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Abstract. In various research fields such as medicine, science, marketing,
engineering and military. Artificial intelligence approaches have been applied,
mainly due to their powerful reasoning capability, flexibility, modeling and
forecasting capacity. In this paper, an attempt to review urban water demand
forecasting using various artificial intelligence based approaches such as fuzzy
logic systems, support vector machines, extreme learning machines, ANN and
an ARIMA as well as hybrid models which consist of an integration of two or
more artificial intelligence approaches are applied. The paper illustrates how the
different artificial intelligence approaches plays a vital role in urban water
demand forecasting while recommending some future research directions.
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1 Introduction

With rapid increase in world population, per capital income, industrialization and the
impacts of global warmings due to climate change on the world [112, 111]. Forecasting
of urban water demand will play a vital role in the planning, distribution and man-
agement of scarce water resources among competitive users [92]. A hybrid wavelet
artificial neural network (WANN) was compared to three AI approaches; conventional
sediment rating curve, MLR and ANN. The results illustrated WANN as the most
accurate model for suspended sediment load forecasting. Research conducted by [26]
proposed a particle swarm optimization (PSO) model while comparing it’s relative
performance with ANN to forecasting the level of water in river channel. The results
illustrate it to serve as a method that is very reliable and efficient in training artificial
neural network. Using four different time scales [45], presented a dynamic neural
network (DNN) for forecasting urban water demand. The proposed DNN proves to be
the most efficient in water demand prediction than ARIMA and ANN feed forward
backward propagation with forecasting accuracy best in hourly model.

For water demand prediction [100], applied genetic expression programming
(GEP) and SVM. Results obtained proves GEP to be very sensitive in classification of
the data, genetic operators with optimal lag time, although the support vector machines
models slightly outperformed the GEP models. [61] assess computational intelligence
tools based on there ability to effectively support simulation of the social-economic
parameters of the complete water resource systems. They as well proposes a specific
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research agenda as a road map for both hydro informatics and adaptive water man-
agement. [2] conducted a research by comparing time series analysis and MLR to ANN
for peak water demand in summer days in Ottawa Canada. The ANN proved to
perform best in prediction of peak summer water demand than the reference models.
Being an arid country with harsh climate conditions [60], suggest the government to
enhance and implement new policies and strategies that will assist in management of
scarce water resources. For proper and efficient and reliable usage of water resources,
the government should also be involved in the following activities; water treatment and
reuse management, water loss management, public awareness, reducing subsidy policy,
incentive pricing as well as inclusion in participation of private sector.

Research conducted by [50] compares a series of predictive models using hourly
data set water demand that were obtained from water pumping stations in eastern
Spain. The results identify the SVR as the best model followed by MARS, PPR and
random forest. As [10] conducted a comparative survey and applied multiplicative
season algorithm (MSA) and discrete wavelet transform (DWT) as an alternative data
processing techniques. The output of the multiplicative season algorithm and discrete
wavelet transform are applied as an input to multi linear perceptron to develop a
combined model and compared it with stand alone multi linear perceptron. The results
demonstrate that the combined MSA-MLP was found to perform the best through out
the prediction lead time. They suggest further research to be taken for short term water
demand while taking into consideration weather data and other socioeconomic factors
as inputs variables. [96] in there research proves the heuristic model as the best in
performance, however integration of 2 or different types of artificial intelligent models
helps to improve the precision and accuracy by minimizing error to 15.96%. While [91]
reviewed forecasting models for the previous 5 decades and proposed a novel tech-
nique that can model the system to reflect the relationship between water demand and
macro economic environment. This was practically implemented by applying the
research under a recent alternative fluctuation of economic boom as well as down town
environment.

A novel technique that can estimate the total amount of dissolve solids, turbidity
and electrical conductivity was proposed and applied in Johor river [81]. The model
proves to have a greater effect in simulating and forecasting with an absolute error of
10% for streams, lakes, dams and rivers. In another study [88], designed and imple-
mented an intelligent decision support system (IDSS) using hourly water demand data
set for water demand management. The AI technique forecasting improves the per-
formance when compared to reference conventional learning models, although they
suggest a method for integrating the system to a multi agent system for further research.
Research by [40] proposed water demand forecasting model by applying Markov
chain, and compared the relative performance of homogeneous and non homogeneous
Markov chain (HMC) models with ANN and naive models. The HMC model proves to
be distinctly more efficient than the others. The authors suggest estimation of the
proposed model’s performance to other reference forecasting models using determin-
istic and probabilistic real life cases. While [48] presents an incremental ELM (IELM)
designed to operate based on the principles ELM. The results proves the kernel based
IELM to perform best than other online sequential ELM and LS-SVM with enormous
data.
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An analysis of new technique ANN, regression and time series analysis was con-
ducted by [57] to determine which of the networks is best. The output results obtained
establishes the suitability and superiority of the new technique of ANN over the ref-
erenced models. The performance of gradient powell-Beale ANN, MLR, resilient back
propagation ANN and Levenberg Marquardt ANN using 3 different types of data set;
temperature, precipitation and water consumption for six consecutive years was ana-
lyzed [6]. The Levenberg Marquardt ANN proves to be more precise, reliable and
efficient than the bench mark models. [46] applied WANN and predicted ground water
level for the next one year using genetic expression programming. The advantages of
monitoring the ground water resources was suggested for future studies. The authors
also suggested predicted water budget to be considered for further research on envi-
ronmental planning. To address water demand forecasting for real time operation [84],
applied multi layer perceptron back propagation ANN, dynamic neural networks
[DNN], ANN hybrid and DNN Hybrid. The DNN hybrid performed the best with
MAE 3.3 L/s and 2.8 L/s for train and test data set respectively for forecasting for the
next one hour and 3.1 L/s and 3.0 L/s for train and test data set respectively for the
subsequent 24 h respectively.

