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Abstract. In this paper, we consider a mobile edge computing (MEC)
system that multiple users participate in the federated learning proto-
col by jointly training a deep neural network (DNN) with their private
training datasets. The main challenges of applying federated learning to
MEC are: (1) it incurs tremendous computational cost by carrying out
the deep neural network training phase on the resource-constraint mobile
edge devices; (2) existing literature demonstrates that the parameters of
a DNN trained on a dataset can be exploited to partially reconstruct
the training samples in original dataset. To address the aforementioned
issues, we introduce an efficiently private federated learning scheme in
mobile edge computing, named FedMEC, with model partition technique
and differential privacy method in this work. The experimental results
demonstrate that our proposed FedMEC scheme can achieve high model
accuracy under different perturbation strengths.

Keywords: Federated learning · Mobile edge computing ·
Deep neural network · Differential privacy

1 Introduction

Nowadays the Internet of Things (IoT) devices, such as smartphones, cameras,
and medical tools, have shown explosive growth and became nearly ubiquitous.
As a distributed intelligent computation architecture, mobile edge computing [1]
shows the powerful real-time and on-devices data processing capability, which
achieved great success in numerous networking applications. Along with edge
computing, on-device deep learning has turned into a universal and indispens-
able service [2], including recommendation systems, language translation, secu-
rity surveillance, and health monitoring. However, such intelligent computation
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scenario rely on the users to outsource their sensitive data to the cloud in order
to carry out deep learning services, which causes a number of privacy concerns
and resources impacts for the smartphone users [3,4].

Federated learning [5,6] is a recent concept which enables training a deep
learning model across thousands of participants in a collaborative manner. It
allows the users locally train their model in a distributed manner, and upload
its local model update, i.e., parameters of gradient and weight, instead of sharing
their private data samples to the central server. Participants in federated learn-
ing act as the data provider to train a local deep model, and the server maintains
a global model by averaging local model parameters (i.e., gradients) generated
by randomly selected participants until it tends to convergence [7]. One biggest
achievement for federated learning is the corresponding model average algorithm
[8], which can benefit from a wide range of non-IID and unbalanced data distri-
bution among diversity participants.

It seems that federated learning is a promising approach to provide on-device
deep learning services on mobile edge computing architecture while protecting
user-side data privacy. However, we notice that applying the federated learning
approach to mobile edge computing environment would face two practical issues:

– It presents tremendous computational cost by carrying out the deep neural
network training phase on the resource-constraint mobile edge devices, mean-
ing that the mobile devices cannot afford such heavy computation processing
required in federated learning approach [9–11];

– The parameters of a DNN trained on a dataset can still be exploited to
partially reconstruction the training examples in that dataset, which means
the conventional federated learning mechanism cannot provide strong privacy
guarantee against malicious entities, such as edge and cloud servers [12,13].

To address the above problems, we propose an efficiently private federated
learning scheme in mobile edge computing, named FedMEC, based on model
partition technique and differential privacy method. The main contributions can
be summarized as follows:

– We design a flexible framework which enabling federated learning in the
mobile edge computing environment based on the model partitioned tech-
nique, reducing the computation overhead on the mobile devices. Specifically,
the FedMEC framework partitions a deep neural network into two parts: the
client-side DNN and edge-side DNN, so the most complex computations can
be outsourced to the edge server.

– We also propose a differentially private data perturbation mechanism on the
clients-side to prevent the privacy leakage from the local model parameters.
In particular, the edge clients and edge server run the different portion of a
deep neural network, and the updates from an edge device to the edge server
is perturbed by Laplace noise to achieve differential privacy.

The rest of this paper are organized as follows. In Sect. 2, we briefly introduce
the basic knowledge of federated learning and differential privacy. The system
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framework is presented in Sect. 3, and the construction of proposed FedMEC
scheme is detailed in Sect. 4. Extensive experimental evaluation is conducted in
Sect. 5. Finally, Sect. 6 gives the conclusion and future work.

2 Preliminaries

2.1 Federated Learning

Federated learning was firstly proposed by Google [8] which aims to build a dis-
tributed machine learning models based on massive distribution datasets across
multiple devices. Compared to the conventional centralized training method,
participants in the federated learning system can locally train a global model
using their private data and upload the model update in form of gradients. Such
a localized model training method presents significant advantages in privacy pre-
serving because the clients do not need to share their private data to any third
party.

