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Abstract. Task allocation is an important issue in multi-agent systems, and
finding the optimal solution of task allocation has been demonstrated to be an
NP-hard problem. In many scenarios, agents are equipped with not only com-
munication resources but also computing resources, so that tasks can be allo-
cated and executed more efficiently in a distributed and parallel manner.
Presently, many methods have been proposed for distributed task allocation in
multi-agent systems. Most of them are either based on complete/full search or
local search, and the former usually can find the optimal solutions but requires
high computational cost and communication cost; the latter is usually more
efficient but could not guarantee the solution quality. Evolutionary algorithm
(EA) is a promising optimization algorithm which could be more efficient than
the full search algorithms and might have better search ability than the local
search algorithms, but it is rarely applied to distributed task allocation in multi-
agent systems. In this paper, we propose a distributed task allocation method
based on EA. We choose the many-objective EA called NSGA-III to optimize
four objectives (i.e., maximizing the number of successfully allocated and
executed tasks, maximizing the gain by executing tasks, minimizing the
resource cost, and minimizing the time cost) simultaneously. Experimental
results show the effectiveness of the proposed method, and compared with the
full search strategy, the proposed method could solve task allocation problems
with more agents and tasks.
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1 Introduction

Along with the rapid development of Internet of Things (IoTs) and wireless commu-
nication techniques, multi-agent systems are increasingly employed in industry and
military fields. In multi-agent systems, there are usually a number of devices (e.g.,
robots and unmanned aerial vehicles) that can execute specified tasks automatically and
intelligently.
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Task allocation is one of the most important issues in multi-agent systems, and it
directly influences the system effectiveness. However, it has been demonstrated that
finding the optimal solutions of task allocation in multi-agent systems would be an NP-
hard problem [1]. Several objectives need to be optimized in the problem, e.g., max-
imizing the number of tasks that can be successfully allocated and executed by the
agents, maximizing the benefits achieved by executing tasks, minimizing the resources
cost during the task execution and minimizing the time cost. In many scenarios, agents
are equipped with both communication resources and computing resources, and they
can cooperate with a control centre in a distributed/decentralized manner to search for
the optimal solutions of task allocation more efficiently.

Presently, many methods have been proposed for distributed task allocation in
multi-agent systems, and they can be mainly divided into two classes depending on
while they are based on the complete/full search strategy or local search strategy [2].
The methods based on the full search strategy, e.g., [3–7], can usually find the optimal
task allocation solutions but they require a large amount of computational cost and
communication cost, and it will become unbearable in large-scale systems (e.g., the
number of agents or tasks is larger than 200). The methods based on the local search
strategy, e.g., [8–11], are usually more efficient and require less communication cost,
but they cannot guarantee the quality of obtained solutions, and they would only find
few solutions that are local optimal and biased towards one objective. In some sce-
narios, if multiple objectives should be optimized simultaneously, the utility of these
algorithms would decrease significantly. Therefore, it is meaningful to find some new
methods for task allocation in multi-agent systems.

Evolutionary Algorithm (EA) is a promising algorithm for optimization [12], and it
has been applied to many areas, e.g., Satisfaction Problem [13], Vehicle Routing
Problem [14], Dynamic Shortest Path Problem [15], and Optimal Antenna Design
Problem [16]. It is demonstrated that EA could be more efficient than the full search
strategy and exhibits a better global search ability and could find better solutions than the
local search strategy. Moreover, in the situation that multiple objectives are required to
be optimized, EA could find more nondominated solutions than the local search strategy,
and it enables the capacity of EA to account for diverse requirements. However, it is
rarely applied to distributed task allocation in multi-agent systems. Therefore, in this
paper, we propose a distributed task allocation method based on EA.Wemainly consider
four objectives, and we use a many-objective EA called NSGA-III [17] because tradi-
tional multi-objective EAs might only perform well on the optimization problems with 2
or 3 objectives. Specifically, the first objective we consider is to maximize the number of
tasks that can be successfully allocated and executed by agents; the second objective is to
maximize the benefits gained by executing tasks; the third objective is to minimize the
resource cost by executing tasks; the last objective is to minimize the maximal time cost
required among all agents to finish the tasks. Note that, most of existing works only
consider one or two objectives, and these four objectives are rarely optimized simulta-
neously. To allocate the tasks in the distributed manner, we combine NSGA-III with the
Master-Slave model [18], which is a typical distributed computation model.

