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Abstract. The dockless shared bikes flourish as a new concept in recent
years. It allows users to find bikes anywhere via a GPS-based mobile
application, and flexible cycling and parking the bikes in the same way.
From the bike trajectory data produced by Users, we can extract bike
flow patterns for better urban planning and Point-of-Interest (POI) rec-
ommendation. In this paper, through conducting the spatio-temporal
representations of bike activity acquired from bike trajectory logs, we
first design a graph clustering model With sparsity constraints that com-
bine time information to explore potential patterns of bike flow. Next, by
comparing historical trajectory logs and POI information with the flow
patterns, we dig out several typical categories of bike flow patterns, which
can give suggestions for further urban planning and POI recommenda-
tion. Further, our experiments via Mobike trajectory data demonstrate
the effectiveness of bike flow pattern discovery.
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1 Introduction

The dockless shared bikes have been receiving much attention in recent years,
which change the way that people travel from motor ones to non-motor ones.
Mobike!, one of the largest bike sharing companies in the world, leads the devel-
opment of bike-sharing industry and meets users’ needs for more convenient
short-distance travel [14]. It allows users to find, pick up and drop off their bikes
anywhere through mobile applications. According to statistics from shared bikes,
the orders exceed 50 million every day. What’s more, we can easily analyze the
temporal and spatial correlations through the trajectory data generated by the
use of shared bikes, which could contribute to infer the users’ preference for
POI in a different time and space environments in further research. For exam-
ple, riding destination could be different, such as subway stations, companies or
supermarkets, and the duration of the trajectory could also change at the same

! https://mobike.com.
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time. Therefore, exploring the latent flow patterns of shared bikes is significant
to urban construction, POI recommendation, and demand analysis.

In this paper, we propose a method for extracting latent flow patterns of
shared bikes trajectory data. It is still a challenging task due to the following
reasons. First, the riding flow of shared bikes changes over time in a day. Figure 1
shows the geographical distribution of riding destinations at the peak and normal
time respectively. Second, bike flow can also be influenced by weather, temper-
ature, and population. Finally, the riding flow is locally-invariant and sparse,
because of the short riding distance and high mobility. Previous approaches
[8,15] fail to consider these factors. Therefore, how to utilize the characteristics
and effectively extract the patterns of bike flow remains an open problem.

(a) The destinations in the normal (b) The destinations in the peak time
time

Fig. 1. The geographical distributions at different time

To solve the problems mentioned above, we study a large set of Mobike users’
spatio-temporal trajectory in Shanghai to obtain patterns of bike flow. First, we
divide the whole city into small region grids and identify the primary locations by
users’ activities, using a density-based algorithm named bike ordering points to
identify the clustering structure (Bike-OPTICS). Differing from traditional road
segmentation and equal-size grids, this method can effectively avoid achieving
undeveloped or inaccessible areas. Second, to further explore the bike usage
demand in different regions, we develop a graph auto-encoder by non-linear
embedding the original graphics [9]. In addition, we model the spatio-temporal
interactions between region pairs with a sparsity constraint, which characterizes
the locally-invariant sparse of bike flow. Finally, we run the k-means algorithm
to obtain clustering result, for identifying the latent travel patterns for urban
planning and Point-of-Interest (POI) demands of visitors.

Overall, the main contributions of our work are summarized as follows.

e We propose a new density-based clustering method to merge the neighboring
region grids with high flow together. Based on the result of cluster analysis,
we find the type attribute of each cluster.
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e A deep neural network (DNN) of stacking auto-encoder with sparsity con-
straints is presented to identify the latent travel patterns and POI demands
of visitors.

e Some suggestions about urban planning and bike migration are given through
large-scale data analysis in the real world.