During the federated learning, all the clients agree on a common learning
objective and model structure. Assuming that mt is a fraction of sampled partic-
ipants who own the different private dataset. In a certain communication round
t, each client downloads the global model parameters from the server, then the
model is trained locally to generate the local model update Δw

(i)
t+1 using its own

private dataset. Finally, each participant sends the resulting updates back to
the server, where the updates are averaged by the central server to obtain a new
joint global model:

w
(global)
t+1 = w

(global)
t +

1
mt

mt∑

i=1

Δw
(i)
t+1, (1)

where w
(global)
t indicates the global model at the t-th communication round, and

Δw
(i)
t+1 denotes the local update from the i-th participant at communication

round t + 1.

2.2 Differential Privacy

Differential privacy [14] provides a rigorous privacy guarantee for randomized
algorithms on aggregated sensitive datasets. It is defined in terms of the data
query on two adjacent databases D and D′ where the query results are statisti-
cally similar, but differing in one data item. The formal definition of ε-differential
privacy can be described as follow:

Definition 1 (ε-differential privacy): A randomized mechanism M : D → R
fulfills ε-differential privacy for certain non-negative number ε, iff for any adja-
cent input d ∈ D and d′ ∈ D′, and any output S ⊆ R, it holds that

Pr[M(d ∈ D) ∈ S] ≤ eε · Pr[M(d′ ∈ D′) ∈ S], (2)

where ε is defined as the privacy budget, which measures the level of privacy
guarantee of the randomized mechanism M: the smaller ε, the stronger privacy
guarantee.
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3 System Framework

3.1 Federated Learning with MEC

In this section, we present a mobile edge computing structure for federated learn-
ing tasks as shown in Fig. 1. Assume a scenario where all the edge devices intend
to obtain desired machine learning services from a cloud central server. At the
same time, these users try to prevent the leakage of any private information to
the cloud server by executing the federated learning protocol. In this situation,
we consider a three-layer mobile edge computing framework that provides the
perfect architecture supportive of federated learning protocol with multiple par-
ticipants. Specifically, the entities involved in our framework including the edge
devices, the edge servers, and a cloud central server.
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Fig. 1. Federated learning with mobile edge computing

Specifically, implementing the federated learning framework in mobile edge
computing faced on two practical issues. Firstly, carrying out the DNN train-
ing phase on the mobile devices will definitely present incredible computational
cost, while the terminals connected to the mobile edge computing system are
usually resource-constraint devices. Secondly, we must consider the user’s pri-
vacy contained in the outsourced data (or features) due to the edge server and
cloud server may not be trusted. Thus, the main challenge of applying federated
learning with mobile edge computing is how to design a valid scheme to reduce
the computation overhead on edge devices without broke the federated learn-
ing mechanism, while protecting user-side data privacy contained in the original
data.
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3.2 Overview of FedMEC

To solve the aforementioned challenge, we consider to partition the neural net-
work along the last layer of convolutional layers and all the intermediate results
generated by the user-side DNN are hidden from the other entities. The effective-
ness of the partition mechanism in DNN architecture lies in the loosely coupled
property among multiple insider layers. That is, each hidden layer in DNN can
be executed separately by taking the previous layer’s output as its input.

Client-Side Edge-Side

Private 
Data

Client-
Side DNN

Feature 
Extraction

Perturbed 
Features

Edge-Side 
DNN

Local Model 
Updates

Server-Side

Global Model 
Updates

Model 
Average

Global UpdatePre-trained DNN

Fig. 2. Overview of proposed FedMEC framework

The overview of FedMEC is presented in Fig. 2. FedMEC relies on the mobile
edge computing environment and divides the whole federated learning process
into three parts: client-side part, edge-side part, and server-side part. The client-
side neural network is assigned by the cloud serve whose network structure and
parameters are frozen and the edge-side DNN is fine-turned, the biggest differ-
ence between our work and [9] is the iteratively model updates will be aggregated
and averaged in the cloud server. In this situation, edge devices merely undertake
the simple and lightweight feature extraction and perturbation.