The rest of this paper is organized as follows. Section 2 presents the preliminary
knowledge of this work; Sect. 3 shows the proposed method; Sect. 4 gives the
experimental results and discussion; Sect. 5 concludes the whole work.
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2 Preliminaries

In this Section, we introduce the formal description of the task allocation problem in
multi-agent systems and describe the Master-Slave model.

2.1 Task Allocation Problem

Task allocation involves different factors and constraints in different scenarios [2, 19,
20], and we extract some common elements to describe the problem we will solve.
Specifically, we have:

(1) Agents: A = {a1…am}, where m is number of agents. The locations of agents are:
LA = {la1…lam}, where lai (i = 1…m) denotes the location of the agent ai. The
amount of resources equipped by agents is: R = {r1…rm}, where ri (i = 1…m) is
the amount of resources equipped by the agent ai.

(2) Tasks: V = {v1…vn}, where n is the number of tasks. The locations of tasks are:
LV = {lv1…lvn}, where lvi (i = 1…n) denotes the location of the task vi. We
suppose each task has an executing time limitation and we define it by the earliest
start time and the latest start time of execution, i.e., TV = {[low1, up1]…[lown,
upn]}. That means a valid execution of the task vi should start at the time between
lowi and upi. The time cost by executing the tasks is Timecost = {timecost1…
timecostn}, where timecosti (i = 1…n) is the time cost by executing the task vi.
The resource cost by executing tasks is Rescost = {rescost1…rescostn}, where
rescosti (i = 1…n) is the resource cost by executing the task vi. The amount of
benefits gained by executing tasks is Gain = {gain1…gainn}, where gaini
(i = 1…n) is the amount of benefits achieved by executing the task vi.

(3) Task allocation: P ¼ p1. . .pnf g, where pi (i = 1…n) denotes the allocating of
task vi, e.g., p1 ¼ v1 ! a3 means the task v1 is allocated to the agent a3 for
execution, and for simplicity, we directly denote it as p1 ¼ a3. If a task vj is not
allocated to any agents, we denote it as pj ¼ Null. Similar to [19], we assume that
one task can be finished by one agent individually.

(4) Agent execution: Q = {q1…qm}, where qi (i = 1…m) denotes a sequence of
tasks will be executed by the agent ai, e.g., q1 = v1v3v5 means q1 will execute v1,
v3 and v5, respectively. Similar to [6, 19, 21], we suppose each agent can only
execute one task at a point in time.

(5) Objectives: Different applications demand different optimization objectives, and
in this work, we choose the following four widely studied objectives:
(1) Maximizing the number of tasks that can be successfully allocated and exe-

cuted by agents:

f1 ¼ maximize8P
Xn

i¼1
pi 6¼ Nullf g ð1Þ

where the notation pi 6¼ Nullf g returns 1 if the predicate is true; otherwise it
returns 0.
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(2) Maximizing the benefits gained by executing tasks:

f2 ¼ maximize8P
Xn

i¼1
pi 6¼ Nullf g � gaini ð2Þ

(3) Minimizing the resource cost by executing tasks:

f3 ¼ minimize8Q
Pm

i¼1 travel cost lai; lvqi1
� ��

þ P qij j
j¼2 travel cost lvqi j�1ð Þ ; lvqij

� �
þ P qij j

j¼1 rescostqij
� ð3Þ

where the notation qij j denotes the length of the sequence qi, and
travel cost lx; ly

� �
is the resource cost by the agent for travelling from

location lx to location ly.
(4) Minimizing the maximal time cost by executing tasks among all agents:

f4 ¼ minimize8Qmaxmi¼1Tcost qi; qij jð Þ ð4Þ

where Tcost qi; qij jð Þ is the time cost by ai for executing the |qi| tasks in qi, and
for j = 2…|qi|:

Tcost qi; jð Þ ¼ max Tcost qi; j� 1ð Þþ travel time lvqi j�1ð Þ ; lvqij
� �

; lowqij

n o

þ timecostqij

and Tcost qi; 1ð Þ ¼ travel time lai; lvqi1
� �þ timecostqi1 and travel time lx; ly

� �
is

the time cost by the agent for travelling from location lx to ly. We suppose that
if an agent arrives the location of a task before its earliest start time, it will
wait at that location.