The rest of the paper is organized as follows; Sects. 2 to 7 provides the basics
review and current research trends in urban water demand forecasting using various
artificial intelligence approaches i.e. fuzzy logic systems, support vector machines,
extreme learning machines, artificial neural networks, ARIMA model and a combi-
nation of various hybrid models respectively. Section 8 presents the discussions of the
artificial intelligence in details based on the evaluation criteria, scaling pattern applied
and input variables. In Sect. 9 we presents the limitations and recommend future
research direction. Finally conclusion are discussed in Sect. 10.

2 Fuzzy Logic Systems

Fuzzy logic systems can be defined as formal method of reasoning to approximate
reasoning. The process normally involves complexity and uncertainty generally
appearing in different forms. The concept applied by a fuzzy logic system is consid-
ering the states of the system in the form of subset that are defined by the three special
words; I.e. “big”, “medium” and “low” etc. A suitable representation of both simple
and complex physical systems can be used in fuzzy rule base [10]. Three main com-
ponents that made up the architecture of a fuzzy logic system are the fuzzifier, fuzzy
database and the defuzzifier. The fuzzifier assist’s in converting the data set from
scalars to vectors before executing it within the fuzzy database, the defuzzifier trans-
forms the vectors obtained from the fuzzifier into the real data set. The fuzzy network
models are divided into 2 sections; (i) the fuzzy rule base (ii) fuzzy inference system
(FIS). The fuzzy rule base are defined by the conditional (IF-THEN) statements while
the FIS is further subdivided into 3 main categories depending on the nature of
inference operation of the conditional statement which are: Mamdani’s system,
Sugeno’s system and Tsukamoto’s system [8]. The membership function of a fuzzy
logic enables the model to characterized the antecedents and consequents. They can be
illustrated by four commonly used shapes; triangular, trapezoidal, sigmoid and
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gaussian shapes. These shapes assist in illustrating a clear direction on how the grades
varies along the vertical-axis of the models [9].

Fuzzy sets enables the reduction of enormous data set to precise, quantitative and
fewer variables which will be utilized by fuzzy logic systems. They also deals with
human reasoning as well as analyzing uncertainties in the model. These models needs
the least observations than most of the other forecasting models. Incomplete data set
can be utilized to generate the predicted output results, although the output results
obtained by the fuzzy logic system is not always accepted [42]. [10] conducted a
research on fuzzy logic approach for the purpose of making predictions of water
consumption in Istanbul city of Turkey. The results obtained proves an overall pre-
diction relative error of less than 10%. A decision support system (DSS) that can be
applied for identifying the following process; water reuse potentials, variables for
observation of the reclamation of water level using fuzzy logic systems was developed
by [9]. From the results obtained, water reuse potential is highly related to water
exploitation index, drought, density of the population, waste water treatment and water
demand. Considering city plans, nearness to cultural sites, medical facilities, education
and transport systems for house pricing in Turkey [63], applied fuzzy logic systems.
The results proves fuzzy logic to be able to predict house sale prices for different cities
in the world.

By identifying many factors directly or indirectly related to pipe leakage potentials
[54], proposes a novel fuzzy based algorithm for forecasting leakages in piped water
distribution system for urban cities. The proposed model first implemented for water
distribution in Thailand assists water stakeholders to prioritize there rehabilitation
strategies of pipe water distribution system while establishing an effective, reliable and
efficient method for water leakage control. While research conducted by [55], will have
a important impact by assisting water stakeholders in controlling leakages in pipe
distribution system within a minimum time after its occurred. This research will also
help in prioritizing the management of leakages in pipe distribution systems. By
applying fuzzy logic approach for the analysis of electricity energy demand in
hydrophos electric power stations [56], reveals the method to be very effective, efficient
and reliable. The step by step processes involved in the development of a prototype
spatial decision support system (SDSS) was described and conducted by [72]. The
output results obtained proves the model’s application to compliment engineers in
urban water management application while integrating it to users characteristics and
site constraints.

3 Support Vector Machines

Support vector machines can be defined as a statistical modeling tool that can be
applied for the analysis of both regression and classifications problems. These learning
theory do not normally have a special characteristics or structure. The trained data sets
are normally judged by there contribution, as such very few section of the trained data
contribute to the final model’s performance [36]. SVMs minimized the upper bond of
the generalized error while regressing functions by utilizing a high set of its linear
function [85]. Support vector regression (SVR) are very essential components
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employed for utilizing support vector machines. They involves mapping the input
space s to the high dimensional space Q(s) in an approach that is non linear [80]. The
process involves inserting the kernel function so as to avoid another dimension, this
enables it to make possible for the model to analyze regression problems. The variables
which are the data set applied are the input data plays a vital role as support on the
training model [101]. The equation is illustrated below.

Y xð Þ ¼ wK xð Þþ c ð1Þ

Y(x) represents output response variable, w is the weight vector, K is the kernel
function that transforms the support vector in high dimensions, x is the input param-
eters and c is the bias. The performance of support vector regression depends on setting
a regularization and kernel function constants that are excellent. The later assist in
changing the dimensions of the input space, thus enabling it execute the regression
analysis with high confidence level [36].