2 Related Work

Recently, because of the flourishing of location technology services (LTS) [4,7]
and the advantage of shared bikes trajectories in improving the quality of human
life, researchers are encouraged to use bike trajectory as data sources in large-
scale urban user mobility studies. In the literature, existing works on bike sharing
systems mainly studied the problems of further expansion of the station [11],
shared bikes traffic prediction [6] and rebalance scheduling [10,12]. For example,
Bao et al. [3] proposed a data-driven approach to develop bike lane construction
plans based on large-scale real-world bike trajectory data. Ai et al. [1] developed
a convolutional long-term memory network (conv-LSTM) method to predict
the short-term spatio-temporal distribution of bikes, which reduced the space
dependence and time dependence of bikes. However, these methods are not able
to directly applied to dockless ones and only considered the distribution of bikes
and traffic forecasts. Moreover, few studies have focused on further analysis and
exploration of bike traffic patterns.

There has already been lots of research looking at extracting latent patterns
[8,15]. Zhou et al. [16] proposed a topic-based model to discover latent patterns of
urban cultural interactions. Gao et al. [13] discovered human lifestyle by creating
a topic model from their digital footprints and social links. Ziyatdinov et al.
[9] proposed a pattern extraction method for multi-view data using spectral
clustering algorithm.

Currently, some studies prove that the topic model is more effective for dis-
covering potential movement patterns [16]. However, for bike research, problems
do exist with this model. First, urban data is quite sensitive to time, and these
temporal flow patterns in shared bikes can hardly be captured by topic models
[14]. Second, there is no corresponding assessment measure in the topic model for
shared bikes flow pattern analysis. Finally, bike flow data is a graph structure,
which increases the difficulty of data disposal course. Thus, we exploit a graph
auto-encoder with sparsity constraints to identify the latent travel patterns,
which could better reflect the structure of the graph and the spatial interaction
between the pairs of regions.

3 Problem Formulation

In this study, we use two sets of real-world data collected from Mobike, including
bike trajectory logs and urban POI data. Specifically, the bike trajectory logs
contain the use of records from bike users in Shanghai. Table 1 shows an example
of the trajectory logs. Each record consists of a bike label, pick-up time and
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drop-off time, and the corresponding origin and destination with detailed GPS
coordinates. Besides, most of the locations can be linked to a specific POLI.

Table 1. An example of the trajectory logs

Bike ID Pick-up time | Drop-off time | Trip origin | Trip destination
8621525316 | 1517511153 | 1517511619 | 121.45,31.20 | 121.43,31.22
8621633865 | 1517501153 | 1517501779 | 121.44,31.21 | 121.43,31.22
8621399390 | 1517511233 | 1517521779 |121.43,31.25|121.43,31.24
8621399332 | 1516521133 | 1517123779 | 121.37,31.21 | 121.40,31.25
8621399312 | 1517521133 | 1517523779 | 121.40,31.21 | 121.42,31.25

This paper has two tasks. Specifically, (1) region partition and flow matrix
construction, and (2) flow pattern extraction. In the first task, we aim to discover
the integrated urban areas with high flow density and construct a flow matrix for
the trajectory logs based on the travel flow information extracted from shared
bikes. The ultimate goal of the second task is to extract flow patterns, by which
we can perform urban planning and POI recommendations.

The investigation framework of our work is presented in Fig.2. We firstly
conduct the data preprocessing, and divide the urban area into small area grids.
Secondly, by extracting the travel flows in these grids, we construct a flow matrix.
Next, the similarity matrix of the flow matrix is constructed based on the sim-
ilarity measurement. Finally, stacking auto-encoder is applied to the original
graphics. This model can learn users’ spatial-temporal preferences by studying
their behaviors during the process of cycling, which can supply the travel demand
analysis and targeted POI recommendation with strong supports.

4 Methodology

4.1 Region Partition and Flow Matrix Construction

The dockless shared bikes are different from the traditional station-based bikes
due to their flexibility. The former doesn’t need to be parked and locked at the
designated places, which presents a challenge to the research. Therefore, con-
structing flow adjacency matrix is not easy. However, we find that the riders often
come together automatically, when they have similar destinations. Inspired by
this observation, we decide to cluster bike parking points into regions. Through
the clustering results, we can make the flow adjacency matrix.

