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Abstract. Data offloading in mobile edge computing (MEC) allows the
low power IoT devices in the edge to optionally offload power-consuming
computation tasks to MEC servers. In this paper, we consider a novel
backscatter-aided hybrid data offloading scheme to further reduce the
power consumption in data transmission. In particular, each device has
a dual-mode radio that can offload data via either the conventional active
RF communications or the passive backscatter communications with
extreme low power consumption. The flexibility in the radio mode switch-
ing makes it more complicated to design the optimal offloading strategy,
especially in a dynamic network with time-varying workload and energy
supply at each device. Hence, we propose the deep reinforcement learning
(DRL) framework to handle huge state space under uncertain network
state information. By a simple quantization scheme, we design the learn-
ing policy in the Double Deep Q-Network (DDQN) framework, which is
shown to have better stability and convergence properties. The numeri-
cal results demonstrate that the proposed DRL approach can learn and
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converge to the maximal energy efficiency compared with other baseline
approaches.

Keywords: Deep reinforcement learning · Double DQN ·
Computation offloading · Backscatter communications

1 Introduction

Mobile edge computing (MEC) provides the IoT devices in the network edge with
cloud-like computation capability at the easy-to-access and resource-rich MEC
servers, which can be integrated with the wireless access points or small-cell base
stations [11]. The edge devices (e.g., wireless sensor nodes) are allowed to offload
sensing data and computation tasks (e.g., data compressing and encryption) to
the MEC servers, and then the MEC servers return the processed data for fulfill-
ing the application requests at the edge devices. Data offloading of IoT devices
is conventionally achieved by wireless RF communications, which is inherently
power consuming by using RF communication radios (referred to as the active
radios) to generate RF carrier signals [6]. The high power consumption in active
radios may not be affordable by low-power edge devices and hence prevents them
from using the MEC servers. Hence, the edge devices have to optimally balance
the use of precious energy supply, depending on the channel conditions, energy
status, and the users’ workloads.

Wireless backscatter is recently introduced as novel communication technol-
ogy with extremely low power consumption. The backscatter radios operate in
passive mode by modulating and reflecting the incident RF signal via load mod-
ulation [1]. The passive radios are featured with low power consumption and low
data rate [8]. Whereas the active radios can transmit in a higher data rate by
adapting the transmit power against the channel fading. Hence, we expect to
achieve a radio diversity gain by switching data offloading in two radio modes,
e.g., [5] and [14]. In this paper, we consider a hybrid data offloading scheme
combining local computation, passive and active offloading in a wireless pow-
ered MEC scenario, which allows a more flexible control to balance the power
consumption in computation and offloading. The critical problem is to determine
the optimal time scheduling and workload allocation strategies in each compu-
tation scheme, taking into account the time-varying channel conditions, energy
supply, workload dynamics, and various resource constraints [2].

Due to network dynamics and close couplings among different network enti-
ties, the optimization of MEC offloading strategy become very challenging as the
dimensionality and complexity rapidly increase. It is further complicated by the
interactions among multiple wireless users, base stations, and MEC servers [10].
For example, different wireless users may compete for resources (e.g., channel,
and computation capacities) to fulfill individuals’ computation workloads. To
deal with those complexities, we propose the model-free DRL-based framework
to learn the optimal MEC offloading strategy with uncertain network informa-
tion. We observe that the MEC offloading decisions are generally continuous
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variables. By a simple quantization and encoding scheme, we turn the strategy
space into a finite discrete set and then design the learning policy in the dou-
ble deep Q-network (DDQN) framework to stabilize the learning process. Our
numerical results verify that the proposed DDQN framework can achieve the
maximum energy efficiency compared to other baseline approaches.

2 System Model

We consider a wireless edge network consisting of one hybrid access point (HAP)
and N user devices that can sense and process data independently. To assist
their data processing, the user edge devices can offload their sensing data to the
HAP, which is co-located with an MEC server. The MEC server will return the
processed data to the edge devices after the completion of computation workload.
The system model is depicted in Fig. 1. We assume that the MEC server has
enhanced computation capability and persistent power supply. Its computation
and transmission of results can be performed instantly. Let N = {1, 2, ..., N}
denote the set of all edge nodes and Si denote the i-th edge node for i ∈ N .
Each node is equipped with single antenna capable of harvesting energy from
the HAP. The complex uplink and downlink channels between HAP and node Si

are denoted by hi ∈ C and gi ∈ C, respectively. Each Si is allocated a time slot ti
for its data offloading and capable of energy harvesting in other time slots. The
workload of each edge node Si is given by Li, which is defined as the number
of data bits to be processed either locally or remotely at the MEC center. We
assume that the workload of each device is generated at the beginning of each
time slot, and it has to be processed before the end of data frame.

