of the sampling point pt and pt+1

at these two times respectively. The route distance can be calculated by shortest
path methods such as Dijkstra, A* and so on, but all of them are computationally
high. In practice, we compute some shortest paths covering hotspots in advance
and save it to file as an index table. We can check the shortest paths file when
needed.

Fig. 10. Transition probability (Color figure online)

Matching result: with improved measurement probability, initial state
probability and transition probability, we can compute the optimal path using
the Viterbi algorithm. The Viterbi algorithm is a dynamic programming algo-
rithm to maximize the product of the improved measurement probability and
the transition probability for finding the most likely sequence of hidden states.
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6 Experiment

In this section, we present the experimental evaluation and verify that our algo-
rithm can achieve high accuracy. First we show the experimental setting, includ-
ing the dataset and some parameters. Next we introduce two evaluation criteria.
Then we compare our algorithm with two algorithms of the HMM-Matching
proposed by Newson et al. [11] and ST-Matching proposed by Lou et al. [10].

6.1 Experimental Setting

Dataset
Road Network: we use Shanghai road network which can be obtained by Open-
StreetMap (OSM). OSM is a collaborative project to create a free editable map
of the world [6,18]. As depicted in Fig. 11, the road network(highway) of Shang-
Hai includes 694,572 vertices and 887,153 road segments.

Fig. 11. A part of road network in Shanghai

Taxi Trajectory Data: we collect 13,636 taxis’ trajectories for one month in
Shanghai. We also select eight trajectories which cover not only downtown area
but also suburban area as groundtruth.

Parameters
In our algorithm, there are some parameters that need to be set, including the
search radius R in candidate segments selection, expectation μ and standard
deviation δ in error probability. And we will turn these parameters according to
the evaluation criteria defined next. We also compare our algorithm with HMM-
Matching and ST-Matching as two baselines. For these two baseline algorithms,
we use the empirical settings μb = 0, δb = 25, βb = 0.16 as suggested in [10,11].
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Fig. 12. The effect of δ in error probability

Evaluation Criteria
Our algorithm is evaluated both in terms of running time and matching accuracy.
The actual program execution time is the measurement for running time. The
matching accuracy is measured by two criteria Ar, Al, computed by following
equations:

Ar =
number of correctly matched road segments

number of all road segments of a test trajectory

Al =
Σ length of correctly matched road segments

length of a test trajectory

6.2 Experimental Results

Error Probability Parameters μ, δ
GPS error follows the zero-mean Gaussian, so we set μ = 0. We fix the other
parameters by assigning the search radius R as 200 meters and number of can-
didate segments N as 50 and tuning δ.

As shown in Fig. 12, Ar and Al increase with δ increasing when δ is smaller
than 25 m. Ar and Al decrease with δ increasing when δ is large than 25 m. A
small value of δ means we have more confidence in GPS device and the candidate
segments nearby the sampling points will be selected as the matched segments in
a high probability. However, when δ is large the effect of error probability will be
diminished. The results of the experiment demonstrate that zero-mean normal
distribution with the standard deviation of 25 m is suitable for our algorithm.

Running Time Evaluation
To test the actual program execution time of our algorithm, we select 6 trajec-
tories with different lengths (number of sampling points) which cover different
regions.
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As depicted in Fig. 13, the execution time will increase with the number of
sampling points increasing generally, but there are not much differences between
the fifth and sixth trajectory in terms of running time. We find the road network
around the sixth trajectory is not complicated when visualizing it on the digital
map, which means the number of candidate segments for some sampling points
are small. So the running time depends on not only the length of the trajectory
but also the number of candidate segments.

Fig. 13. The execution time with different number of sampling points

Number of Candidate Segments N and Search Radius R
We set search radius R = 50, because the δ in error probability is 25 m. Search
radius R and number of candidate segments N determine the candidate segments
and projection points. When N is small the accuracy will decrease, and a large
N may lead to high program running time. So an appropriate value of N is
required.

As shown in Fig. 14, Ar and Al increase with N increasing when N is smaller
than 5. Ar and Al become steady when N exceeds 5. And we set N = 5 to get
better performance on accuracy without much time cost.

Matching Result Comparison
We select eight groundtruth trajectories and compare our algorithm with HMM-
Matching and ST-Matching based on two criteria Ar and Al. In Figs. 15 and 16,
we can find our algorithm gets higher accuracy compared to HMM-Matching
and ST-Matching both on Ar and Al.
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Fig. 14. The effect of number of candidate segments N

Fig. 15. The comparison on Ar

Fig. 16. The comparison on Al

Our algorithm works well in some cases compared with the HMM-Matching
algorithm and we don’t need to tune parameters in transition probability. As
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Fig. 17. Case1 (Color figure online)

Fig. 18. Case2 (Color figure online)

depicted in Fig. 17, there are four road segments sg1, sg2, sg3, sg4. Blue arrows
represent the direction of moving object. The true path is sg1 −→ sg2 −→
sg3 −→ sg4. The bearing of green points and raod segment sg2 are similar, so we
believe matching green points into sg2 is appropriate. But the HMM-Matching
algorithm will match them into sg3 instead of sg2, which is not correct. In other
words, the HMM-Matching algorithm will make errors in a short turn sometimes.
In Fig. 18, the distance between last two red points and sg3 or sg4 is same, hence
matching the green point into segment correctly becomes crucial. Because the
green point is near to sg3, HMM-Matching algorithm matchs it into sg3 without
considering the bearing.

7 Conclusion

In this paper, we introduce a BMI-Matching algorithm. We make full use of
the position and bearing of moving objects and the topological structures of
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road network. We conduct experiments with a real dataset and perform the
comparisons between our method and two algorithms of ST-Matching and HMM-
Matching. The results show our method performs better than those algorithms
in terms of Ar and Al.

References

1. Brakatsoulas, S., Pfoser, D., Salas, R., Wenk, C.: On map-matching vehicle tracking
data. In: International Conference on Very Large Data Bases (2005)

2. Chen, D., Driemel, A., Guibas, L.J., Nguyen, A., Wenk, C.: Approximate map
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