In order to guarantee the performance of the frozen neural network in the
client side, we use the public data which has the similar distribution with private
data as the auxiliary information dataset to pretrain a deep neural network as an
initialized global model in cloud side. Then the pretrained global neural network
will be partitioned along the last layer of the convolution layer. Later, the well-
trained convolution layer will send to each client for feature extraction. Based on
our three-layer federated learning architecture with mobile edge computing, all
the resource-hungry tasks are offloaded to the edge servers and cloud center while
mobile edge devices merely undertake the simple feature extraction through
a local neural network assigned by the cloud center. At last, for the privacy
concerns, we perturb the results computed from the original data before being
transmitted to the edge server to protect the privacy contained in the raw data.
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4 Efficient Federated Learning with Differential Privacy

4.1 Deep Neural Network Partition

In the deep neural network partition strategy, we set the pivot on the last layer
of the conversational layers and separate a large DNN into two parts: client-
side DNN and edge-side DNN. Specifically, the client-side DNN forms the front
portions of a DNN structure (i.e., convolution layers) which are deployed on
edge devices to extract features from the raw data. Note that the client-side
network is pretrained by the cloud server and the structure and parameters are
frozen during the whole training phase in federated learning procedure. The edge-
side DNN containing the remaining portions of the DNN network (i.e., dense
layers) to update the model parameters by executing the forward and backward
propagation procedures. The whole partition process on the deep neural network
is illustrated in Fig. 3.

Client-Side DNN

Convolution Layers

Conv1

W1

…

Wi-1

Convi

Noise Features

Edge-Side DNN

Dense1

…

Densek

UpdatesWi+1 Wk

Dense Layers

Partitioned Deep Neural Network

Fig. 3. Partition process on the deep neural network

Therefore, based on our DNN partition mechanism, the complex computation
operations on the client side can be greatly reduced. As the experiment shown in
[15], the partitioned mechanism can perform lightweight resource consumption
when a part of the DNN is offloaded to the third party. In addition to resource
and energy considerations, partitioning solutions are attractive to deep learning
service providers, paving the way for federated learning applications on mobile
edge devices.

4.2 Differentially Private Data Perturbation

Federated learning protocol is designed for providing basic privacy guarantee
for each participants’ raw data due to its local training property. However, a
participant’s sensitive data is still possibly leaked to the untrusted third parties,
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such as edge server and cloud server, even with a small portion of updated
parameters (i.e., features and gradients). For examples, according to [12], the
server in federated learning can easily launch the model inversion attack to
obtain parts of training data distributions, and the gradient backward inference
described in [13] also enables an adversary to get a fraction of private data from
the participants’ local updates. Therefore, it is necessary to design a practical
preserving mechanism to protect the privacy of each participant against the
untrusted third parties in federated learning.

Differential privacy [14] is a great solution to provide the rigorous privacy
guarantee by adding deliberate perturb on the sensitive datasets. However,
adding the perturb to the original data directly may lead to significant negative
effects about learning performance. Thus, we can perturb the features generated
by the convolutional layers of partitioned DNN, so as to preserve the privacy
contained in the raw data. In this paper, we solve the aforementioned problem by
considering a differentially private data perturbation mechanism which can pro-
tect the privacy information contained in the extracted features after executing
the client-side DNN.

Following by the work from [9], we consider the deep neural network as a
deterministic function xl = F(xr), where xr represents the private raw data and
xl stands for the l-th layer output of a neural network. For the privacy concern,
we applying the differential privacy method to the DNN and further construct
our private federated learning protocol in mobile edge computing paradigm.
One efficient way to realize the ε-differential privacy is to adding controlled
Laplace noise which is sampled from the Laplace distribution with scale ΔF/ε
into the output xl. According to the definition of differential privacy described
in Sect. 2.2, the global sensitivity for a query f : D → R can be defined as follow:

Δf = max
d∈D,d′∈D′

||f(d) − f(d′)|| (3)

However, the biggest challenge here is that the global sensitivity ΔF is difficult
to quantification in the deep neural network. Directly adding the Laplace per-
turbations into the output features will destroy the utility of the representations
for the future predictions.