In terms of measurement of accurate stream flow and reservoir inflow [68], applied
ANN, ARIMA and SVM. The results demonstrate the distinct capability and advantage
of SVM in forecasting hydrological data set composed of linear and non linear char-
acteristics. Research titled “Water demand prediction using ANN and support vector
machines” by [80], compares two artificial intelligence models for water demand
prediction. The results proves ANN to perform significantly better than SVM. A multi-
scale relevance vector regression model which is applied for prediction of urban water
demand to 2 real water works in Chongqing China was proposed by [15]. The results
proves the hybrid model forecast on urban water demand to be more precise and
accurate using 3 evaluations criteria; CoC, MAPE and NRMSE. [101] for assessing the
usage of phase space reconstruction in there research prior to designing of model’s
input data set, designed a support vector machine for prediction urban water demand.
The final results obtained, proves optimized lag time of the input data set assist in
enhancing the accuracy and effectiveness the model. [25] proposed a water demand
forecasting model and adopt a 2 stages learning procedure that operates based on time
series data set clustering with SVR. The model which is applied at both aggregated
level and individual consumption level proves to be very reliable and efficient on
individual data set, due to it’s ability to makes the final results more statistically
accurate.

4 Extreme Learning Machines

[52] Proposed a state of art of a simple learning AI algorithm for a feed forward neural
network. These algorithm obtained a better generalization performance and are faster
than conventional learning algorithms, because they have a greater ability to store
regression problems efficiently within a short modelling time, while showing better
predictive performances [33, 75]. Extreme learning machine secure the name because
the proposed algorithm tend to reach the least in training error, while obtaining the
smallest forms of weight as well as best in generalization, they also execute programs
faster than conventional learning algorithms [1, 51, 110]. Research conducted by [104]
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compared the output results of an ANN and a recently developed ELM for prediction of
urban water demand. These models are integrated with wavelet transform (W) or
bootstrap (B), ELM, WELM, BELM, ANN, ANNW, ANNB while applying water
demand and climate data set from three cities in Canada. The results obtained illus-
trated the importance superiority of wavelet transformation, due to its ability to
improves the accuracy and efficiency of the models. The capability of an extreme
learning machine model for estimating streamflow discharge in urban region of Aus-
tralia was compared with the bench mark ANN models by [32]. Based on there
findings, ELM with selected input data set has a good capability for estimating
streamflow discharge and they also performs better than ANN model. They suggest the
extreme learning model based model to be employed for analyzing the various pro-
cesses in hydrological stations; such as river flows discharge for efficient and effective
usage of water in agricultural lands, developing early warning strategies for drought
and flood. [79] performed investigations on the potentials of MLR, ELM, SVR and
ANN for short term urban water demand forecasting. Results justifies the superiority
performance of ELM, due to its ability to improve in accuracy and precision of urban
water demand forecast over the referenced models. They suggest further recommen-
dations to include investigation which models will be more suitable for forecasting long
term water demand values in other cities which have different climate characteristics
while demanding the applications of ELM in forecasting streamflow discharge, ground
water level and rainfall prediction.

A meta ELM which operates in 2 stages was proposed by [65]. The analysis and
experimental results provided by the some of the bench mark ELM and ensemble
models proves the proposed hybrid ELM model as more effective and efficient than the
reference models. The authors suggest further research to include subset resampling
selections and meta extreme learning machine model with heterogeneous extreme
learning machines. In order to determine the structure of single hidden layer feedfor-
ward NN for regression problems [49], proposed an efficient model on error minimized
ELM and particle swarm optimization. Experiments results illustrated the proposed
model to achieve best generalization and performance with few hidden layer nodes than
the reference ELM. They suggest future research work to include the steps involved in
solving the problems, as well as applications of the proposed hybrid model for complex
classification problems. [113] seven different artificial generated and nine real data sets
are applied to estimate the accuracy of the fast incremental ELM models for classifying
data streams with traditional algorithms. The proposed method proves to be simplest in
structure, and also acquires a higher and more accurate results with least time con-
sumption. The authors suggest to include in there future research to include the pro-
cedure of selecting a bridge parameter while ensuring accuracy, speed and stability.
[116] proposed a novel approach that integrates the wavelet analysis, kernel extreme
learning machines on self adaptive particle swarm optimization (PSO) and an ARMA
so as to enhance forecasting performance while applying each of the model’s char-
acteristics. The performance of the proposed hybrid model proves it to produce the best
performance as its produces more accurate, better generality and practicibility than
single models.
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5 Artificial Neural Networks

õA data processing, modelling and forecasting techniques that are motivated by the
learning steps that takes place in nervous system of the human brain system composed
of 3 sections; input, hidden and output layers are called artificial neural networks. These
artificial intelligence models can also be applied for the of adaptation of an arbitrary and
unknown equations with a degree of precision and accuracy [8, 99]. ANN can also be
applied in forecasting future values of possible multivariate time series data set based on
past values, and it can be described as a network model of with processing nodes which
are interconnected in a specific order thereby assisting it to perform numerical calcu-
lations [6, 39, 82]. Without any physical involvement ANN, have the capacity and the
means to learn behaviours from examples between the inputs and outputs layers a term
referred to as generalization ability. It also has superior characteristics to be able to
extract the various patterns obtained between the input and output variables without the
need for an explanations [21, 120]. In order to determine the house prices in Turkey
[99], compares the relative forecasting ability between hedonic regression and ANN.
The study illustrated the ANN as the best alternative for prediction of houses prices.