In this work, we find that the OPTICS algorithm [2] is a suitable approach for
our problem of region partition. This method requires two parameters as input:
the maximum radius eps for searching, and the least number of points minpts
to form a cluster. The parking positions of bikes vary greatly, which needs to set
the bike maximum radius carefully. With this limitation in mind, as Algorithm 1
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Fig. 2. Framework overview

shows, we propose a modified version named Bike-OPTICS that defines different
reachable distances for different areas. In Bike-OPTICS, we collect all drop-
off positions. In the procedure of clustering, the areas where bikes are densely
distributed should be given higher weights. We define the maximum radius as:

MR = eps — ¢ « getNezgh?\?rs(p, eps)’ (1)

where € is set to be a small constant such as 0.01. Generally, the urban areas
are split into small grids at first, as shown in Fig. 3(a). Then we start clustering
using one of the grids, which is never categorized into existing clusters. Next,
the rest grids which are reachable to the current grid to these new clusters are
added. This process is repeated until all the grids are clustered, and no new
cluster is created.
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(a) Grid-based partition (b) Some landmarks

Fig. 3. The urban area notations of Shanghai

Algorithm 1. Bike-OPTICS

Input:
DB = [...(pi, location)...], maximum radius eps.
Output:
center point of clusters order = [ci1,c2,...cn], cluster groups of points cpoints =

14:
15:

16

17:
18:
19:
20:

21

(L1, L3...Ly), L] = [p1,p2...pn]
initialize Order = list(),Se = list(),RD = list(mazdis), RD(0) = 0,MR =
list(...MR;...);
for each unprocessed point p of DB do
MR — getM R(p, eps);
mark p as processed;
Order « p;
update RD;
Se « getNeighbors(p, M R);
for each unprocessed g in Se do
MR «— getM R(q, eps);
marked q as processed;
Order «— q;
update RD;
Se «— getNeighbors(q, M R);
end for
end for
: for each p in DB do
compute Reachable Distance to each point ¢; in Order;
if Reachable Distance < M R; then
L; «— p;
end if
: end for

Our algorithm is similar but different from the classic Density-Based Spatial

Clustering of Applications with Noise (DBSCAN) algorithm [5]. In the DBSCAN
algorithm, a radius and a threshold should be defined beforehand, but for

Bi

ke-OPTICS algorithm, it generates an augmented cluster ordering for cluster
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analysis, rather than clustered results explicitly. It reflects all the results from
density-based clustering in any parameters setting. In other words, clustering
based on any radius and any threshold can be derived from this ordering. For
the sake of demonstration, we draw some landmarks in Fig. 3(b).

With the partitioned regions, we can construct flow matrix and flow tensor.
After partitioning the entire city, a bike flow matrix that records flow between
any two regions in the same time segment can be constructed. Given a whole
city divided into M regions, the flow matrix is defined as F* = { L} e RMXMY,
where ffj denotes the number of rides from the ith region to the jth region in
the ¢ time fragment.

Bicycles

Regions
A,B,C,D,

Fig. 4. A example of bike flow matrices construction

Figure4 shows an example of the bike flow matrix structure. The x-value
and y-value represent the starting region and the ending region of one bike
trajectory respectively, and each matrix cell represents the bike flow between
the two regions in a time slice. Particularly, we can also get the total pick-
up flow or drop-off flow of region ¢ (f and 1) by calculating the sum of the
corresponding column or a row. We have N flow matrices through which we
build flow tensors . = {F% Ft2 ... F'}. In addition, we set the flow matrix
interval as one hour.