(6) Constraints: There are usually several constraints in the task allocation problem,
and we mainly consider the time constraint, the resource constraint and the
function constraint
(1) Time constraint: An agent ai (1 � i � m) can execute a task vj successfully

only if ai arrives the location of the task and start the execution in the time
interval [lowj, upj], and for the execution sequence qi of ai we have:
For j = 2…|qi|:

gTij ¼ arrival time qi; jð Þ
¼ Tcost qi; j� 1ð Þþ travel time lvqi j�1ð Þ ; lvqij

� �
� upqij

ð5Þ

and gTi1 ¼ arrival time qi; 1ð Þ ¼ travel time lai; lvqi1
� �� upqi1 .

(2) Resource constraint: An agent ai (1 � i � m) can execute a task success-
fully only if the current resources loading on ai are sufficient for travelling to
the task and executing it, and for the execution sequence qi of ai we have:
For j = 1…|qi|:
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gRij ¼ resource cost qi; jð Þ
¼ travel cost lai; lvqi1

� �þ P j
k¼2 travel cost lvqi k�1ð Þ ; lvqik

� �

þ P j
k¼1 rescostqik � ri

ð6Þ

(3) Function constraint: In real-world applications, different kinds of agents may
have different functions/abilities, and they can only execute the tasks fitting
their functions. Specifically, we have:
(a) At the view of agents: for i = 1…m,

gFAi ¼ vi1 ; . . .; vibf g :! ai ð7Þ

This constraint describes that, according to the function of the agent ai, it
is able to execute the b tasks vi1 ; . . .; vib .

(b) At the view of tasks: for j = 1…n,

gFTj ¼ vj :! aj1 ; . . .; ajc
� � ð8Þ

This constraint describes that, according to the requirements of the task vj
on the agent functions, it can be allocated to any agent in aj1 ; . . .; ajc

� �
for

execution.

2.2 Master-Slave Model

In this paper, we use a widely used distributed model for EA called Master-Slave [18]
for task allocation. An example of the Master-Slave model is shown in Fig. 1. It contains
one master and multiple slaves. The master has high computational and communication
abilities and is responsible for the evolving process of EA, e.g., it conducts the popu-
lation initialization, crossover operation, mutation operation, selection operation and
iteration. The slaves are mainly responsible for evaluating individuals.

Fig. 1. The Master-Slave model for EA
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The Master-Slave model is quite suitable for the scenarios that contain a control
centre and a number of agents, where the control centre has high computational and
communication abilities and is responsible for publishing tasks, sending orders to
agents and allocating tasks to agents, and thus it corresponds to the master node. The
agents are responsible for performing tasks and collecting the dynamic environment
around the tasks. The effectiveness of a task allocation should be evaluated by agents
because some data (e.g., the time cost, resource cost and current location) about the
tasks could only be captured by agents and these data might change with the envi-
ronment in some situation. In this paper, we assume that an agent could evaluate the
part of solutions involves the tasks allocated to it, so each individual should be sent to
multiple agents for a complete evaluation.