To address water demand forecasting for real time operation [18, 23] applied ANN
in residential water end use forecasting while [84], applied multiple layer perceptron
back propagation ANN, dynamic neural networks [DNN], ANN hybrid and DNN
Hybrid. The DNN hybrid performed the best with MAE 3.3 L/s and 2.8 L/s for training
and testing data set respectively for forecasting for the next one hour and 3.1 L/s and
3.0 L/s for training and testing data set respectively for subsequent 24 h respectively.
For modelling, control of water quality and drinking treatment process of water, [20]
illustrated the performance of ANN as its captures the non linear characteristics of the
process where the micro-scale interactions are not properly understood thereby pro-
viding the water treatment plant operators alternatives to scale experiments having the
best process operating characteristics. [38] investigated the best fit input structure for
predicting water consumption using a series of ANN networks. A new technology to
forecast household water demand in China which provides an efficient and reliable
method to formulate domestic water demand in urban area was proposed by [70]. The
authors suggest for time extrapolation, multi variant method as well as forecasted
information on population, income and water prices to be included in future studies.

By merging the output wavelet transform to ANN for crude oil price prediction
using 2 main crude oil prices, [102] estimated the relative performance of the hybrid
model to regular ANN. In both cases wavelet transform ANN illustrated crude oil
prices more efficient and reliable forecast than a single ANN model [62]. A multiple
layer feedforward neural network model was presented by [62], for forecasting spot
price crude oil prices direction in short duration for three days ahead by finding optimal
artificial neural network model structure. The output generated illustrated a very
comprehensive crude oil price which is dynamic in nature, this will assist stakeholder
and individuals in understanding risk management. By analyzing the learning steps of
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(back propagation, BFGS, conjugate gradient algorithm) and genetic algorithm [93],
compared the relative performance of a single ANN for water demand prediction.
Genetic algorithm outperformed the reference models with respect to forecasting.

6 ARIMA Models

The auto regressive integrated moving average (ARIMA) also referred as Box-Jenkin
model, is one of the most applied artificial intelligent approaches that are also appli-
cable in analysis and forecasting of time series data set. This is because the model have
the ability and is capable of identifying complex patterns while analyzing and fore-
casting in time series data set [5, 109]. These models transforms the time series data
sets into stationary forms by differencing process. For data set to be stationary, it’s
statistical process most be constant over a period of time [31]. Because it does not
assume previous knowledge of any underlying models or relationship as in some
methods, the use of ARIMA is uncertain as it depends essentially on past informations
obtained from the data set as well as previous error for prediction [7, 85]. The ARIMA
equation is normally represented by (p, d, q), where p represents the frequency of auto
regressive terms, d is defined as the frequency of non seasonal differences while q
represents the lagged forecast errors in the output prediction equation. There are three
steps involved in an analyzing ARIMA model are identification, parameters estimation
and prediction.

A model which combines wavelet transform, ARIMA and ANN to predict elec-
tricity demand and price simultaneously was proposed by [109]. The outputs obtained
demonstrated the superiority of hybrid model due to its ability to provide a relevant
improvement in water demand and price forecasting accurately when it is compared to
other approaches that applied a single framework. [7] compares the forecasting ability
of ARIMA and ANN using stock exchange data set. The output results obtained reveals
the superiority of ANN over the ARIMA model. [85] proposes a hybrid neural network
model that exploits the strengths of SVM and ARIMA models for stock price pre-
diction. The results proves a combination of 2 good models does not necessary produce
the best performance. By coupling wavelet transform and ANN [4], compares the
relative performance of a proposed model to ARIMA and ANN for ground water level
forecasting. The outcome proves wavelet transform ANN as potential and very useful
for ground water level forecasting. While [89], applied ARIMA in identifying the
relationship in urban water demand and weather variables.

7 Hybrid Models

A combination of two or more models give rise to a hybrid models. Since most of the
historical time series data presented in this review paper employs the hybrid models,
therefore a thorough review of the various combination of hybrid models are presented
below.
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7.1 Wavelet ANN (WANN)

One of the most common applied hybrid models is WANN. A mathematical equations
that is capable of producing representation of the data set and their relationship, so that
the data set can be analyzed is termed as wavelet transform. They also helps in ana-
lyzing, removing of unwanted noise from signals as well as in the compression of
images. The data sets is broken down by the transformation into its wavelet that is a
scale and shifted version of the mother wavelet. They also solves some of the disad-
vantages of fourier series analysis through capturing important information about the
decomposition stages. Two main types of wavelet transforms are; the discrete and
continuous wavelet transform (DWT), (CWT).

Wavelet transform also helps by capturing the various characteristics of the target
data set while detecting localized information in a non stationary data set. WANN uses
as input, data sets which are obtained from discrete or continuous wavelet transform on
the original data set. The results of the wavelet decomposition serves as the input for
WANN [2, 5, 19, 24, 46, 92, 102, 121]. A pictorial diagram illustrating a hybrid
wavelet is represented in Fig. 1 below.

7.2 Adaptive Neuro Fuzzy Inference Systems (ANFIS)

A integration of artificial neural networks and fuzzy inference system is termed as
ANFIS. For searching fuzzy rules so for that they can performs well on a given
program, these models uses feed forward neural networks (FFNN). ANFIS models
have an excellent capacity in categorization, training and production. They posses
superiority thus allowing it to bring fuzzy rules learned from the data as well as in
making rule base adaptive from numerical data. The results obtained from the ANNs
serves as an input of the fuzzy inference system in this model [13, 14, 19, 37, 108,
119]. A hybrid model that consist of an integration of ANN and fuzzy linear regression,
which are applied for urban water demand was presented by [14]. The model has
shown its superiority over the conventional regression approach. It also proves to be
robust against inconsistency and have a higher dimensionality and co-linearity for
summer and winter days.

Fig. 1. A pictorial diagram of the hybrid wavelet model for artificial intelligent forecasting [83].
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[37] investigated the relative performance of ANN and ANFIS models for pre-
dicting ground water level in Iran using 9 years data set. The results proves that, by
executing different structures of ANFIS models have the best accuracy by having least
number of errors, especially when it applied trapezoidal function and the hybrid
methods. [108] presents a methodology to forecast consumers demand of water supply
using 6 different models of ANFIS system while considering number of membership
functions and the duration. The output result uncovered, the performance of ANFIS
significantly improve with increase in input parameters.

