
Realization of Transmission Control Protocol
Based on lC/OS-II

Qianyuan Wang(&) and Yujun Gao

Tongji University, No. 4800 Cao’an Highway, Shanghai 201804, China
wangqianyuan123@qq.com

Abstract. TCP/IP protocol suite plays an important role in computer network,
in which TCP is a crucial protocol. To realize a general TCP on lC/OS, this
paper adopts the embedded TCP/IP protocol stack called lC/IP as a basic
version. The original TCP code in lC/IP will be modified to realize all functions
defined in standard TCP. The modified TCP is integrated with standard IP,
network interface protocol and tested on STM32F407 demoboard. The demo-
board can communicate with computer, which proves the correctness of the
modified TCP.

Keywords: TCP � lC/OS-II � Transmission reliability

1 Introduction

Operating system is important in embedded devices. lC/OS-II [1] is an operating
system with open source code, compact structure and deprived real-time kernel.
Therefore, most projects prefer to choose lC/OS-II as embedded operating system.

Embedded TCP/IP protocol stack is extensively adopted in embedded devices for
communication. LwIP [2] and lC/IP [3] are two widely used embedded TCP/IP pro-
tocol stacks. It is difficult to separate TCP from LwIP. Whereas, it is very easy to
separate TCP code from lC/IP which is designed for lC/OS-II. To realize a general
separated TCP function, this paper selects lC/IP as embedded TCP/IP protocol stack.
The TCP code in lC/IP does not contain all functions defined in the standard
TCP. Therefore, this paper modifies the TCP code in lC/IP to realize a general TCP
containing all functions.

The main work in this paper contains three parts. The first part is transplanting
LwIP and lC/OS-II in the demoboard. The second part is modifying the existing TCP
code in lC/IP and replacing the TCP in LwIP with the modified TCP. The final part is
building a TCP client and a server task to test the modified TCP.

The rest of the paper will be organized as follows: In Sect. 2, lC/OS-II is intro-
duced. In Sect. 3, the detailed implementation of TCP is explained. In Sect. 4, the
testing results are given. In Sect. 5, we will conclude the paper.

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019
Published by Springer Nature Switzerland AG 2019. All Rights Reserved
X. B. Zhai et al. (Eds.): MLICOM 2019, LNICST 294, pp. 573–579, 2019.
https://doi.org/10.1007/978-3-030-32388-2_49

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32388-2_49&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32388-2_49&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32388-2_49&domain=pdf
https://doi.org/10.1007/978-3-030-32388-2_49

2 Brief Review of lC/OS-II

lC/OS-II is a real-time operating system. Because it takes up a small amount of space,
it is very suitable for transplanting to embedded devices.

lC/OS-II provides many mechanisms to protect shared data and provide intertask
communication [1]. Semaphore is an important mechanism. lC/OS-II’s semaphores
consists of two elements: a 16-bit unsigned integer used to hold the semaphore count,
and a list of tasks waiting for the semaphore count to be greater than 0. Semaphore is
used to protect shared data. If semaphore is not available, a task will need to be put to
sleep until another task signals the semaphore. Therefore, shared data will be used by
only one task.

3 The Implementation of TCP

TCP is a connection-oriented and reliable transport layer protocol [4, 5]. TCP opera-
tions include connection establishment, data transfer, and connection termination.
A TCP connection is point-to-point and it consists of a server and a client. The process
that initiates the connection establishment is called the client process. The process that
passively waits for the connection to be established is called the server process.

The flowchart of the client and server is shown in Fig. 1. The client and the server
bind the source port number and source IP address. Then, the client will connect with
the server. After the connection is established, the client and the server can transmit and
receive data. When the client and the server don’t need to transmit or receive data, they
will close the connection.

client server

Start Start

End

Connect

Bind

Transmission and Reception

Close

Bind

Listen

Transmission and Reception

Close

End

Fig. 1. The flowchart of client and server.

574 Q. Wang and Y. Gao

3.1 Connection Establishment

Connection establishment is called three-way handshake. The server and the client bind
their own source port number and source IP address. Then the client sends a SYN
segment to the server. After receiving the SYN segment sent by the client, the server
will also send a SYNACK message to the client. Finally, the client will send an ACK
segment to the server. The connection between the client and the server is established.
Connection establishment sets initial parameters such as the sending sequence number
and the receiving sequence number.

3.2 Data Transfer

A TCP connection provides a full-duplex service. Therefore, the server and the client
need to establish their own transmitting and receiving buffers. A TCP connection pro-
vides a reliable data transfer service which ensures that data stream is in sequence and
not duplicate. As illustrated in Fig. 2, there are four functions to transmit and receive
data, namely tcpInput, tcpOutput, tcpRead and tcpWrite. The function called tcpRead is
used to receive data from transport layer to application layer. The function called
tcpWrite is used to send data from application layer to transport layer. The function
called tcpInput is used to receive data from network layer to transport layer. The
function called tcpOutput is used to send data from transport layer to network layer.

As shown in Fig. 3, tcpInput receives and processes segments from network layer.
Firstly, the received segment needs to be checked. If checked unsuccessfully, the seg-
ment will be discarded. If the segment is checked successfully, the keepalive timer will
be reset. Then, data in the received segment will be extracted and saved in receiving
buffers. When a new segment is received, out-of-order segments will be handled.

There are only two TCP congestion-control algorithms (slow start and congestion
avoidance) in the TCP of lC/IP. By modifying the TCP code, another two TCP
congestion-control algorithms (fast retransmit and fast recovery) are added.