2.1 Hybrid Data Offloading Scheme

The data offloading from each edge node to the HAP or MEC server can be per-
formed in either passive backscatter communications or the conventional active
RF communications, depending on its energy profile and the channel conditions.
The switch between passive and active mode can be achieved by tuning the load
impedance, e.g., [7]. As each edge node has only one antenna, we assume that it
can only transmit in one radio mode or harvest energy from the HAP. Each edge
node can switch its radio mode according to this channel conditions and energy
status. As such, we further divide each time slot tj allocated to Sj into two sub-
slots, as shown in Fig. 1(b). One sub-slot ta,j is used for data offloading in active
mode and the other sub-slot tp,j is for backscatter communications. The active
data offloading is powered by the energy harvested from the HAP over consecu-
tive time slots. While the passive data offloading is powered by power-splitting
(PS) scheme, i.e., a part of the incident RF signals, denoted by the PS ratio ρj , is
harvested to power the operation of backscatter radio, and the other part 1− ρj

is modulated and instantly reflected back to the HAP. Besides data offloading,
the data computation can be also performed locally at the edge devices. In this
case, the computation can be parallel to data offloading, as shown in Fig. 1(b).
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System model of wireless power hybrid MEC offloading(a)

(b) Time allocation for hybrid MEC offloading

Fig. 1. Backscatter-aided hybrid MEC offloading scheme.

2.2 Workload Allocation

The workload generated in each time slot can be allocated among local computa-
tion, active and passive offloading. Note that different computation schemes have
different processing capabilities and power consumption. Hence, the design of
optimal MEC offloading scheme aims to divide the workload into three schemes,
according to the dynamics in workload, channel conditions, and the energy sup-
ply of each edge device.

Active Offloading. Let pa,i denote the transmit power in active data offload-
ing. The received signal at HAP is given by y = √

pa,ihis(t) + νd, where s(t)
denotes the information with unit power and νd ∼ CN (0, σ2) denotes the noise
at the HAP. Then, the data rate in active mode can be denoted by

ra,i = B log2
(
1 + pa,i|hi|2/σ2

)
, (1)
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where B denotes the bandwidth of active data transmission. The relationship
between pa,i and ra,i is given by:

pa,i = β(ra,i) �
(
2ra,i/B − 1

)
σ2/|hi|2. (2)

Hence, the total power consumption in active mode is given by β̃ (ra,i) �
β (ra,i) + pc,i, where pc,i denotes the constant power to excite the circuit.

Passive Offloading. For passive data offloading, the data rate can be viewed
as a constant, i.e., rp,i = rp, which relates to the ambient symbol rate and the
signal detection scheme at the receiver [8]. Typically the backscatter communi-
cations rate rp is less than that of active RF communications. However, power
consumption for backscatter communications can be significantly less than the
active RF communications and sustainable via wireless energy harvesting. In
particular, a part of the incident RF power can be harvested to power the cir-
cuit of backscatter radio [9]. This implies that the edge device prefers to use
high rate RF communications when energy is sufficient, and turns to backscat-
ter communications if energy becomes insufficient.

Local Computation. The edge device can also perform local computation
in parallel with MEC offloading, similar to [11]. Let fi denote the processor’s
computing speed (cycles per second) and 0 ≤ tl,i ≤ F denote the time for local
computation. Here F can be the total number time slots during one data frame.
Then, the amount of information bits processed locally by the edge node is given
by fitl,i/φ, where φ > 0 denotes the number of cycles needed to process one
bit of task data. The energy consumption of local computation is constrained
by kif

3
i tl,i ≤ Ei [3], where ki denotes the coefficient of computation energy

efficiency. To maximize the data processing capability, each edge device should
exhaust the harvested energy and perform computation throughout the data
frame. Hence, we have f∗

i = ( Ei

kiF
)

1
3 and the local computation rate (in bits per

second) is given by rl,i = f∗
i t∗

i

φF .