7.3 ARIMA+SVM

[85] proposed a hybrid model which is composed of an integration of ARIMA an SVM
models. The hybrid model captures both the characteristics and capabilities in the
domains of the ARIMA and SVM. It can also model linear and non linear character-
istics with overall enhanced prediction.

7.4 Wavelet+ARIMA+Neural Networks

In there research [109], combined wavelet transform, ARIMA and neural networks
model for capturing the underlying patterns of the different networks. The proposed
hybrid model algorithm is executed for the feature selection on each wavelet sub series
data set with the NN using the best candidature for forecasting. The authors proves the
proposed model to provide an improvement in both water demand and price forecasting
accurately when it is compared to other models using a single AI model approach.

7.5 Wavelet SVM/R

The wavelet SVM are models that uses as input data set that were obtained from
wavelet transform. Some of the advantages of wavelet transform are assisting in de-
noising, compression and decomposition of the data set. Thus the separation of some
features in wavelet transform helps to exploit the underline patterns of original data set.
All data set applied to SVM for forecasting proves the best performance when com-
pared to other models ANN, SVM, WAMM, WSVM [36, 121]. Comprehensive
comparison and discussion of WSVM, WANN, ANN and SVM by [121], proved that,
wavelet preprocessed improves the forecasting capability and efficiency of the models.
The WSVM provided more precised and reliable groundwater depth prediction with
WANN close in some single coefficient.

7.6 SVR+Adaptive Fourier

In order to improve the prediction of SVR [23], built on top of the support vector
regression model a fourier series. The output of the fourier series serves as an input to
support vector regression thus helping the hybrid model to better adjust the maximum
and minimum water demand peaks and captures part of the data set that the support
vector gression cannot be able to reproduce. The proposed model proves to be an
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important tool for water utilities due to its ability to allow operators to program reliable
manoeuvre so as to minimize the use of water and energy.

7.7 ANN+Time Series Model

The hybrid model presented in this subsection consist of ANN and time series model.
For enhancement of ANN and fourier series, the output results of ANN obtained is feed
into the time series model. The authors proved that, combining ANN with time series
produces the best output compared to the individual usage of ANN and time series
models [12].

7.8 Wavelet+Multiple Linear Regression

Multiple linear regression was applied to model the linear characteristics and rela-
tionship between dependent and independent variables. [36] applied the output of the
wavelet transform as the input of the multiple linear regression. While [36], applied
hybrid WNNs, wavelet linear regression (WLR), WSVR and compared with MLR,
support vector regression and time delay neural networks for ground water level
simulation for 2 wells in Iran. The study reveals wavelet improving the training of the
neural network.

7.9 Wavelet+ANFIS

To improve the accuracy of there model, [19] applied wavelet pre processed data were
used as input to ANFIS model. The data set that were decomposed were executed
individually in the ANFIS model. By integrating the decomposed wavelet to ANFIS,
the output results of the WANFIS were obtained. [19] compares the performance of
ANN, ANFIS, WANN, WANFIS models for forecasting salinity in river basin using 28
years data set for conducting the practicals on the artificial intelligence models. The
hybrid WANN and WANFIS models outperformed the reference models in predicting
water salinity indicating the advantages of wavelet transforms.

7.10 Bootstrap NNs+Wavelet Bootstrap NNs

A data driven process that can simulate the multiple realization process from a given
data set of a process is defined as bootstrap [105]. In bootstrap NNs the output results
obtained from the bootstrap is applied as the input to the AI model. Thus enabling the
model to obtain better results than NNs, due to it’s ability to enhance the capability of
the bootstrap. The bootstrap NN reduce the uncertainty of forecast and the performance
of the forecasted confidence band are more accurate and reliable.

7.11 WBNNs

The model takes both the advantages of the capabilities of the of bootstrap re sampling
and wavelet transformation techniques to form a single model. [105, 106] proposed a
hybrid WBNN for prediction of water demand. The relative performance of the hybrid
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model is compared with ARIMA, ARIMAX, conventional neural networks, WNNs,
bootstrap NNs and simple naive persistence index model. Results obtained demon-
strated the hybrid wavelet bootstrap NN and wavelet analysis NN produce more
accurate results. The bootstrap NN reduce the uncertainty of forecast and the perfor-
mance of the forecasted confidence band are more accurate and reliable.

[12] compared time series networks, time series general regression NNs and general
regression NNs for domestic water demand using data set obtained by meteorologist.
The results proved that, temperature as the most important meteorological factor while
rainfall as the least for training the model. Also time series general regression neural
network produced the best results when they are compared to a individual time series
and ANN models.