3 Distributed Task Allocation Based on NSGA-III

We present the distributed task allocation method based on the many-objective EA
NSGA-III in this section.
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3.1 Framework

NSGA-III [17] is improved from NSGA-II [22], which is a prominent multi-objective
EA and has good performance on the optimization problems with 2 or 3 objectives.
NSGA-III is proposed for solving the problems with more than 3 objectives. The
procedure of the NSGA-III is shown in Algorithm 1. Specifically, (1) NSGA-III ran-
domly initializes the population with N individuals, and evaluates them; (2) NSGA-III
performs the crossover and mutation operation to generate offspring; (3) NSGA-III
evaluates all individuals in both parent and offspring populations; (4) NSGA-III con-
ducts nondominated sorting on the parent and offspring populations, and obtains
H layers F1…FH of nondominated fronts; (5) NSGA-III finds out the former h layers of
nondominated fronts subject to F1 [ . . .[Fh�1j j\N� F1 [ . . .[Fhj j. (6) NSGA-III
constructs the next generation of population: if F1 [ . . .[Fhj j ¼ N, then selects the
individuals in the former h layers as the next population; otherwise, selects
N � F1 [ . . .[Fh�1j j individuals using the reference points from the layer Fh and
combines these individuals with the individuals in the former h − 1 layers to obtain the
next population; (7) NSGA-III carries out the steps 2–6 until the population is con-
vergent or the terminating condition (reach the maximal iteration times) is satisfied.

To find the optimal task allocation in multi-agent systems, we combine the NSGA-
III algorithm with the Master-Slave model. As the control centre usually has high
computational and communication abilities, it will play the role of master. The agents
usually have limited computational and communication abilities, so they will play the
role of slaves. In real-world applications, the cost of executing a task could only be
captured by the agent that monitors the task, and the cost might change over the time.
Moreover, sometimes, the environment might also change, e.g., some agents are bro-
ken, some new agents are available, or some new tasks appear. Therefore, it is more
reasonable to distribute the evaluation of individuals to agents. Furthermore, we sup-
pose that each agent can only evaluate the part of individuals that contains tasks which
it can monitor and execute. This assumption is more practical, and the agents will
spend less communication cost and computation cost.

Specifically, at the control centre C (Master) side:

1. C randomly initializes the population P1, and makes the individuals distributed
uniformly.

2. C divides each individual in Pi into m parts, and sends each part of the individuals to
the corresponding agent for evaluation.

3. C collects the evaluation results from agents.
4. C performs the crossover, mutation operations on Pi to obtain offspring Qi.
5. C sends each part of the individuals in Qi to the corresponding agent for evaluation.
6. C collects the evaluation results from agents.
7. C conducts nondominated sorting on Pi [Qi, computes nondominated layers,

performs the selection operation based on reference points, and obtains the next
generation of population (i.e., Pi+1).

8. C iteratively conducts steps 4–7 until the population is convergent or reaches the
maximal iteration times.
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At the agent (slave) side, each agent will receive a part of individuals sent from C,
and it will evaluate the part and send back the evaluation results, i.e., the objective
values. If the environment changes, the agent is also responsible for collecting the
changed information and report to the control centre, and the control centre might
request the re-evaluation of the population.

According to the procedure conducted by the control centre, the communication
complexity at each iteration is O m� Pj jð Þ because each individual will be divided into
m parts and these m parts will be sent to m agents, respectively. Note that agents are
usually much less than the tasks. For the worst case, i.e., the evolutionary process ends
with the maximal iteration times, the total communication complexity of the proposed
method is O m� Pj j � maxIterNð Þ.

3.2 Chromosome Encoding, Crossover and Mutation

In EA, the individuals are represented as chromosomes, and the encoding of chro-
mosomes influence the effectiveness of EA directly. In our work, to comprehensively
contain the factors that affect the objective values, we encode a chromosome as:
x = x1…xm, where xi is a sequence of the indexes of tasks. Specifically, assume ai is
able to execute tasks vi1 ; . . .; vib according to the function constraint, then xi is a
permutation of i1…ib, and it denotes the order that ai would execute the tasks
vi1 ; . . .; vib . For example, if there are 6 tasks and 2 agents, x = 1 3 6 2 4 5 and both a1
and a2 are able to execute 3 tasks, then x represents that a1 would execute the tasks v1,
v3 and v6, respectively and a2 would execute the tasks v2, v4 and v5, respectively (Note
that whether the agents can really execute these tasks successfully depends on the
constraints are satisfied or not). By this encoding, all of the chromosomes have the
same length when the function constraint is given, and the function constraint is always
satisfied during the evolution. The initialization of individuals/chromosomes in the step
2 of Algorithm 1 could be quite easy. For example, we can initialize xi of each indi-
vidual as a random permutation of i1…ib. The time constraint and resource constraint
will be blended in objective evaluation.