4.2 Flow Pattern Extraction

In this section, we present a new graph clustering model based on the auto-
encoder with sparsity constraints for extraction latent flow pattern. Due to the
property of the bike trajectory data, the structure of the flow matrix is non-
Fuclidean, which does not have translation invariance. The traditional cluster
methods cannot extract its internal structure very well. Therefore, we apply
the deep learning method of graph clustering. Moreover, we add the sparsity
constraints due to the local invariance of the bike flow.

We use an auto-encoder based on graph clustering model, which is a key
component of a deep neural network. Figure5 shows the main architecture of
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the auto-encoder. In order to rectify the problem of overfitting, we integrate the
dropout layer into the DNN model.

Input Output

XN
XN
A\

Fig. 5. DNN architecture

As stated in the previous section, an n-node graph G can be represented by
its similarity matrix S. We use the Radial Basis Function (RBF) function to
define the similarity matrix, which is widely used in the field of the similarity
matrix: | ) ”2

F'— FJ|5
—_ 2

) 2)
Next, we normalize the training set in the DNN and use the output features
of the deepest layer as the graph embedding. Finally, we utilize the k-means
algorithm for producing the final clustering result of graph embedding.

Sij = exp(—
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Algorithm 2. Clustering with sparse GraphEncoder
Input:
Graph G, flow tensor .%, similarity matrix S, degree matrix D, DNN layer numbers
¢, Dropout layer parameter p
Output:
Clustering result.
. initialization a® = D718
for i=0to ¢ do
Build a DNN architecture with input a“);
Multiply by the Dropout layer 7,0 = r(®) x ¢,
Train the DNN by optimizing (7) with sub-gradient method, Obtain the hidden
layer activations h“);
Let atY) = p®
: end for
8: Run k-means on a° € R™*"

Y

®
)

Specifically, for a DNN model with L layers, the output of a hidden layer can
be described as:

r) ~ Bernoulli(p), (3)
GO =70 4 4O (4)
Z0HD) — (DGO 4 D), (5)
y(l+1) _ f(z(lJrl)), (6)

where [ =1...L, a® = D718 is the input layer with feature vector z. w' and b!
denote the DNN weight matrix and bias of the I-th hidden layer. f(-) represents
the non-linear activation function of the hidden layer and the output layer, such
as ReLu function:

ReLu(z) = max(0, 2) (7)

and tanh function:

e* —e %

—_— 8
e* +e % )
Here, D is the diagonal matrix with the node degrees in the corresponding diag-
onal elements, and @ is the normalized Laplacian matrix. Due to the property
of the Laplacian matrix, () is symmetric. Then, the optimization goal is to mini-
mize the reconstruction error between the original data = and the reconstructed
data y.

tanh(z) =

n

aregergin 1 ;[m Iny — (1 —2)In(1 —y)]. (9)

We also impose the sparsity constraints to the activation in the hidden layer,
the loss function is:

n

Loss(0) = —% Z[m Iny — (1 —2)In(1 —y)] + Bllal, (10)
i=1
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where (8 controls the weight of the sparsity penalty, and a = %Z?:I h; is the
average of the hidden layer activations.

For the Eq.7, we can use back-propagation for training. Since the [;-norm
is non-differentiable and cannot be solved with the traditional gradient descent,
we use the sub-gradient method to solve it.

Using the output of the hidden layer as the input to the next layer, we use
the intermediate output of the encoder as a new representation of graph and run
k-means on it to get the clustering results.

5 Evaluation

In this section, we first introduce the settings of the experiment including dataset,
baseline algorithms and evaluation criteria that we use in the course of the exper-
iment. Then we show the experimental results and give an in-depth analysis,
which proves the superiority of our algorithm.

5.1 Experiment Settings

Dataset. The dataset we used covers 177,357,367 riding records, generated by
389, 703 shared bikes ranging from December 2017 to July 2018 in Shanghai city.
Each record consists of a bike label, the pick-up time and drop-off time, as well
as the corresponding origin and destination with detailed GPS coordinates.

