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Abstract. In this paper, the decision-making problem for anti-jamming
communications is studied. Most of the existing anti-jamming researches
mainly focus on the single-domain anti-jamming such as power domain
or frequency domain, which has limited performance facing strong jam-
ming. Therefore, to effectively deal with some jamming attack, this paper
proposes a multi-domain joint anti-jamming scheme, and considers the
power domain and the frequency domain jointly. By modeling the anti-
jamming process as a Markov decision process (MDP), reinforcement
learning (RL) is adopted to solve the MDP. Then, the multi-domain joint
anti-jamming algorithm is proposed to find the optimal decision-making
strategy. Moreover, the proposed algorithm is verified to converge to an
effective strategy. Simulation results show that the proposed algorithm
has better throughput performance than the sensing-based random selec-
tion algorithm.

Keywords: Multi-domain anti-jamming ·
Markov decision process (MDP) · Reinforcement learning

1 Introduction

Owing to the open nature of radio, wireless communication is badly threaten
by jamming attacks [1–3]. Recently, with the fast advancement of artificial
intelligence technologies, jamming technologies have become increasingly intel-
ligent. Due to low spectrum utilization and fixed transmission patterns, tradi-
tional anti-jamming technologies such as spread spectrum and frequency hop-
ping technologies [4,5] can not be able to meet the increasing anti-jamming
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requirements. Intelligent anti-jamming technologies are required to enhance the
jamming-resistance ability of wireless communication systems.

In the existing research works [6–9], game theory can well model the decision-
making interaction process between players, and has been widely used in the field
of wireless communication anti-jamming. For example, authors in [10,11] used
the Stackelberg game to model the confrontational relationship between users
and jammers, and obtained the anti-jamming decision by solving the equilibrium
solution. Similarly, authors in [12,13] modeled the confrontational relationship
through zero-sum game. However, all the above studies assume that both sides of
the game (users and jammers) know each other’s information, which is imprac-
tical in actual communication.

Reinforcement learning is an effective way to make real-time decision making
in unknown environment [14–16]. Researchers have applied reinforcement learn-
ing to explore the optimal policy for dynamic spectrum access and anti-jamming
problems. For instance, authors in [17] investigated the dynamic spectrum access
problem in multi-user scenario. In [18], the dynamic spectrum anti-jamming
problem in fading environment was studied. Considering the difference of chan-
nel transmission rate of actual channel, a reinforcement learning based chan-
nel selection scheme was proposed, which significantly improves the throughput
performance of users compared with the random channel selection algorithm.
In [14], authors proposed a modified Q-learning algorithm. When the cognitive
agent learns the jamming mode of the jammer, it adopts a way of updating the
Q value table in parallel, which improves the convergence speed of the algorithm.
However, these studies mainly focus on solving the single-domain anti-jamming
problems. It will fail when the power of the jamming is strong or the frequency
band is very wide.

There are several studies that consider multi-domain anti-jamming. In [19],
a multi-domain anti-jamming decision-making problem with unknown channel
state was studied. Specifically, in the power domain, the user’s transmit power
was adjusted to confront the jamming. When the jamming was severe (the jam-
ming power exceeds a certain threshold), the channel switching mode chose to
avoid the jamming attack. However, this mechanism only considers switching
between power domain and frequency domain, which has low energy efficiency.
A joint optimization of power and frequency resources is in need.

Inspired by above studies, this paper studies the multi-domain joint anti-
jamming problem. Modeling the anti-jamming decisions as MDP, our object is to
maximize long-term cumulative throughput while considering transmission over-
head. In order to find the optimal strategy, a multi-domain joint anti-jamming
algorithm based on reinforcement learning is designed. In simulation results, the
performance of the proposed algorithm is verified compared with the sensing-
based random selection strategy algorithm.

The remainder of the paper is organized as follows. In Sect. 2, the system
model and problem formulations are investigated. In Sect. 3, a Q-learning based
multi-domain anti-jamming communication scheme is proposed. In Sect. 4, the
simulations and analysis are given. In the end, the paper is concluded in Sect. 5.
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2 System Model

2.1 System Model

As Fig. 1 shows, in the system model, there exist one user (containing a trans-
mitter and a receiver) and a malicious jammer. The available channel set is
assumed to be M = {1, 2, . . . ,Mi}, i.e., there are M available channels with
B bandwidth. The user’s available power set is defined as P = {1, 2, . . . , Pi},
and the jamming power is defined as a constant J . The transmitter transmits
data information to the receiver through data link. The receiver is responsible
for running the intelligent decision-making algorithm and returns the decision
information to the transmitter through the control link. The jammer transmits
the jamming signal to block the normal communication of the user. In order to
facilitate calculation and intelligent decision making, we divide the transmission
time into several equal-length slot units, and the transmission slot set is defined
as {1, 2, . . . ,K}. The user is assumed to access only one channel in each time
slot.