Based on the chromosome structure, we can use classic crossover and mutation
strategies directly. For crossover, a split point s is first randomly chosen, and two
individuals x, y exchange their parts according to s. After crossover, two new indi-
viduals x0 and y0 will be generated, and we have x0 ¼ y1. . .ysxsþ 1. . .xm and
y0 ¼ x1. . .xsysþ 1. . .ym. For mutation, we set a parameter mr to control the mutation
probability, if xi is chosen to mutate according the probability, then we will randomly
generate a permutation of i1…ib to replace the current value of xi. The selection
operation remains the same with the original NSGA-III, please refer to [17] for details.

3.3 Evaluation

The evaluation process determines the search direction of EA, so it is important to
design it carefully. In our work, we transform the four objectives in Sect. 2 into the
“minimize” form and blend the constraints in objectives for evaluation. Specifically,
when evaluating an individual x, we have:
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(1) The first objective value of x could be calculated by:

f1 xð Þ ¼ 1:0�
Pm

i¼1 e1 xið Þ
n

ð9Þ

where xi = i1…ib and e1 xið Þ is calculated by:

e1 xið Þ ¼
Xb

w¼1
h iwð Þ

where h iwð Þ ¼ 0
if viw has been allocated;
or arrival time xEi þ iw; xEi

�� ��þ 1
� �

[ upiw ;
or resource cost xEi þ iw; xEi

�� ��þ 1
� �

[ ri
1 otherwise

8>><
>>:

and it judges whether

viw can be added to the current execution sequence of ai, xEi (it is the empty set at the
beginning) is the current execution sequence of ai, and xEi þ iw denotes adding iw to xEi .

(2) The second objective value of x could be calculated by:

f2 xð Þ ¼ 1:0�
Pm

i¼1 e2 xið ÞPn
i¼1 gaini

ð10Þ

where e2 xið Þ ¼ Pb
w¼1 h iwð Þ � gainiw .

(3) The third objective value of x could be calculated by:

f3 xð Þ ¼
Xm

i¼1

e3 xið Þ
m� max t

ð11Þ

where max_r is the maximal amount of the resources equipped by agents,
e3 xið Þ ¼ Pk

w¼1 h iwð Þ � travel cost llast; lviwð Þþ rescostiwð Þ, and llast is the position of
the last task allocated to ai (llast is the position of ai when w = 1).

(4) The fourth objective value of x could be calculated by:

f4 xð Þ ¼ maxmi¼1
e4 xið Þ

m� max t
ð12Þ

where max_t is the maximal time that a task could be finished, and e4 xið Þ ¼Pk
w¼1 h iwð Þ � travel time llast; lviwð Þþ timecostiwð Þ.
It is worth to mention that, not all of the tasks encoded in a chromosome could be

successfully allocated to agents, and the order that agents execute tasks is implied in
chromosomes. The time constraint and resource constraint are blended in by the
function h(). By the above transformation, we can easily evaluate an individual by
inputting it into the four functions in (9)–(12).
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4 Experiments and Discussion

In this section, we present experimental results to show the effectiveness of the pro-
posed method, and we compare it with a typical full search strategy.

We first randomly generate the data about agents and tasks. Specifically, we vary
the number of agents (i.e., m) from 10 to 250 and the number of tasks (i.e., n) from 10
to 1000 (n is 4 times to m by default). All agents are initially equipped with the same
amount of resources, i.e., ri = 500 for i = 1…m. They are set to be able to execute 5
tasks (i.e. |qi| = 5), and these tasks are randomly distributed to agents to construct the
function constraints. We denote the positions of agents and tasks by 2-dimensional
points (x, y), and the range of x and y is [0, 100]. We randomly generate the positions of
all agents and tasks. The earliest start time lowi (i = 1…n) of the task vi is randomly
generated in [0, 100], and the latest start time upi is randomly generated in [lowi, 150].
To ensure an agent could execute multiple tasks, the time cost by executing a task is
randomly generated in [1, 10], and the resource cost is randomly generated in [0, 100].
The benefits gained by executing a task is randomly generated as a double value in [0,
1]. For simplicity, we assume that both the time cost and resource cost by travelling are
positively proportional to the distance.