3 Deep Reinforcement Learning Approach for MEC
Offloading Optimization

3.1 Optimization of MEC Offloading

We aim to reduce the total energy cost and fulfill the computation workload
of every edge node. To this end, we propose an optimization formulation to
maximize the energy efficiency in MEC offloading, which is defined as the ratio
between the total computation workload and the energy consumption:

R(t) �
∑

i∈N Lixi
∑

i∈N [β̃ (ra,i) ta,i + pc,itp,i + kif3
i tl,i]

, (3)
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which depends on the time or workload allocation among different computation
schemes. Here binary xi = {0, 1} denotes the outage event that happens when
the workload is not finished within a time deadline or the energy supply is not
sufficient. Once outage happens, e.g., xi = 0, the computation becomes invalid
and will not generate any useful information to the edge device. The hybrid
offloading policy has to satisfy the resource constraints from at least two aspects:

Workload Completion. The edge user’s workload generated in each time slot
has to be completed before a fixed delay bound. The hybrid MEC offloading
model provides three schemes to complete the workload, i.e., local computation,
active and passive offloading. To cooperate with other edge nodes, we stipulate
that each edge node has to complete active and passive offloading within a time
slot, whereas local computing can be completed during different time slots but
also within a time frame. Therefore, we have ta,i + tp,i ≤ F/N , where F denotes
the frame length and N denotes the total number slots. The combination of
computation capabilities in three schemes have to fulfill the user’s application
requirement. That is, la,i + lp,i + ll,i ≥ Li, where lc,i for c ∈ {l, a, p} denotes the
workload of user Si completed in different computation schemes, including local
computation, active, and passive offloading. Typically we have lc,i = tc,irc,i. Note
that the computation capability may vary in different schemes, which implies an
optimal division of the user’s workload to minimize the task outage probability.

Energy Budget. Without loss of generality, we assume that the battery of
each node is initially fully charged with the maximum capacity Emax. Differ-
ent computation schemes also vary in their energy consumptions. In particular,
local computation consumes power in CPU cycles, while active offloading con-
sumes high power in RF communications. For simplicity, we omit the power
consumption in wireless backscatter, which is much less than that of RF com-
munications [12]. Hence, the total energy consumption of each edge node in one
time slot is denoted by kif

3
i tl,i + ta,iβ̃( la,i

ta,i
), corresponding to local computation

and active offloading, respectively.
At the beginning of each data frame, the energy in battery is equal to the

energy left in the previous time frame plus the energy collected in other time
slots. As such, we define the energy dynamics in k-th data frame of i-th node as
follows:

Ek,i = min
(
Emax, Ek−1,i + η

∑

j �=i
p0g

2
i tp,j

)
, (4)

where η denotes energy conversion efficiency and p0 represents transmit power
of HAP. Given the edge user’s battery status, the transmission scheduling in two
radio modes has to meet the energy budget constraint.
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Problem Formulation. Till this point, we can formulate the optimization
problem as follows:

max
t

R(t) (5a)

s.t. ta,i + tp,i ≤ F/N, (5b)
la,i + lp,i + ll,i ≥ Li, (5c)

ta,iβ̃(
la,i

ta,i
) + kif

3
i ti ≤ Ek,i, (5d)

ta � 0, tp � 0, and tl � 0 (5e)

where tl � [tl,1, tl,2, . . . , tl,N ]T , ta � [ta,1, ta,2, . . . , ta,N ]T , and tp �
[tp,1, tp,2, . . . , tp,N ]T denote the allocation of computation time in local com-
putation, active, and passive offloading, respectively. The major difficulties of
solving problem (5) are caused by the non-convex problem structure, and the
couplings among multiple network entities in a dynamic environment. Hence,
the conventional model-based optimization techniques become very inflexible
and inefficient.

In the following, we resort to a model-free learning based approach. In par-
ticular, we integrate deep neural networks (DNNs) and the conventional rein-
forcement learning for autonomous decision making [13] with huge state space
under dynamic network environment.

3.2 DRL Approach for Hybrid MEC Offloading

Relying on the success of DNNs, DRL is capable of solving high dimensional,
non-convex, and even model-free network control problems, e.g., multiple access,
transmission scheduling, and resource allocation in a dynamic network environ-
ment [10]. These are very difficult to handle by classical techniques such as
convex optimization, dynamic and stochastic programming, due to the impre-
cise modeling, uncertain system dynamics, and huge state spaces. In this part,
we propose the DRL approach to learn the optimal MEC offloading policy from
past experience, without exact knowledge about the network conditions.