J

Transmitter

Receiver

amming link

Control link

Transmission link

Jammer

Transmitter

Receiver

Jamming link

Control link

Transmission link

Jammer

jg

tg

Fig. 1. System model.

Assuming that the channel has large-scale fading, the signal will have path
loss during transmission. As shown in Fig. 1, gt represents the link gain between
user transmitter and receiver, Specifically, it can be defined as

gt = (dt)−αεt, (1)

where dt denotes the distance between the user transmitter and receiver, α repre-
sents the user’s path fading factor, εt represents the user’s instantaneous fading
coefficient. Similarly, gj represents the link gain from the jammer to the user
receiver, which is specifically defined as:

gj = (dj)−βεj , (2)

where dj denotes the distance from the jammer to the user receiver, β represents
the path fading factor of the jammer, and εj represent the instantaneous fading



554 X. Pei et al.

coefficient of the jammer, both εt and εj obey the lognormal fading. Therefore,
the user’s signal-to-interference-plus-noise ratio can be denoted as follows:

SINR =
gtP (k)

N0 + gjJδ(ft − fj)
, (3)

where P (k) represents the transmission power selected by the user, N0 represents
the background noise power, J represents the power of jamming, ft represents
the channel of user signal, fj represents the channel of jamming signal, and δ(·)
is the indication function. The indication function indicates the occupancy of
the selected working channel of the user, and the specific definition is as follows:

δ(ft − fj) =
{

1, ft = fj ,
0, ft �= fj .

(4)

That is, when ft = fj indicates that the jamming is on the same channel as
the user, the user collides with the jamming, otherwise the two are on different
channels, that is, the user is not interfered.

2.2 Problem Modeling

In order to solve the problems mentioned above [20,21], user’s anti-jamming
decision process can be modeled as a Markov decision process (MDP). MDP is
generally defined by a four-tuple, namely (S,A,O,R), whose core elements are
defined as follows: S represents the state space, A represents the action space, O
represents the state transition probability matrix, and R represents the reward
value.

In the actual communication scenario, assuming that there are Mi available
channel, the user has Pi power levels. Taking the Mi = 5, Pi = 3, and jamming
modes to continuously apply the sweep jamming as an example, the jammer
interferes with multiple channels simultaneously. The jamming variation pattern
is shown in Fig. 2. In the figure, the yellow square denotes that the current
channel is disturbed and the white square denotes that it is not disturbed. To
define the k-th time slot user channel and power selection strategy as a(k), the
user’s utility can be defined as:

Uk =
{

Blog2(1 + SINR) − CsP (k) + X,SINR ≥ Γ
0, otherwise

, (5)

where B represents the channel bandwidth and Cs represents the user unit power
transmission cost. X represents a constant in case of the reward of the user
being negative. Γ indicates the set threshold. If SINR is higher than the given
threshold Γ , the transmitted data packet can be successfully received. Otherwise,
if SINR is less than a given threshold Γ , the transmitted data packet fails to
be received.

Under the jamming condition, the user starts to select the best transmis-
sion channel and transmission power according to its own strategy at each time
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Fig. 2. Diagram of cross sweep jamming. (Color figure online)

slot. Under energy constraints, users must save transmission power to reduce
transmission overhead while meeting minimum communication requirements.
Therefore, the user’s reward R(k) is defined as:

Rk = Uk
Ttran

Ts
, (6)

where Ts is the length of a time slot length, Ttran is the transmission time. The
user’s goal is to find the optimal policy to get the maximum cumulative rewards,
which can be formulated as:

π∗ = arg max
π∈Ω

Eπ[
∞∑

k=0

R(k)]. (7)

This paper assumes that the jammer’s strategy (jamming mode) remains
unchanged. For the anti-jamming decision problem in such fixed jamming sce-
narios, the reinforcement learning method can be used to solve the MDP. Since
reinforcement learning can learn the optimal strategy in the unknown environ-
ment without state transition probability, this paper uses Q-learning [22] algo-
rithm to solve the power and channel selection optimization problem, it is one
of the most widely used algorithms in reinforcement learning. Different from the
definition of Q-learning action space in [18], this paper combines channel and
power to make decision when selecting action, and proposes a Q-learning based
multi-domain joint anti-jamming algorithm.