To address this problem, we employ the nullification and norm bounding
methods to enhance the availability of differential privacy in deep neural net-
works. Specifically, before a participant starting to extract the features from
his sensitive raw data xr using the pretrained client-side DNN, he firstly per-
forms the nullification operation to masking the high sensitive data items as
x′

r = xr � In, where � is the multiplication operation and In is the nullification
matrix with the same dimensions as input sensitive raw data. Besides, the nul-
lification matrix In is a random binary matrix (i.e., consisted of 0 and 1) and
its structure is determined by a nullification rate μ, meaning that the number
of zeros is the supremum of Sup(n · μ). Apparently, μ has a significant impact
on the prediction accuracy which will be discussed in Sect. 5.

After the nullification operation on the sensitive raw data, each participant
needs to run the client-side DNN on x′

r to extract the features as xl = F(x′
r).
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Then, we consider the norm bounding method to enforce a certain global sensi-
tivity as follow:

x′
l = xl/max(1,

||xl||∞
B

) (4)

where ||xl||∞ represents the infinite norm of the l-th layer outputs. This formula
indicates that x′

l is upper bounded by S, meaning that the sensitivity of xl

can be preserved as long as ||xl||∞ ≤ B, whereas it will be scaled by B when
||xl||∞ > B. According to [16], the scaling factor B usually be set as the median
of ||xl||∞. The Laplace perturbation (scaled to B) now is added into the bounded
features x′

l to further preserve the privacy as follow:

x̃l = x′
l + Lap(B/σI) (5)

Note that the Laplace noise is added into the final output of the convolutional
layers. Due to the same network structure for each client-side DNN, we use the
same notation x̃l to represent the latest perturbed features for all participants.

4.3 Differentially Private Federated Learning

According to the standard federated learning protocol [8], after adding the
Laplace perturbation on the features extracted from the client-side DNN, all
the perturbed features will be fed to the edge-side DNN to further generate the
local model update by running the SGD algorithm. For simplicity, we use x̃i to
represent the i-th participant’s update (i.e., participant i’s perturbed features),
where i ∈ [1, n]. The SGD mechanism is an optimization method to find the
parameter w by minimizing the loss function L(w, x̃i). In a certain communi-
cation round t, SGD algorithm first compute the gradient gt(x̃i) for any input
features x̃i as follow:

g
(i)
t = ∇wt

L(wt, x̃i) (6)

To achieving distributed computation capability, we adopt the distributed selec-
tive stochastic gradient descent (DSSGD) mechanism instead of the conven-
tional SGD algorithm into the federated learning procedure. DSSGD splits the
weight wt and the gradient gt into n parts, namely wt = (w1

t , · · · , wn
t ) and

gt = (g1t , · · · , gn
t ), so the local parameters update rule becomes as follow:

w
(i)
t+1 = w

(i)
t − η · g

(i)
t (7)

Then the conventional SGD algorithm was executed to calculate the local model
update as:

Δw
(i)
t+1 = w

(i)
t+1 − w

(i)
t (8)

At last, each edge server sends the local model updates Δw
(i)
t+1 to the cloud

server to further executing the federated average procedure:

w
(global)
t+1 = w

(global)
t +

1
n

n∑

i=1

Δw
(i)
t+1, (9)

The whole federated learning procedure will be executed iteratively until the
global model w

(global)
t tends to convergence.
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5 Experimental Evaluation

5.1 Dataset and Experiment Setup

Dataset: MNIST (Modified National Institute of Standards and Technology)
is one of the popular benchmark datasets which is commonly used in training
and testing of deep learning related research fields. The MNIST dataset contains
70000 handwritten grayscale digits images ranging from 0 to 9 (i.e., 10 classes).
Each image is with the size of 28 × 28 pixels, and the whole MNIST dataset is
divided into the 60000 training records and 10000 testing data records.