TSM = time series model, WTBM = wavelet transform base models, MAPE =
Mean absolute percentage error, CoC = coefficient of correlation, CoE = coefficient of
efficiency, CoD = coefficient of determination, MAE = mean absolute error, RMSE =
root mean square error, AARE = average absolute relative error, RBF = radial basis
function, RPE = relative percentage error, CoV = Coefficient of variation,
ELM = extreme learning machines, GRNN = generalized regression neural network,
WSVR = wavelet support vector regression, SVM = support vector machine,
MLR = multiple linear regression, NSE = Nash sutcliffe efficiency, AAE = average
absolute error, WANN = wavelet artificial neural network, ARE = average relative
error, LR = linear regression, FFNN = feedforward neural network, GA = genetic
algorithm, LSSVR = least square support vector regression, WLSSVR = wavelet least
square support vector regression, WBANN = wavelet bootstrap artificial neural net-
work, GNP = gross national product, WLR = wavelet linear regression, FNN = fuzzy
neural network, WMLR = wavelet multiple linear regression, GP = genetic program-
ming, SVR = support vector regression, DANN = dynamic artificial neural network,
KPLS = kernel partial least square, WT = wavelet transform, PLS = partial least
square, FTDNN = focused time delay neural network, HP = Hodrick prescott filter,
VC OS-ELM = variable complexity online sequential extreme learning machines,
SDARE = standard deviation of the absolute relative error, SSE = sum of square error,
MGM = multiple step gradient method, VsSVR = variable structure support vector
regression, MSRVR = multi scale relevance vector regression, DWT = discrete
wavelet transform, NLR = non linear regression, WANN = wavelet artificial neural
network, IoA = index of agreement, BoM = bank of models, OLS = ordinary least
square regression model, MSE = mean square error, RCGA = real coded genetic
algorithm, SOGA = structure optimization genetic algorithm, RCGA = real coded
genetic algorithm, SOGA = structure optimization genetic algorithm, FCM = fuzzy
cognitive maps, NRMSE = normalized root mean square error, WANN = wavelet
artificial neural network, GRNN = general regression neural network, RF = random
forest, WBNN = wavelet bootstrap neural network, WANN = wavelet neural network,
GP = genetic programming, PDP = percentage deviation in peak, WELM = wavelet
ELM ANFIS = adaptive neuro fuzzy inference system, BNN = bootstrap neural
network.
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8 Discussion

Due to artificial intelligence ability to improve the efficiency and effectiveness of the
modelling process, the input layer is considered as the most important layer of a neural
network. A very important factor in water price prediction is selection of input data
sets. The process which is normally done depends on the knowledge of the artificial
intelligence model and availability of data. The frequency of some common input
variables applied in the reviewed article is illustrated in Fig. 2. As it can be seen, due to
difficulty of acquiring some input data such as water quality, humidity and pressure due
to lack of sensors and other privacy concern. Input data sets for instance water demand,
precipitation, temperature and population figures are the most frequently applied input
variables in water demand forecasting.

The time scale represents the sampling interval of sensors applied for the purpose of
taking reading of various articles reviewed. The scaling pattern on the input variables
applied in urban water demand forecasting are mainly divided into hourly, daily,
weekly, monthly and annually. The most common applied time scale according to
Fig. 3 is daily followed by monthly then hourly with the least being annual. The daily
scale pattern is mostly applied due to the fact that it provides a more comprehensive
information on urban water demand forecasting while the annual scaling have the least
frequency due to its nature to focus on short term prediction.

Evaluation metrics are performed for the estimation of efficiency and effectiveness
of the different artificial intelligence models. According to [29], evaluation is normally
conducted with respect to closeness of fit and in most of the cases with respect to
observations recorded. It is defined as a method of quantitative assessment, it defines
what is to be measured as well as providing the process that are to be used to perform
such operations. The frequency of the different standard evaluation criteria are per-
formed as illustrated in Fig. 4. The most common ones are RMSE, MAPE, MAE, CoC,
CoE, NSE and MSE.

Fig. 2. Frequency of the input variables applied in the reviewed papers.
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Although various studies have indicate increase in urban water demand due to
factors such as global climate change, rapid urbanization, population growth and
industrialization among others. This results to an increase in environmental concern for
future generations, but the condition will not continue to rise forever due to environ-
mental public awareness, economic recession of some nations as well as industrial
saturation. Table 1. summarizes the various artificial intelligence of some selected
articles, including authors, artificial intelligence approaches, location, input variables,
evaluation criteria and temporal scale.

Fig. 3. Frequency of scaling applied in the reviewed papers.

Fig. 4. Frequency evaluation criteria applied in the reviewed papers.
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Table 1. Details of AI reviewed papers including authors, AI approaches, location, input
variables, evaluation criteria and temporal scale.

Authors AI approaches Location Input variables Evaluation
criteria

Temporal
scale

[2] ANN Canada Climate variables,
water demand,
population

AARE,
Max ARE, CoD

Daily

[3] Continuous
wavelet
transform

Canada Water demand,
precipitation,
temperature

Fourier and cross
spectral analysis

Daily

[4] ANN, WANN
and ARIMA

Canada Precipitation,
temperature and
GWL

RMSE, CoE,
CoD

Monthly

[5] WANN,
ARIMA, ANN
and MLR

Canada Water demand,
precipitation,
temperature

RMSE, CoD,
RRMSE,
Efficiency index

Daily

[6] Multi variate
regression and
ANN

Cyprus Water demand,
temperature and
rainfall

Max ARE,
AARE, RMSE,
CoD

Weekly

[9] Fuzzy logic Various
cities

Water demand,
population

Drought and
water
exploitation
index

Monthly

[10] Season
algorithm,
WTBM

Turkey Water demand RMSE, CoE Monthly

[11] Fuzzy logic Turkey Water demand Average RPE,
ARMSE

Monthly

[14] Fuzzy linear
regression, ANN

Iran Water demand,
climate

MAPE Daily

[15] MSRVR, FFNN,
GRNN

China Water demand MAPE, CoC,
NRMSE

Daily

[16] SVR, VsSVR China Water demand MAPE, RMSE,
MAE

Daily

[17] MLR, adaptive
heuristic and
transfer noise
model

Netherland Water demand,
temperature

Relative error,
MAPE, NSE

Daily

[19] ANN, WANN,
ANFIS,
WANFIS

Iran Water quality
parameters

CoD, NSE, TS,
NRMSE

Monthly

[20] ANN Canada Water quality MAE Daily
[22] LR, MLR,

ARIMA, ANN
Canada Water demand,

temperature,
precipitation

AARE,
Max ARE, CoD

Weekly

(continued)
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Table 1. (continued)

