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Abstract. Forecasting streamflow discharge have economic impact as well as
reducing the effects of floods in flood prone regimes by presenting early
warning. To minimize it’s effects in these regimes, a powerful class of machine
learning algorithms called long short-term memory (LSTM) and gated recurrent
units (GRU) models, which have become popular in time series forecasting,
because they are explicitly designed to avoid the long-term dependency prob-
lems is applied. LSTM and GRU models have also demonstrated their capacity
in sequence modelling, speech recognition and streamflow forecasting. In this
paper we proposed a hybrid model for streamflow forecasting using 35 con-
secutive years Model Parameter Estimation Experiment (MOPEX) data set of
ten basins having different basin characteristics from different climatic regions in
United States. The proposed hybrid model’s performance is compared to the
conventional LSTM and GRU models. Our experiments on the 10 MOPEX’s
river basins demonstrate that, although the proposed hybrid model outperforms
conventional LSTM with respect to streamflow forecasting, but the performance
is almost same with GRU and is therefore highly recommended as an efficient
and reliable approach in hydrological fields.

Keywords: LSTM � MOPEX � Recurrent neural networks � Streamflow
forecasting

1 Introduction

Forecasting daily streamflow is one of the tools applied by water authorities to allocate
scarce water resources among competitive users, as well as in flood prone regions
where early warning can reduce the effects of flood. Floods are one of the most
frequently occurring natural disasters which affect many regions of the world resulting
in loss of lives and billions worth of properties especially in flood prone regions.
Information at any stage of streams/rivers are very important in the analysis, design and
construction of water resources projects such as reservoirs flow, dams, channels for
flood controls and in streamflow forecasting. In deep learning algorithms, a model class
of artificial neural networks which are inspired by biological nervous system called the
LSTM are employed to solve the problems of vanishing gradient by controlling
information flow using input, forget and output gates. Another default behaviour of an
LSTM model is there ability in remembering past information for a long period of time.
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They also have the capability to process as well as for predicting time series data. Short
or long term forecasting of streamflow events helps to optimize and plan for future
expansion or reduction. Time series models are models that have its data collected at
constant interval of time. These data are analyzed to determine the long-term trends so
as to forecast the future or perform some other forms of analysis. Water resources
planning are very sensitive in many regions around the globe, and as such it has to be
managed in a very sustainable manner. The main purpose of this research is to pro-
posed a hybrid model and compare with the conventional LSTM and GRU models for
streamflow forecasting using 35 consecutive years daily streamflow data set from 10
MOPEX basins that have different basin characteristics from different climatic regions
in United States.

More recently deep learning LSTM RNN have been applied in streamflow fore-
casting by [16] for rainfall-runoff modeling, in air pollution [10], compared a long
short-term memory neural network extended (LSTME) model to other statistical-based
models proving LSTME to be superior. For traffic speed prediction [11], provided an
insightful information for transportation professionals to reduce congestion, improve
traffic safety, route preplanning as well as rescheduling for the benefit of travellers,
although they suggested adding multiple layers in the architecture which might enhance
the learning capabilities of the neural networks. LSTM models are also applied for
information retrieval and in gesture recognition [19], designed a model which exhibited
good performance in sequence level classification, although the model faces the lim-
itation of frame classification while executing gesture recognition. [1] presented an
LSTM-based model that can jointly reason across multiple individuals to predict
human trajectories in a scene. They suggest future research to extend multi-class set-
tings sharing the same space, thus allowing jointly modeling of human-human and
human-space interactions in the same framework.

In this study, whose main objectives is to propose a hybrid model while comparing
it’s relative performance with an LSTM and GRU models for streamflow forecasting
using 10 MOPEX basins data set as a case study. MOPEX’s basins contains historical
hydrometeorlogical data and river basin characteristics from a range of climates
throughout the world for long lead-streamflow forecasting. These models are applied
on ten MOPEX’s basins; Sandy river, Nezinscot river, Royal river, Saco river,
Pemigewasset river, Quinebaug river, Ammonoosuc river, Housatonic river, Tenmile
river, and Sacandaga river basins in United States. We also analysed streamflow dis-
charge history for 35 consecutive years in the river basins and applied it to predict
future streamflow. The overall performance of the models on the different climatic
regimes are evaluated using root mean square error (RMSE) and mean absolute error
(MAE). A very important event in water resources management that can affect flood
control when designing various hydraulic structures such as dams is accurate stream-
flow forecast. Although there are many parameters affecting streamflow discharge such
as amount of rainfall, the rate of snow pack and glacier melt due to temperature
variations etc., the discharge serves only as the input to all the models in the present
study.