Evaluation Criteria. Davis-Bolding Index (DBI), also known as the classifi-
cation suitability index, is the sum of the average distance avg(C') between the
two clusters C; and C; divided by the distance between their center points wu.
The smaller the DBI, the better the clustering effect. Let C = {C1, Cs, ..., Ci},

2 )
avg(C) = eeT=1 Z dist(z;, ), (11)

1<i<j<|C]|

u:ﬁ Z x;, (12)

1<i<|C|
k
1 avg(C;) + avg(Cj
DBI = — . 1
k ; I?;ZX( dist(u;,u;) ) (13)

Baselines. We use the following methods as baseline algorithms.

(1) Spectral Clustering. Spectral clustering is an algorithm that evolves from
the graph theory and has been widely used in clustering. Compared with
the traditional k-means algorithm, spectral clustering is more adaptable to
our data distribution, and has better clustering results.

(2) K-means. In order to verify the validity of our method, we perform the
k-means algorithm on the original graph structure.
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5.2 Experimental Results

We selected two different hot spot regions to display our experimental results.
At first, we performed the Bike-OPTICS algorithm using different parameters
on these regions.

eps=5 minpoints=55 cluster=16 Extracted Clusters
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Fig. 6. Region partition in Grand Theatre
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Fig. 7. Region partition in Grand Theatre

Figure 6 shows the results of the Bike-OPTICS algorithm in different regions.
We choose Shanghai Grand Theatre and Shanghai World Expo Hall as center
respectively, and take their surrounding areas within 2000 m radius as research
regions. From Figs.6 and 7, we can see that the two regions are divided into
different numbers of clusters in Figs. 6(a) and 7(a). And in Figs. 6(b) and 7(b),
every valley represents a cluster. Among them, purple represents noise which
does not form any clustering. The Shanghai Grand Theatre locates at the center
of Shanghai and the bikes distribute densely there, which results in more clus-
ters. In contrast, the Expo Park is located in the suburbs of Shanghai, the bike
distribution is very scattered and cannot form effective clusters.
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Fig. 8. Clustering results

The experimental results of the three algorithms above are shown in Fig. 8,
with a horizontal axis representing the number of the predefined clusters, and
the vertical axis representing the corresponding DBI value. We can see that: (i)
Graph cluster with sparse constraint (GCS) outperforms the spectral clustering,
which indicates that graph clustering with sparse constraint helps to improve
the effectiveness of clustering. (ii) K-means can’t handle graph structure very
well, as the DBI value of k-means is much higher than spectral clustering and
GCS. (iii) Different regions have different clustering results. In Fig.8(a), GCS
has the lowest DBI value when cluster number is 6, while it has the lowest DBI
when clustering is 9 in Fig.8(b), possibly because Expo Park is located in the
suburbs of Shanghai and the activities are more diverse there.
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Fig. 9. Region partition in Grand Theatre

To further evaluate the performance of the model we proposed, we visualize

and analyze the experimental results in another way. As shown in Fig.9, our
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method has obtained six bike flow patterns including working day (morning rush
hour), rainy working day and weekend, etc, regarding Shanghai Grand Theatre
area as a study area. This proves that our method is effective for extracting bike
flow patterns.

6 Conclusion

In this paper, we introduced a new method on bike flow patterns analysis through
the bike trajectories data and POI data. At first, we divided urban Shanghai into
small grid areas, and then proposed a density-based clustering method for merg-
ing neighboring grid areas into a cluster. With the clustering results, we con-
structed the bike flow matrix, which recorded flow between any two regions in
the same time segment. To further explore the users’ behavior patterns, we devel-
oped a graph clustering model with sparsity constraints. Finally, we estimated
the performance of the model based on the large-scale real-world data collected
from Mobike in Shanghai. The experimental results show that the method we
proposed can effectively extract the bike flow pattern. In future work, we will
apply the presented method to the demand analysis, POI recommendation, and
other tasks.
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