After generating the test data, we implement our method on the source code of
NSGA-III provided by prof. Chiang [23]. We set the maximal iteration times of NSGA-
III as 1000 by default. The crossover rate is set to be 1.0, which means crossover
operation is certainly performed once two parents are chosen. The mutation rate is set
to be 1/(the length of chromosome), which means xi (i = 1…m) will be mutated with
this probability once the individual x is chosen.

4.1 Varying Problem Scale

To investigate the performance of the proposed method on different scales of problems,
we choose three parameter settings: (1) m = 10, n = 40; (2) m = 50, n = 200;
(3) m = 250, n = 1000. After generating the agents and tasks, we use the proposed
method to solve the three problems, and the results are shown in Tables 1, 2 and 3.

For the case m = 10 and n = 40, if two groups of results are close to each other (the
differences between their values for the first three objectives are less than 0.02), we
only present one of them. Finally, we obtain 24 groups of nondominated results, and
the results are correct to three decimal places. It is shown that the minimal values of f1,
f2, f3, f4 are 0.350, 0.316, 0.226, 0.703, respectively, and the proposed method can
finish at most 65% of the 40 tasks.

For the case m = 50 and n = 200, we filter the results in the same way, and finally
we obtain 13 groups of nondominated results. It is shown that the minimal values of f1,
f2, f3, f4 are 0.465, 0.417, 0.259, 0.776, respectively, and the proposed method can
finish at most 54.5% of the 200 tasks.

For the case m = 250 and n = 1000, we also filter the results but use the difference
threshold 0.01, and finally we only obtain 7 groups of nondominated results. It is
shown that the minimal values of f1, f2, f3, f4 are 0.532, 0.482, 0.254, 0.850, respec-
tively, and the proposed method can finish at most 46.8% of the 1000 tasks.
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By comparing the three experiments, we find that the solutions found by the
proposed method have worse minimal objective values on f1, f2, f4 when m and n in-
crease, and the three objectives might be more difficult to optimize in this case. But the
optimization of f3 seems have no obvious relationship with the increase of m and
n. Moreover, we find that the diversity of solutions found by the proposed method
decreases with the increase of m and n as less results have been filtered out.

Table 1. The results of the proposed method
when m = 10 and n = 40

f1 f2 f3 f4
0.350 0.330 0.386 0.775
0.375 0.377 0.364 0.897
0.400 0.316 0.356 0.775
0.400 0.387 0.352 0.771
0.425 0.333 0.351 0.775
0.425 0.400 0.341 0.703
0.450 0.407 0.330 0.703
0.450 0.447 0.321 0.736
0.475 0.354 0.319 0.775
0.475 0.400 0.306 0.897
0.500 0.403 0.309 0.703
0.500 0.437 0.297 0.736
0.500 0.501 0.282 0.897
0.500 0.521 0.276 0.771
0.525 0.461 0.280 0.707
0.525 0.496 0.282 0.703
0.525 0.502 0.262 0.897
0.550 0.506 0.265 0.736
0.550 0.532 0.260 0.897
0.550 0.558 0.248 0.746
0.575 0.546 0.256 0.707
0.575 0.568 0.241 0.897
0.575 0.588 0.234 0.746
0.600 0.624 0.226 0.746

Table 2. The results of the proposed
method when m = 50 and n = 200

f1 f2 f3 f4
0.465 0.417 0.358 0.847
0.475 0.453 0.338 0.837
0.490 0.493 0.320 0.804
0.500 0.457 0.317 0.956
0.505 0.427 0.331 0.956
0.525 0.451 0.321 0.847
0.530 0.484 0.303 0.956
0.530 0.520 0.301 0.778
0.550 0.487 0.298 0.956
0.555 0.563 0.279 0.776
0.565 0.516 0.277 0.956
0.575 0.541 0.267 0.847
0.585 0.593 0.259 0.776