The rest of the paper is organized as follows; Previous works related to the study of
LSTM and GRU models are presented in Sect. 2. We described LSTM, GRU and our
proposed hybrid models in details in Sect. 3. Conducting of our experiment including
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the study areas, methodology and the experimental results are presented in Sect. 4.
Finally we conclude the paper and indicate some future work directions in Sect. 5.

2 Related Works

Numerous studies have presented the advantages and applications of recurrent neural
network (RNN) including: [16] applies Streamflow Hydrology Estimate using Machine
Learning (SHEM) for providing accurate and timely proxy streamflow data set for in-
operative streamgages whose result’s can be used by first responders and decision
makers responding to flood events. [8] applies same data set to compare the relative
performance of artificial neural networks and auto-regression models for river flow
forecasting. The results proves that neural networks were able to produce better results
than auto-regressive models.

Significant attention has been given lately to compare multiple climatic models for
streamflow forecasting using hydrological data variables. [9] compares feedforward
networks (FFNs) and RNNs models. The results proves RNNs to perform better than
feedforward networks for both single step and multi-step ahead forecasting. [3] com-
pares static and dynamic feedback neural network. From the results obtained the
dynamic neural network generally produce better and are more stable in streamflow
forecasting. [4] employed RNNs and were able to forecast the streamflow where
meteorological and hydrological data is rarely available for advanced models.

[1] presented an LSTM-based model that can jointly reason across multiple indi-
viduals to predict human trajectories in a scene. They qualitatively prove that social-
LSTM successfully predicts various non-linear behaviors arising from social interac-
tions, such as a group of individuals moving together. [21] proposed a model to
forecast off-line customer flow for over two thousand shops by considering both online
and off-line periodic customer behaviors. The promising experimental results demon-
strated that, the proposed approach is superior to the state-of-the-art algorithms such as
lasso regression and gradient boosting regression tree. This indicated the wider
applicability of the proposed forecast approach.

Another research conducted by [14] proves that, an ANNs model trained with
pseudo-inverse rule was capable of performing prediction of combined sewer overflow
depth with less than 0.05 error for prediction 5 times ahead for unseen data set. [24]
applied Internet of Things (IoT) monitoring combined sewer overflow structures, and
compares four different neural networks; multilayer perceptron (MLP), wavelet neural
networks (WNN), gated recurrent unit (GRU) and LSTM. LSTM and GRU performed
superior performance for multistep ahead prediction with GRU achieving quicker
learning curves. [23] designed two different models per city for forecasting weather.
The result proves that, LSTM can be considered a better alternative to the traditional
methods.

Following the methodology of [11], who proposes a novel LSTM neural networks
which is desirable for traffic prediction problem where future traffic condition is rele-
vant to the previous events with long time span. They suggest adding multiple layers
which might enhance the learning capability of the neural networks. [2] proposed a
multi-step ahead reinforced real-time RNN. The proposed model achieves superior
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performance while improving the precision of multi-step ahead forecast when com-
pared to two dynamic and one static neural networks. [13] proves that RNN LSTM
gives satisfactory improvement with significance of 0.16 correlation and 0.68 in mean
squared error over perfect prognosis statistical downscaling techniques.

[7] compares four different artificial intelligence models; ANNs, support vector
regression (SVR), wavelet-ANN and wavelet-SVR. From the research conducted, non
of the models outperformed the others in more than one watershed, suggesting that
some models may be more suitable for certain types of data set. [17] applied timed
lagged RNNs and the results out-performed general RNNs in predicting short term
flood flow. [22] proposed a method for tweets classification which utilizes weakly-
labeled tweets and can significantly improve the accuracy of tweets classification,
although they did not include discrimination detection in multiple categories. [15]
applied Levenberg Marquardt algorithm to develop an artificial neural network. The
results prove’s a relatively good agreement between predicted and observed values.

Research conducted by [12], demonstrated the advantages of LSTM model for
analyzing the complex non-linear variations of traffic speeds as well as its promising
prediction accuracy. [18] proposes a hybrid model of wavelet transform and LSTM.
The hybrid model provided better results than the LSTM, Elman and Jordan recurrent
neural networks. [10] compares spatio-temporal deep learning model, time delay neural
network, auto regressive moving average, support vector regression, and traditional
LSTM neural network models. The results demonstrated the long short-term memory
neural network extended (LSTME) as superior to the other statistical-based models.