Experiment Setup: In order to estimate our proposed FedMEC algorithm,
we run the federated learning protocol on an image classification task. We use
the Convolutional Neural Network (CNN) based architecture to construct the
classifier in our FedMEC system. The deep neural network structure for MNIST
dataset consists of 3 convolutional layers and 2 dense layers. The kernel size
of all three convolutional layers is 3 × 3 and the stride for these convolutional
layers is set as 2. In particular, the activation functions applied in the neu-
ral network structure is LReLU. As aforementioned in Sect. 4, the perturbation
strength (μ, b) are the main parameters in our FedMEC scheme, where μ is the
nullification rate and b is the diversity of the Laplace mechanism. According
to these two parameters, we test the effectiveness of our differentially private
data perturbation method by applying the convolutional denoising autoencoder
[17] under different perturbation strength. Then, we give a general experimental
evaluation under the setting of μ = 10% and b = 3 to demonstrate the accuracy
of our FedMEC scheme. Furthermore, we also test the changes in accuracy when
pre-assign different perturbation strengths to the edge clients.

5.2 Experimental Results

Effectiveness of Data Perturbation: To evaluate the effectiveness of our
differentially private data perturbation mechanism, we adopt the convolutional
denoising autoencoder under the settings of federated learning to visualize the
noise and reconstruction, which the perturbation strength is represented by
(μ, b). We train our model based on two perturbation strengths (μ = 1%, b = 1)
and (μ = 10%, b = 5). Figure 4 shows the results of visualizing noise and recon-
struction. The first row is the real samples from MNIST dataset and the second
row shows the perturbed results under two perturbation strengths by using our
differentially private data perturbation mechanism. The last row represents the
reconstructed samples based on the convolution denoising autoencoder. Accord-
ing to the perturbation and reconstruction results, we can see that the perturbed
digits can be reconstructed to a certain degree at the perturbation strengths of
(μ = 1%, b = 1) as shown in Fig. 4(a). However, as shown in Fig. 4(b), it is
hard to reconstruct the original digital when the perturbation strength reaches
(μ = 10%, b = 5), even the perturbed data is public.
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(a) (1%,1) (b) (10%,5)

Fig. 4. Visualization of noise and reconstruction

Impact of Data Perturbation: As we know, federated learning allows each
participant to training their data locally and only updating the parameters. In
this situation, edge device users could change their perturbation strength before
sending to the edge server. Thus, we estimate the impact of our differentially
private data perturbation mechanism under different perturbation strength on
the model accuracy, meaning that the client-side DNN will be trained by the
pre-assigned perturbation strength. In our experiments, we set two scenarios
that the numbers of edge clients n are 100 and 300, and the training is stopped
when the communication round reaches 30 and 50 for 100 clients and 300 clients,
respectively.
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Fig. 5. Accuracy for µ = 10% and b = 3.

The goal of our first group of experiments is to estimate the changes of
accuracy under strength (μ = 10%, b = 3). From the results shown in Fig. 5,
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Fig. 7. Effect of µ.

we can see that the model can get high accuracy very quickly within several
communication rounds in both 100 clients and 300 clients settings, meaning our
FedMEC scheme works well in the settings of federated learning while providing
sufficient privacy guarantees. We also design a group of experiments to evaluate
the global model accuracy by changing one of the parameters in perturbation
strength (μ, b), while keeping another parameter as a fixed value. Here, we con-
sider the mean accuracy for each parameter setting by averaging all the results
with 30 and 50 communication rounds for 100 clients and 300 clients. As shown
in Figs. 6 and 7, our FedMEC scheme can perform more than 85% classification
accuracy for all the parameter combinations. Besides, with the gradual increase
of perturbation strength, the model accuracy tends to the decreasing trend due
to the large perturbation on the features will bring a negative impact in the
prediction stage. Despite this, the change range of classification accuracy is less
than 5%, which shows the stability and validity of our FedMEC scheme.
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6 Conclusion

In this work, we proposed the FedMEC framework which enables highly effi-
cient federated learning service on the mobile edge computing environment. To
reduce the computation complexity on the mobile edge devices, we designed
a new framework based on the model partition technique to split a deep neu-
ral network into two parts, where the most part of heavy computation works
can be offloaded to the edge server. Besides, we also presented a differentially
private data perturbation mechanism to perturb the Laplacian random noises
to the client-side features before uploading to the edge server. The extensive
experimental results on a benchmark dataset demonstrated that our proposed
FedMEC scheme can achieve high model accuracy while providing sufficient pri-
vacy guarantees.
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