Table 3. The results of the proposed method when m = 250 and n = 1000

f1 f2 f3 f4
0.532 0.482 0.293 0.931
0.544 0.501 0.286 0.882
0.555 0.506 0.277 0.892
0.561 0.518 0.275 0.850
0.573 0.529 0.266 0.860
0.578 0.540 0.259 0.931
0.591 0.556 0.254 0.850
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Table 4. Results for n/m = 1

f1 f2 f3 f4
0.100 0.019 0.101 0.864
0.100 0.019 0.109 0.784
0.100 0.019 0.115 0.836
0.100 0.019 0.124 0.755
0.200 0.046 0.077 0.784
0.200 0.046 0.083 0.644

Table 5. Results for n/m = 3

f1 f2 f3 f4
0.133 0.163 0.367 0.901
0.167 0.143 0.361 0.901
0.167 0.211 0.341 0.901
0.200 0.157 0.363 0.861
0.200 0.197 0.332 0.764
0.200 0.265 0.312 0.856
0.233 0.156 0.342 0.901
0.233 0.246 0.313 0.675
0.233 0.311 0.288 0.856
0.267 0.180 0.338 0.861
0.267 0.210 0.313 0.732
0.267 0.249 0.308 0.675
0.267 0.290 0.282 0.764
0.267 0.359 0.278 0.856
0.300 0.191 0.333 0.861
0.300 0.259 0.293 0.675
0.300 0.304 0.271 0.675
0.333 0.280 0.275 0.901
0.333 0.318 0.255 0.901
0.367 0.233 0.290 0.901
0.367 0.278 0.268 0.697
0.367 0.362 0.240 0.901
0.367 0.400 0.226 0.675
0.367 0.442 0.220 0.675
0.400 0.288 0.261 0.697
0.400 0.338 0.244 0.697
0.400 0.444 0.217 0.675
0.433 0.301 0.245 0.901
0.433 0.351 0.247 0.656
0.433 0.423 0.203 0.901
0.467 0.361 0.242 0.656

Table 6. Results for n/m = 5

f1 f2 f3 f4
0.560 0.608 0.358 0.768
0.580 0.608 0.323 0.877
0.600 0.604 0.330 0.876
0.600 0.616 0.309 0.768
0.600 0.645 0.301 0.768
0.620 0.623 0.323 0.756
0.620 0.627 0.298 0.768
0.620 0.651 0.280 0.756
0.620 0.661 0.260 0.877
0.640 0.640 0.260 0.756
0.640 0.665 0.240 0.877
0.660 0.623 0.269 0.876
0.660 0.672 0.260 0.748
0.660 0.692 0.221 0.877
0.680 0.683 0.214 0.675
0.680 0.718 0.203 0.675
0.700 0.674 0.235 0.675
0.720 0.685 0.208 0.756
0.740 0.718 0.180 0.675
0.760 0.734 0.175 0.675
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4.2 Varying n/m

In this section, we conduct three experiments to show the influence of the ratio n/m on
the performance of the proposed method. In these experiments, m (i.e., the number of
agents) is set to 10.

In the first experiment, we set n as 10 and n/m is 1, and the results are shown in
Table 4. We filter the results using the difference threshold 0.005, and only 6 groups of
data are obtained. The minimal values of f1, f2, f3, f4 are 0.1, 0.019, 0.077, and 0.644,
respectively. The agents can finish at most 90% of the 10 tasks.

In the second experiment, we set n as 30 and n/m is 3, and the results are shown in
Table 5. We filter the results using the difference threshold 0.02, and 31 groups of data
are obtained. The minimal values of f1, f2, f3, f4 are 0.133, 0.143, 0.203, and 0.655,
respectively. The agents can finish at most 86.7% of the 30 tasks.

In the third experiment, we set n as 50 and n/m is 5, and the results are shown in
Table 6. We filter the results using the difference threshold 0.02, and 20 groups of data
are obtained. The minimal values of f1, f2, f3, f4 are 0.560, 0.604, 0.175, and 0.675,
respectively. The agents can finish at most 44% of the 50 tasks.