While [5] proposed a field-programmable gate array (FPGA) based accelerator for
long short term memory recurrent neural networks, which optimizes both computa-
tional performance and communication requirements. The results of design achieves
significant speedup over software implementations and it outperforms previous long
short term memory recurrent neural network accelerators. [6] designed a model that
integrates time delay and RNN. The results obtained proves it to predict better forecast
than the statistical autoregressive-moving average with exogenous terms (ARMAX)
model. [25] hybrid Ensemble Empirical Mode Composition (EEMD-LSTM) model
performed better than the recurrent neural network, long short term memory, EMD-
recurrent neural network, EMD-long short term memory and EEMD-recurrent neural
network model for daily land surface temperature data series forecasting.

While [20] compares short and long term forecast. Results proves short term
forecast can clearly improve real-time operation, however long term forecast still
requires improvement in the forecast. From the previous researches conducted, it is
clearly proven that promising results have been observed when applying LSTM and
GRU models.

This paper presents a hybrid model for streamflow forecasting and compares it’s
relative performance with LSTM and GRU models using United States Geological
Survey (USGS) National Water Information System (NWIS) data set. 35 consecutive
years (35 water years) data set from 10 MOPEX river basins having different basins
characteristic from different climatic regions were applied as a case study.
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3 Modelling

In this study, we applied three artificial intelligence approaches for streamflow fore-
casting. The first approach is the conventional LSTM model, followed by GRU model
and we compares it with the hybrid model (LSTM and GRU). We applied LSTM and
GRU models on streamflow data set because they are equipped with the forget and
update gates respectively. These gates enables the artificial intelligence models to
memorize long term dependencies of specific features from the input data without
being erased as well as solving the problems of vanishing gradient. Although in LSTM
model, the amount of memory content is controlled by the output gate, the reverse is
the case in GRU as they have no full control over it memory content. Thirty five water
years historical daily streamflow data set of 10 MOPEX basins in USA obtained from
the United States Geological Survey (USGS) National Water Information System
(NWIS) are applied as input to these artificial intelligence models.

3.1 LSTM Model

Daily streamflow discharge of each river basins over the period of thirty five con-
secutive years (35 Water years) were applied on the LSTM model. To validate the
effectiveness of the LSTM model. The historical data set were divided into two selected
sub-groups, corresponding to 8:2 for training and testing respectively for each of the
basins. The first step in the training section involves normalization of the data set
between (0 and 1) using Min Max Scaler, which is a simple technique for fitting the
data set in a pre-defined boundary. The second step is segmentation of the time series
data input using sliding window to determine the prediction accuracy and it was set as
3. Finally we designed the LSTM model consisting of 5 LSTM blocks which is fully
connected with epoch, batch size and verbose set as 31, 1 and 2 respectively. RMSE of
the train score and test score as well as MAE were applied to evaluate the performance
of the model at both training and testing phase respectively.

3.2 Hybrid Model

The proposed hybrid model in this paper is an integration of both LSTM and GRU
models. This hybrid model is thought to exploit not only the characteristics and
learning capabilities, but also the strength of both GRU and LSTM models, so as to
produce a more accurate and reliable forecast on the streamflow data set. The pro-
portion between train and test data sets is 8:2. To validate the effectiveness of the
proposed hybrid model, the data set was first divided into two sets; training and testing
data set, each of which contains several processes. The first step is the training section,
as it involves normalization of the data set between (0 and 1) using Min Max Scaler
which is a simple technique for fitting data in a pre-defined boundary. The second step
is segmentation of the time series data input, using sliding window to determine the
prediction accuracy and it was set as 3. The output of the LSTM model is fed into the
GRU model in order to produce a single, final output as it’s being concatenated and
formed a fully-connected layer. The network is trained and tested with the hybrid
model each of which are fully connected with epoch, batch size and verbose set as 31, 1

514 A. U. Muhammad et al.



and 2 respectively. The configuration chosen for the hybrid model in this study is 1-2-
1, namely; one input layer, two hidden layers with the first hidden layer having 5
LSTM neurons and the second hidden layer having 5 GRU neurons and an output
layer, as this is the multi layer perceptron adopted throughout the study. RMSE of the
training and testing data set as well as MAE were applied to evaluate the performance
of the model at both training and testing phase respectively. The flowchart of the
proposed hybrid model indicating the flow of data from the input to the output state
consisting hybrid blocks with a fully connected hidden layer is presented below
(Fig. 1).

4 Experiments

This section mainly describes the experimental setup in details including; the study
area, the methodology applied in conducting the experiments and the experimental
results.