3 Q-learning Based Multi-domain Anti-jamming
Communication Scheme

3.1 Algorithm Description

In the strategy selection process, considering the influence of power against jam-
ming performance, this paper designs a multi-domain anti-jamming algorithm
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based on reinforcement learning to solve this problem. In the process of the user
performing the reinforcement learning algorithm, the user evaluates the quality
of different actions in each state by maintaining a Q values table. The Q value
reflects the quality of different actions. The larger the Q value, the better the
selected action. The algorithm calculates the immediate reward value obtained
by taking action in each state, and update the Q values corresponding to each
action in real time. The updating function of Q values [18] can be expressed as

Qk+1(Sk, ak) = Qk(Sk, ak) + α(Rk + γVk+1 − Qk(Sk, ak)), (8)

where α represents the learning step, γ represents the discount factor, that is,
the importance of future returns to the current selection action, α, γ ∈ (0, 1], Rk

represents the immediate return value of the current Sk state, and Vk+1 is the
maximum Q values of all strategies in the Sk+1 state. After the agent selects
and executes the action ak, it reaches the Sk+1 state in the (k + 1)-th time slot.
The calculation formula of Vk+1 is as follows:

Vk+1 = max Qk(Sk+1, ã),∀ã ∈ M × P, (9)

ã is an optional power and channel set under the state Sk+1. The update formula
of the action selection probability vector W (k) = (w1(k), . . . , wc(k)) denotes as
[18]:

wc(k + 1) =
exp(ξQ(Sk, c))∑

c∈M×P
exp(ξQ(Sk, c))

,∀c ∈ M × P, (10)

where ξ represents the Boltzmann coefficient constant, wc(k + 1) denotes the
probability that the (k +1)-th time slot selects the power and channel combina-
tion strategy as c.

3.2 Communication Process Description

As shown in Fig. 3, the user-jamming slot diagram in the anti-jamming decision
process, wherein the length of the jamming slot is Tj , and the length of the user
slot is Ts. The user’s single time slot composition includes a transmission phase,
a sensing phase, a learning phase, and an ACK feedback phase, and executed in
this order.

– Transmission phase: The initial state of a given user is S0(ft(0), fj(0)), and
the user randomly selects a transmission power Pt(0), that is, the user starts
transmitting data on the given channel ft(0) with the power of the Pt(0) at
the 0-th slot, where fj(0) is obtained through wideband spectrum sensing.
Simultaneously, the return value R(0) of the current working channel ft(0)
and transmission power Pt(0) is calculated.

– Sensing phase: Detecting the occupancy of each channel in the current time
slot through wideband spectrum sensing and obtaining the jamming channel
fj(1);
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– Learning phase: The reinforcement learning algorithm is executed to deter-
mine the transmission channel ft(1) and the transmission power Pt(1) of the
next time slot. Note that the Q-learning process time is ignored;

– ACK feedback phase: The selected policy (i.e., the working channel and trans-
mission power of the next time slot) is fed back to the user transmitter through
the control link, and the user status is updated to S1(ft(1), fj(1)).

In the next k − 1 time slots, the user goes through the same process to update
the working channel and transmission power through the reinforcement learning
decision. In particular, the Q values table of the 0-th time slot is an all-zero
matrix, and in the subsequent time slots, the user updates the Q values of the
selected action in the current state by reinforcement learning. The user cyclically
executes the process to continuously enhance the awareness of the environment,
and finally achieves a state of stable optimal strategy in a complex dynamic
environment. The flow of multi-domain joint anti-jamming algorithm based on
reinforcement learning is shown in Algorithm 1.

Jammer

User

jT

tt0

. . .

. . .

Wideband sensingData transmission

ACK transmission Q-learning

sT

Jamming

Fig. 3. Time slot structure.

4 Simulation Results and Discussions

This paper mainly studies how to choose the optimal strategy to effectively deal
with jamming. The convergence performance of the algorithm is simulated and
analyzed. In order to prove the validity of the proposed algorithm, this paper
compares the proposed algorithm with the sensing-based random selection algo-
rithm. The sensing-based random selection algorithm firstly implement wideband
spectrum sensing at each time slot to obtain the location of the jamming, and
then randomly selects one transmitting power and one channel for access. For
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Algorithm 1. Q-learning based multi-domain joint anti-jamming algorithm.
1: Initialization: Set parameter α, γ, the total simulation time slot to K and the

time index k = 0. Initialize Q values matrix Q(S, a) = 0. Set the initial state is
represented as S0(ft(0), fj(0)).