Authors AI approaches Location Input variables Evaluation
criteria

Temporal
scale

[23] SVR+fourier
time series

Brazil Water demand, wind,
precipitation

RMSE, MAE Hourly

[25] SVM Italy Water consumption MAPE Daily,
hourly

[26] ANN China Water level RMSE, mean
relative error,
CoE

Daily

[27] ARIMA, MLR USA Water demand,
population,
precipitation,
temperature

Ordinary least
square regression

Daily,
monthly

[28] GA, RBF, SVM China Water demand MAPE Daily
[30] ANN, FFNN,

MLP, RBF
Nil Hypothetical MSE, CoD,

MAE, CoE,
mean square
relative error

Daily,
monthly

[32] ANN, ELM Australia Precipitation,
temperature

MAE, CoD,
NSE, Willmotts
index

Monthly

[34] WELM,
WANN, ELM,
LSSVR,
WLSSVR,
ANN, wavelet
decomposition

Australia Precipitation RMSE, NSE,
MAE, Willmotts
index, PDP, CoC

Monthly

[35] MLR Zimbabwe Population, rainfall,
GDP

CoV Monthly

[36] ANN, MLR,
WLR, WANN,
SVR, WSVR

Iran Ground water level NSE, RMSE Monthly

[37] ANN, ANFIS Iran Precipitation,
irrigation return, flow
pumping rate

RMSE, CoD,
MAE

Monthly

[38] ANN FFNN,
GRNN, cascade
correlation NN

Turkey Water consumption AARE, NRMSE Monthly

[41] Base and season
use model, auto
regression model

Australia Water demand,
temperature, rainfall

Standard error,
CoD

Daily

[44] DANN, k-
nearest
neighbour
model, FTDNN

Iran Water demand SSE, MSE Daily,
monthly,
weekly

(continued)
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Table 1. (continued)

Authors AI approaches Location Input variables Evaluation
criteria

Temporal
scale

[45] ARIMA,
DANN, ANN

USA Water demand,
weather variables

MAPE Hourly,
daily,
weekly

[46] WT-ANN, WT-
GP

Iran Water level RMSE, NSE,
MAE

Monthly

[47] ANN, fuzzy
model tree
technique

India Water level, water
demand, discharge

CoC, RMSE Daily

[53] ARMA, WT-
KPLS-ARMA,
WT-PLS-
ARMA KPLS

China Water demand for
industrial, domestic
and agriculture

MAPE Annual

[57] ANN India Water demand,
temperature, rainfall

MARE, AARE,
TS

Weekly

[58] LS SVM China Temperature,
precipitation,
discharge

MSE, MRE Hourly

[59] ARIMA,
ARIMA+e
smoothing

Sri Lanka Water demand,
population

CoC, CoD,
RMSE, NSE

Hourly

[64] FNN, MLR,
MLR+MLR,
HP-MLR+FNN,
HP-FNN+FNN

China Population,
temperature, water
demand, greenery
coverage, GDP

Relative error Annual

[66] OS-ELM, OS-
MLR

Canada Discharge, wind
speed, GWL,
temperature,
precipitation,
humidity

MAE, RMSE,
NSE

Daily,
monthly
annual

[67] OS-ELM, VC-
OS-ELM

Discharge, wind
speed, GWL,
temperature,
precipitation,
humidity, snow depth

MAE, RMSE,
NSE

Daily,
monthly
annual

[68] SVM, ANN,
ARIMA

China Streamflow discharge RMSE, CoC Monthly

[69] ANFIS, fuzzy
theory

China Water demand for
industrial and
commercial
operations, weather,
population

Fuzzy rules Hourly

[71] ANN, ANFIS India Discharge CoC, RMSE,
NSE

Monthly

(continued)
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Table 1. (continued)

Authors AI approaches Location Input variables Evaluation
criteria

Temporal
scale

[73] ANN, WANN India Discharge, rainfall,
temperature,

NSE, RMSE,
MAE, PPD

Daily

[74] ANFIS, multi
variate analysis

Greece Temperature, rainfall,
wind speed, water
demand, tourist

RMSE, MSE,
MAE, MAPE,
mean error

Daily

[76] ANN Iran Temperature,
precipitation,
humidity, pressure,
wind speed,
population

MAPE Daily

[77] MLR, DWT,
MLT+DWT

USA Humidity, water
demand, temperature,
rainfall, wind speed

CoD, RMSE,
MAPE

Daily,
monthly

[78] Constant rate
model

UAE Water demand,
population,
temperature,
precipitation

SDARE, AARE Daily,
monthly

[79] MLR, SVR,
ANN, ELM

Canada Rainfall, temperature,
water demand

RMSE, CoD Daily

[80] ANN, SVM South
Africa

Water demand,
population

Support vector
genius, artificial
neural genius

Daily

[81] ANN Malaysia Water quality SSE, MAPE Daily
[84] ANN, DNN,

ANN-H, DNN-
H, H = hybrid

Brazil Water supply,
temperature,
humidity

MAE, pearson
coefficient

Hourly

[86] SOGA, RCGA,
FCM, FCM
+SOGA+ANN

Greece Temperature, tourist
arrivals, rainfall,
water demand

MAE Daily

[87] FCM, RCGA,
MGM

Greece Temperature, tourist
arrivals, rainfall,
water demand, wind
speed

MAPE, RMSE,
MAE, MSE

Daily

[88] ANN Spain Water demand MAPE Hourly
[90] MLR, ANN,

exponential
smoothing,
ARIMA

Spain Water demand,
temperature,
precipitation,
humidity, sunshine
duration, wind speed