Double DQN Framework. Deep Q-Network (DQN) is a popular DRL
approach that uses a set of DNNs to approximate the action value function
Qπ(s, a;θ) in conventional reinforcement learning, given the state s and action
a. Let θ denote the vector of parameters of the multi-layer DNNs, which can be
built with different structures, e.g., deep convolutional neural network (CNN)
and recurrent neural network (RNN). An overview of DRL approaches and its
applications in wireless networking can be found in the survey paper [10]. In
general, DQN employs two key mechanisms, i.e., experience replay and target
Q-network, to stabilize the learning process. The experience replay mechanism
randomly selects a set of transition samples, i.e., mini-batch, from a replay mem-
ory of historical transition samples to train the DNN. This can break the cor-
relations and ensure more efficient training by independent transition samples.
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The training of DQN is performed by minimizing the loss function Li(θ):

Li(θi) = E
[
(yi − Q(si, ai;θi))2

]
, (6)

where yi denotes the target Q-value and Q(si, ai;θi) is the output of DNN
parameterized by θi. To stabilize Q-learning, the DQN algorithm uses a separate
Q-network with the parameter θ′ to generate the target values as r+Q(s′, a′;θ′).
The target Q-network keeps θ′ fixed between successive updates and only
updates it by copying the value from θ every a few steps. This mechanism adds
a time delay between the update to the online Q-network and the evaluation of
the target value.

DQN usually results in overoptimistic estimation of Q-value as we introduce
a positive bias by finding the maximum action value maxa Q(si+1, a;θ′

i) in each
decision epoch. The same transition data is used to decide the best action with
the highest reward. To correct this, an extension of DQN, namely, Double DQN
(DDQN), provides a better estimate by updating the action in the online net-
work, and then using the target network to estimate the value function [4].

yd
i = ri + γQ′(si+1, arg max

a
Q(si+1, a;θi);θ′

i), (7)

where γ is a discount factor. Note that the selection of action in (7) is still
based on the online parameter θi, as illustrated in Fig. 2. However, the second
parameter θ′

i is used to evaluate the Q-value. Hence, the action is decoupled
from the generation of target Q-value, which makes the training faster and more
reliable.

Online Q Network Target Q Network

Loss Function

s s’ 

a*

Q(s’, a*; w’)Q(s, a; w) r

s’ 
w’

Replay Memory

Sampling Mini-batch
(state s, action a, reward r, next state s’)

Fig. 2. Information flow of DDQN with DNN parameters w and w′.
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DDQN for Hybrid MEC Offloading. We define the state space of i-th edge
device as S = {(W, E , C)}, where w ∈ W � {0, 1, . . . ,W} represents the work-
load of edge node at the beginning of each time frame, e ∈ E � {0, 1, . . . , E}, and
c ∈ C � {0, 1, . . . , C} represent the finite state energy status and channel condi-
tions, respectively. At the k-th time frame, the system state Sk ∈ S consists of
the channel conditions, the user’s energy supply, and random workload. In par-
ticular, the channel from the HBS to each user can be modeled in a finite-state
Markov chain. This leads to state transitions in the edge user’s offloading rate
and power consumption. It further affects the transmit performance in two radio
modes. Due to the uncertainty in ambient environment, the harvested energy is
random and following an unknown stochastic process. The power consumption
also varies with the channel conditions. This implies a dynamic process of the
edge user’s battery status. The workload of each edge user is also uncertain due
to the user’s mobility and time-varying behaviors of upper layer applications.
We assume that the workload can be divided flexibly and processed separately
without affecting the integrity. The state transition function P (Sk+1|Sk, ak) rep-
resents the distribution of the next state Sk+1 given the current state Sk and
the offloading action ak.

We define the action space of i-th edge node as A = {a; a ∈ {0, 1, 2}}, where
a = 0, 1, and 2 correspond to active offloading, passive offloading, and local com-
putation, respectively. Given the dynamics of channel conditions, energy status,
and workload, each user device will choose its action accordingly to maximize
its reward function. Moreover, the action also needs to divide workload in differ-
ent computation schemes. To avoid continuous action space, we equally divide
each time slot into multiple sub-slots. In each sub-slot, the edge user follows the
same DRL framework to optimize its offloading decision. By this quantization,
we actually optimize the workload allocation among local computation, passive,
and active offloading. To maximize the system performance, we define the reward
function as the energy efficiency, i.e., the successfully completed workload per
unit energy. It captures the immediate value at each time frame, which is given
by R(t) = Lixi

˜β(ra,i)ta,i+kif3
i tl,i

. If workload is completed successfully, e.g., xi = 1,
the reward value is a positive number that represents the throughput per unit of
energy. Otherwise, the reward value is 0. This allows the DRL agent to constantly
search for a better strategy to maximize the total energy efficiency. Algorithm 1
summarizes the DDQN approach for hybrid MEC offloading.