2: While k < K, do
3: The user receives data information on the ft(k) channel with the power of Pt(k),

updates the state to Sk(ft(k), fj(k)), and calculates the SINR of the ft(k) channel
according to Equation (3), and compares whether the SINR is greater than the
set threshold;

4: if SINR > Γ
Rk = Uk

Ttran
Ts

, where Uk can be obtained from Equation (5),
5: else

Rk = 0.
6: end
7: The current jamming channel fj(k + 1) is found by wideband spectrum sensing;
8: The action selection probability vector W (k) is updated according to Equation

(10), and the action a(k) = (ft(k + 1), Pt(k + 1)) of the next time slot is selected
according to the P (k);

9: update the Q value table according to Equation (8);
10: Return ACK to the user transmitter, adjust the working channel ft(k+1) and

transmit power Pt(k + 1) of the next time slot user;
11: k = k + 1
12: End while

both algorithms, the performance of the system under different parameters is
analyzed.

Considering that there is a user (including transmitter and receiver) and a
malicious jamming (interferer) in the wireless communication system, the jam-
mer applies two cross-sweep jamming signals. The system has 4 available chan-
nels and 3 power levels. Considering the fading characteristics of the channel, a
lognormal fading model is established to reflect the channel quality [17,23], and
the channel gain can be expressed as eZ . Among them, Z represents a Gaus-
sian variable with a mean of zero and a variance of η2. The lognormal fading
model can generally be expressed as η = 0.1 log(10)ηdB . Assuming that the user
accesses only one channel in one time slot, the jamming can interfere with two
channels at the same time. The algorithm simulation specific parameter settings
are shown in Table 1, where the time slot parameter setting refers to [18], and
the channel parameter setting refers to [17,23].

The Q values variation curve and the selection probability curve of each
action in the state S(ft = 2, fj = 1, 4) (i.e., the user transmits data on the
transmission channel-2, the jamming signals are in channel-1 and channel-4) are
shown in Fig. 4, Fig. 5. The simulation results show that the Q values of each
action is 0 at the beginning of the reinforcement learning, and the probability
of selecting each action is equal. With the enhancement of users’ cognition of
the environment, the Q values table maintained by users is constantly updated.
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Table 1. Simulation parameter setting.

Parameters Value

Number of channels Mi = 4

Number of user power levels Pi = 3

The user’s transmission power set Pt = {2 W, 4W, 6 W}
Jamming constant power Pj =3.5 W

Channel noise power spectral density N0 = −135 dB/Hz

Channel bandwidth B = 1MHz

The distance between the transmitter and the receiver dt = 5km

The distance between the jammer and the receiver dj = 25 km

Jamming time slot length Tjam = 4ms

Data transmission time Td = 2 ms

ACK transmission time TA = 0.3 ms

Wideband sensing time TW = 0.6 ms

Transmission time slot length Ts = Td + TA + TW = 2.9 ms

Learning step α = (0, 1]

Discount factor γ = 0.8

Boltzmann coefficient ξ = 5−20
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Fig. 4. Q value curves at S(ft = 2, fj = 1, 4) state.

In the later stage of learning, the user selects the working channel-4 and the
transmission power 2W with a probability close to 1.

In Fig. 6, we set the threshold Γ = 3.8 dB, the unit power transmission
cost coefficient Cs = 0.1. We compared the system throughput performance
of the multi-domain joint anti-jamming algorithm and the sensing-based ran-
dom selection algorithm. In order to make the simulation results more clear,
the throughput value of each time slot in the figure is calculated by averag-
ing the throughput value of 50 consecutive time slots. The simulation results
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show that the throughput based on the sensing algorithm is about 0.5Mbps,
while that the multi-domain joint anti-jamming algorithm based on Q-learning
is about 0.88Mbps. Therefore, the proposed algorithm has better anti-jamming
performance than the sensing-based random selection algorithm.
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Fig. 6. Performance comparison of throughput for different algorithms.

5 Conclusions

Aiming at the problem of user’s power and channel joint decision in jamming
environment, the multi-domain anti-jamming decision process is modeled as a
MDP. A Q-learning based multi-domain joint anti-jamming algorithm is pro-
posed to execute decision-making. By the exploration and exploitation process
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of Q-learning, the algorithm can learn the jamming strategy based on the his-
torical information. Simulation results show that the proposed algorithm can
not only converge in the complex jamming environment, but also obtain the
optimal power and channel selection in the continuous communication process.
What’s more, the throughput performance of the proposed algorithm is signif-
icantly improved compared with the sensing-based algorithm. On the basis of
this paper, we will consider more complex jamming environment in the future
research.
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