Application layer

Transport layer

Network layer

tcpInput tcpOutput

tcpWritetcpRead

Fig. 2. Functions of data transmission.

Realization of Transmission Control Protocol Based on lC/OS-II 575

As shown in Fig. 4, tcpOutput sends segments from transport layer to network
layer. If the sending window is 0, the sender will open persistence timer to update the
sending window. When the sending window is greater than 0, data will be extracted
from the sending buffer to the segment. Then the TCP header of the segment will be
filled. When the segment is sent, the retransmission timer will open.

End

Reset keepalive timer

Extract and receive data

Handle out-of-order segments

Send ACK segment

Start

Check segment

Check successfully?

Y N

Fig. 3. The flowchart of tcpInput

Start

End

Extract data from the sending buffer

Fill TCP header

Calculate checksum

Update retransmission timer

Sending window is 0?

N

Open persistence timer

Y

Fig. 4. The flowchart of tcpOutput

576 Q. Wang and Y. Gao

Data will be extracted from the receiving buffer to application layer by calling the
function called tcpRead. The application process can choose the number of data that
extracted from the receiving buffer.

Data will be put into sending buffer by calling the function called tcpWrite. The
data will be sent by calling the function called tcpOutput.

3.3 Timer Management

There are mainly three timers (retransmission timer, persistence timer and keepalive
timer) in a TCP connection.

To prevent the segments from being unacknowledged or lost, retransmission timer
is established. If the segment that has been sent is not acknowledged within a certain
period of time, the sender will resend the segment to the receiver. Therefore, the data
stream will be in sequence and the transmission will be reliable.

When the sender’s sending window is 0, the sender will open persistence timer to
check whether the receiving window of the receiver is greater than 0. When the
receiver’ receiving window is greater than 0, the persistence timer will be closed.

The keepalive timer is used in the server. The keepalive timer is mainly to check
whether the client is alive. When the client and the server don’t transmit or receive data
for a long time, the server will send a segment without data to check whether the client
is closed.

The keepalive timer and the persistence timer are combined in the TCP of lC/IP.
By modifying the TCP code of lC/IP, the keepalive timer and the persistence timer will
work individually.

A timer task is established to process the timers in TCP. Firstly, an empty timer
linked list is created. Then different timers are inserted into the timer linked list. The
timer task will check whether the latest timer is timeout. When the timer is timeout, the
related function will work and the timer will be deleted from the timer linked list.

3.4 Connection Termination

The client or the server can decide to close. Suppose that the client decides to close the
connection. Firstly, the client sends a FIN segment to the server. After receiving the
FIN segment, the server will send an ACK segment to the client. When the server also
decides to close, it will send a FIN segment to the client. The client will send an ACK
segment. Eventually, the connection between the client and the server is closed.

4 Testing Results

The hardware is STM32F407 demoboard. lC/OS-II is transplanted in demoboard.
Standard IP and network interface protocol is integrated by LwIP. Finally, the modified
TCP code is downloaded in demboard. The demoboard and the computer are connected
via a network cable.

As shown in Fig. 5, TCP client is established in embedded device and TCP server
is established in the computer. The computer’s source IP address is 192.168.1.108 and

Realization of Transmission Control Protocol Based on lC/OS-II 577

the computer’s port number is 8087. The embedded device’s source IP address is
192.168.1.101 and the embedded device’s source port number is 49154. The computer
receives 750 bytes from the embedded device. It proves that the modified TCP can
work with standard TCP.

As shown in Fig. 6, TCP client is established in the computer and TCP server is
established in the embedded device. The computer’s source IP address is

Fig. 5. TCP client is the embedded device. TCP server is the computer.

Fig. 6. TCP client is the computer. TCP server is the embedded device.

578 Q. Wang and Y. Gao

192.168.1.108 and the computer’s source port number is 1922. The embedded device’s
source IP address is 192.168.1.101 and the embedded device’s source port number is
49154. The computer receives 8 bytes from the embedded device.

5 Conclusions

This paper completes the transplantation of TCP in embedded devices. Tested by net
assistant, the modified TCP communicates successfully with standard TCP. Many
parameters can be reconfigured according to users’ requirements in the modified TCP
code. Therefore, the modified TCP is a general TCP and easy to change and use for
users.

Acknowledgment. This work is supported by the National Natural Science Foundation of
China under Grant No. U1733114, the Fundamental Research Funds for the Central Universities,
and Shanghai Rising-star Program under Grant No. 19QA1409100.

References

1. Labrosse, J.: MicroC/OS-II: The Real-Time Kernel, 2nd ed, pp. 153–178. CMP Books (2002)
2. Dunkels, A.: Design and implementation of the lwIP TCP/IP stack, pp. 1–3. Swedish Institute

of Computer Science (2001)
3. http://ucip.sourceforge.net
4. Kurose, J.F., Ross, K.W.: Computer Networking: A Top-Down Approach, 6th edn, pp. 230–

285. Addison-Wesley, Boston (2001)
5. Stevens, W.R.: TCP/IP Illustrated (Vol. 1): The Protocols, 2nd edn, pp. 575–803. Addison-

Wesley, Boston (2012)

Realization of Transmission Control Protocol Based on lC/OS-II 579

http://ucip.sourceforge.net

	Realization of Transmission Control Protocol Based on μC/OS-II
	Abstract
	1 Introduction
	2 Brief Review of μC/OS-II
	3 The Implementation of TCP
	3.1 Connection Establishment
	3.2 Data Transfer
	3.3 Timer Management
	3.4 Connection Termination

	4 Testing Results
	5 Conclusions
	Acknowledgment
	References