4 Numerical Evaluation

In this section, we evaluate the performance of the proposed DRL algorithm. A
fixed transmit power at HAP is set to p0 = 100 mW and the energy conversion
efficiency is η = 0.6. We compare the performance of our hybrid data offload-
ing scheme with the conventional active offloading and local computing scheme
without the support for backscatter communications. Besides, greedy algorithm
and random algorithm are compared as well. We assume flat block fading chan-
nels, i.e., the channel gains remain the same within one time frame and follow
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Algorithm 1. DDQN Approach for Hybrid MEC offloading
Require: Initial workload, channel and energy conditions.
Ensure: Convergent hybrid MEC offloading strategy π∗.

Initialize replay memory D, DNN parameters θ, θ′.
for episode k ≤ 1, 2, ..., K do

if mod(k, 100) == 0 then
Change the initialization to the current best result.

end if
Choose a random probability number p.
if p < ε then

a∗(t) = arg maxa Q(s, a; θ).
else

Choose a(t) randomly.
end if
Execute action a(t) and receive immediate reward r(t).
Observe next environment state s′.
Store transition (s, a, r, s′) in replay memory D.
Sample random mini-batch of transitions from D.
Calculate the target Q-value y(t) from the target network,

y(t) = r(t) + γ max Q′(st+1, arg max
a

Q(si+1, a; θ); θ′).

Update the parameters θ of the online Q-network.
Copy θ to the target network for every K steps.

end for

Table 1. Parameter settings in the DRL framework

Parameters Value

Number of hidden layers 2

Fully connected neuron network size 64 × 64

Activation ReLU

Optimizer Adam

Learning rate α 0.01

Discount rate γ 0.9

ε-greedy 0.9

Mini-batch size 32

Experience replay memory size 2000

Target network update frequency 100

a finite-state Markov chain over consecutive time frames. The workload of each
edge node is randomly generated in the range [4, 32] kbits. We set the constant
circuit power to pc = 1µW and the constant data rate in passive mode as rp = 5
kbps. The noise power is set to σ2 = −70 dBm and the bandwidth is given by
B = 400 kHz. Table 1 lists the parameter settings in our DRL framework.
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(a) Rewards with different number of sub-slots

(b) Outage performance with different number of sub-slots

Fig. 3. Performance comparison with different number of sub-slots.

Figure 3 shows the average reward of 500 episodes with different sub-slots at
individual edge node. We denote reward as the throughput of hybrid offloading
or local computing per energy unit when the workload is fulfilled successfully. To
account for workload allocation, we further divide each time slot into a number
of sub-slots to realize dual-mode data offloading. When the number of sub-slots
is 2, it means that the workload can be assigned to different offloading modes.
Firstly, we observe that averaged reward is higher than that of the random
scheme, when the number of sub-slot is set to one, which means that the edge
user can only work in one mode for data offloading in one time slot. However,
the outage performance in this case becomes worse than that of the random
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Fig. 4. Rewards in different algorithms.

scheme. The reason is that, the DRL agent may sacrifice outage performance to
obtain a higher reward value when the edge user is unable to switch the radio’s
operating mode during MEC offloading. In Fig. 3(a), we also observe that the
average reward grows significantly with the increase in the number of sub-slots,
which allows more flexibility in workload allocation. Meanwhile, the number of
outage events decreases as shown in Fig. 3(b). This is because, with more sub-
slots, the partition of workload can be closer to optimal and thus achieve an
improved performance.

We also compare the performance of the proposed DRL-based offloading
algorithm with a few baseline approaches, which include the greedy and ran-
dom algorithms, as well as the conventional active offloading algorithm without
passive mode. From Fig. 4, we can see that the DRL-based algorithm achieve
the best performance with highest reward. The conventional active offloading
algorithm is inferior to the greedy algorithm slightly and much lower than the
hybrid offloading algorithm in this set of parameters. This verifies that the hybrid
offloading strategy has an significant performance improvement over the conven-
tional offloading scheme, due to its flexibility in mode switch.

5 Conclusions

In this paper, we have proposed a deep reinforcement learning based hybrid
offloading algorithm to maximize the energy efficiency in wireless powered MEC
networks with hybrid data offloading. We first formulate the energy efficiency
function as a non-convex optimization problem. To solve it, we have developed
the DDQN-based algorithm to learn the near optimal offloading policy. The
numerical results demonstrate that the proposed DRL solution can achieve bet-
ter performance than the conventional methods.
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