CoD, CoE,
average relative
variance,
percentage
standard error of
prediction

Daily

[92] ANN, MLR,
WANN,
conventional

USA Suspended sediment
load, river discharge

CoD, MAE Daily

(continued)

612 A. U. Muhammad et al.



Table 1. (continued)

Authors AI approaches Location Input variables Evaluation
criteria

Temporal
scale

sediment rating
curve

[93] ANN, Naive,
BoM, QMMP
+kNN, Holt
winters GA

Spain Water demand RMSE, MSE,
MAPE, MAE

Hourly

[94] WTGA NN, GA
optimised ANN

India Discharge RMSE, NSE,
discrepancy ratio

Daily

[95] ARIMA, LR,
naive, ANN,
Holt winters,
RCGA FCM

Poland Water demand,
temperature,
precipitation

MAPE Daily

[96] ARIMA, parallel
adaptive
weighting
strategy and
heuristic

Portugal Water demand MAPE, CoC Hourly

[97] SVM, ANN,
NLR, ELM

Canada Pipe attributes CoC, CoE, IoA,
RMSE

Annual

[98] WANN, MLR,
ANN, WMLR

India Discharge NSE, MAE,
CoD, RMSE

Daily

[100] GP, SVM Canada Water demand,
population,
temperature, wind
speed, humidity,
precipitation

RMSE, CoD,
MAE

Monthly

[101] SVM Canada Water demand,
precipitation,
temperature

CoD, RMSE Monthly

[103] ANN, adaptive
sugeno fuzzy,
ANFIS

Iran Water demand,
temperature,
precipitation,
sunshine duration,
dew point, wind
speed, pressure

CoC, MSE,
NMSE, MAPE

Daily

[104] ELM, ANN,
WELM,
WANN, BANN,
BELM

Canada Temperature, water
demand, precipitation

MAE, PDP,
CoD, RMSE

Daily

[105] ARIMA,
ARIMAX,
BNN, NN, naive
persistence

Canada Water demand,
temperature

RMSE, MAE,
percentage
deviation in
peak,

Daily,
weekly,
monthly

(continued)
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9 Recommendations for Future

From a thorough review of over 100 most recent and cited research articles from high
impact journals. We state some limitations as well as suggest some future recom-
mendations as follows:

• Some basic information on each of the artificial intelligence approaches presented in
this study on urban water demand management are not provided in detail. The main
reason is due to the fact that, the articles reviewed does not provide the overall
picture of each of the models due to it been limited between 2008 to 2018. But we
have tried to be as comprehensive as possible, while giving good applications that
demonstrated the usefulness and applications of each model as solutions to urban
water demand forecasting.

• We suggest future research to include the effects of climate variables such as
pressure, humidity, temperature as well as water demand and population and

Table 1. (continued)

Authors AI approaches Location Input variables Evaluation
criteria

Temporal
scale

index, WBNN,
WNN

precipitation,
CoD

[107] ANN, DNN,
ELM, RF, MLR,
Gaussian
process
regression

EU Temperature,
humidity, wind
direction and speed

RMSE, R-
squared, MSE,
MAE

Hourly,
daily

[108] ANFIS India Water demand RMSE, MAPE,
CoC

Daily

[114] System
dynamics

China Water demand,
population, economic
development

Relative error Daily

[115] ARIMA Turkey Industrial,
agricultural,
commercial water
demand, pipe lines,
dams

MAPE Daily,
Monthly

[117] ELM, GRNN,
SVR

Iraq Discharge Willmotts index,
RMSE, MAE,
NSE, CoC

Monthly

[118] MR, NLR Turkey Water bill,
temperature,
humidity, rainfall,
global solar radiation,
pressure, water
demand, sunshine
duration

MAPE, CoC Monthly
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incorporate these data while taking there advantages to determine there relationship
at multiple scales.

• Rather than focusing on error based evaluation criteria in evaluating the artificial
based approaches. We suggest future research to apply evaluation based criteria
based on non error based to measure the performance of the models.

• We also suggest the hybridization of novel artificial neural network model with
other non expert systems for urban water demand prediction.

• The analysis of the advantages and disadvantages of each accuracy assessment to
the nature of forecasting urban water demand problems can be an interesting area
for future research works [43].

10 Conclusion

Recent research on urban water demand forecasting applied by different artificial
intelligence approaches such as artificial neural network, ARIMA, extreme learning
machines, fuzzy logic systems, support vector machines and an integration of two or
more artificial intelligence approaches such as WBNN, ANFIS, WANFIS, WSVR,
WMLR, ARIMA + SVM, SVR + adaptive fourier, ANN + times series model,
Wavelet + ARIMA + NNs and BNNs + WBNNs from 2000 to 2018 are presented.
More focus have been presented to wavelet transform, due to it’s ability to assist in
denoising while decomposing, manipulating and analyzing signals at different fre-
quency bands and resolutions. Wavelet transform also helps to improve the efficiency
and reliability of the AI model. The reviewed papers proves that, there is no single
artificial intelligence or hybrid model that seems to be the overall best in performance
for urban water demand forecasting.

The research also provided an analysis on over 100 most recent and cited research
articles from high impact journals while providing guidance to researchers, academi-
cians, households and water utility managers on urban water demand management. The
reviewed papers affirmed that, urban water demand forecasting can be of positive
impact for capital investment, revenue collection analysis and generation as well as
market management for future generations. The paper also proves that artificial intel-
ligence can successfully be applied for urban water demand forecasting while pre-
senting some future research directions.
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