By comparing the results from the three experiments, we find that the objectives f1
and f2 seem more difficult to optimize when n/m increases, but no obvious rules about
the optimization of f3 and f4 has been found.

4.3 Comparison

In this section, we compare the proposed method with the full search strategy, which
simply enumerates every possible task allocation solution and records the best ones. As
there are so many optimal solutions that we cannot present them one by one in this
paper, so we only present those results that are better and closest to the results of the
proposed method. We choose 5 parameter settings, i.e., (1) m = 5, n = 5; (2) m = 5,
n = 10; (3) m = 5, n = 20; (4) m = 10, n = 10; (5) m = 10, n = 20. The results are
shown in Tables 7, 8 and 9, and we do not present the comparison results for
(m = 5, n = 20) and (m = 10, n = 20) because the full search strategy did not finish
execution in 1 h (while the proposed method finished in 5 min). The results of the
proposed method are filtered using the difference threshold 0.02 for m = 5 and 0.005
for m = 10.

Table 7. The results of the proposed method and the full search strategy when m = 5 and n = 5

Proposed method Full search
f1 f2 f3 f4 f1 f2 f3 f4
0.000 0.000 0.180 0.656 0.000 0.000 0.159 0.656
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By comparing the results of the proposed method with the full search strategy, we
find that the proposed method could find solutions that are close to the global optimal
solutions found by the full search strategy. For m = 5 and n = 5, the difference between
the solution of the proposed method and the corresponding optimal solution found by
the full search strategy is 0.021. For m = 5 and n = 10, the average difference between
the solutions of the proposed method and the corresponding optimal solutions found by
the full search strategy is 0.004, the maximal difference is 0.012, and the minimal
difference is 0. For m = 10 and n = 10, the average difference between the solutions of
the proposed method and the corresponding optimal solutions found by the full search
strategy is 0.139, the maximal difference is 0.221, and the minimal difference is 0.019.
Though, the full search strategy can find the best results but it can only solve small
problems, and it could not be used when n or m is not less than 20. On the contrast, the
proposed method could solve the problems even with m � 250 and n � 1000, so it
would have better utility on solving large problems.

5 Conclusions

In this paper, we propose a distributed method for task allocation based on NSGA-III.
Specifically, NSGA-III is combined with the Master-Slave model, which is a classical
distributed model for EA. The control centre in multi-agent systems plays the master
rule, and the agents play the slave rule. Experimental results show that, the proposed
method could be used for searching optimal task allocation solutions even when the
number of agents (i.e., m) is not less than 250 and the number of tasks (i.e., n) is not

Table 8. The results of the proposed method and the full search strategy when m = 5 and n = 10

Proposed method Full search
f1 f2 f3 f4 f1 f2 f3 f4
0.300 0.355 0.243 0.753 0.300 0.355 0.231 0.753
0.300 0.355 0.265 0.715 0.300 0.355 0.265 0.715
0.400 0.415 0.227 0.638 0.400 0.415 0.227 0.638

Table 9. The results of the proposed method and full search strategy when m = 10 and n = 10

Proposed method Full search
f1 f2 f3 f4 f1 f2 f3 f4
0.100 0.019 0.101 0.864 0.100 0.019 0.085 0.644
0.100 0.019 0.109 0.784 0.100 0.019 0.085 0.644
0.100 0.019 0.115 0.836 0.100 0.019 0.085 0.644
0.100 0.019 0.124 0.755 0.100 0.019 0.085 0.644
0.200 0.046 0.077 0.784 0.200 0.046 0.064 0.644
0.200 0.046 0.083 0.644 0.200 0.046 0.064 0.644
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less than 1000, while the full search strategy is only effective when m < 20 or n < 20.
It demonstrates that the proposed method would have better utility on solving large
problems.

In future work, we attempt to combine NSGA-III with other distributed models,
e.g., the Island-cellular hybrid model. We will also try to solve the task allocation
problems with ordering constraints.
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