4.1 Study Areas

The hydrological streamflow data set operated by USGS of 10 MOPEX river basins
retrieved from the National Water Information System (NWIS, http://waterdata.usgs.
gov/nwis, accessed March 2018) for thirty five consecutive years (35 water years) are
applied in this study. Since continuous streamflow data are common to all the 10
studied basins and are therefore used for this study in calibrating, evaluating and testing
the model. These 10 basins are chosen as study areas because they have minimal or no
regulation streamflow. The rationale for choosing these time intervals pertained to the
availability of data in each river basin, as each have atleast 50 years of continuous
streamgage data records available. The study basins as represented in both geographic
and climatic variability and they are; Sandy river, Saco river, Royal river, Quinebaug

Fig. 1. Flowchart of hybrid model
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river, Sacandaga river, Ammonoosuc river, Pemigewasset river, Nezinscot river,
Housatonic river and Tenmile river. Streamflow varies depending on the amount of
rainfall, geology, rate of snow pack and glacier melt due to temperature variations,
seasonal weather conditions, and land cover. Additional physical attributes of the
basins were also described; mean areal precipitation (mm), climatic potential evapo-
ration (mm), daily streamflow discharge (mm), daily maximum air temperature (Cel-
sius), daily minimum air temperature (Celsius) by the USGS. The change of stage in a
river results from variation of discharge. The gaging stations are established mainly for
knowing the flow regime of the river. Details of the case study areas are summarized in
the tables below (Tables 1, 2 and 3).

Table 1. Drainage and length of the 10 MOPEX basins.

Station ID Station name Drainage (m2) Length (mile)

01048000 Sandy river 516 56
01064500 Saco river 385 136
01060000 Royal river 141 39
01127000 Quinebaug river 850 69
01321000 Sacandaga river 491 64
01138000 Ammonoosuc river 850 55
01076500 Pemigewasset river 622 70
01055500 Nezinscot river 169 30
01197000 Housatonic river 1950 149
01200000 Tenmile river 203 8.6

Table 2. Location of the 10 MOPEX basins.

Station ID Latitude Longitude

01048000 44.71 −69.94
01064500 43.99 −71.09
01060000 43.79 −70.18
01127000 41.59 −71.99
01321000 43.31 −73.84
01138000 44.22 −71.91
01076500 43.75 −71.69
01055500 44.27 −70.23
01197000 42.23 −73.36
01200000 41.66 −73.53
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4.2 Methodology

Daily streamflow discharge of each of the 10 MOPEX river basins for the period of
thirty five consecutive years (35 Water years) was used in the study. The streamflow
data set were obtained from the United States Geological Survey (USGS) National
Water Information System (NWIS). It is thought that, the hybrid model to exploit not
only the characteristics and learning capabilities but also the strength of both GRU and
LSTM models so as to provide a more accurate and reliable forecast on the streamflow
data set. The data set is divided into ten subsets of chosen size (35 water year) each.
The subsets are first normalized between the range (0 to 1) using Minimum Maximum
Scaler, for preserving zero entries in sparse data and including robustness to very small
standard deviations of features. For model training and testing, the historical data set
were divided into two selected groups, corresponding to 0.8 and 0.2 for training and
testing respectively for each of the subset. The training data set were used for training
the LSTM, GRU and hybrid models, followed by testing for evaluating the accuracy of
the trained networks. The sliding window, which was designed to maximize the
retention of the forecast sharpness for forecast systems associated with higher skills
was set as 3. After testing the models on different neurons, a model consisting of 5
neurons each of LSTM, GRU and hybrid model respectively with fully connected
hidden layer with batch size and verbose set as 1 and 2 respectively was adopted in this
study.

In order to estimate the forecasting performance and evaluate the accuracy of the
hybrid model. RMSE and MAE are applied on both the LSTM, GRU and hybrid
models. The RMSE is basically applied to measure the differences between the pre-
dicted and true values of the model, while MAE measures accuracy for continuous
variables without considering their directions. Both formulas were applied because they
have a good performance to distribution error and could be used to measure the error
rate of the models. The mathematical expressions of RMSE and MAE are presented
respectively below:

Table 3. Streamflow discharge history of the 10 MOPEX basins.

Station ID Max. Avg. Min.

01048000 2340(1996) 232 71(1993)
01064500 2470(1996) 297 125(1991)
01060000 11500(1977) 2500 1120(1957)
01127000 3890(1938) 810 73(1946)
01321000 32,000(1913) 12000 16(1913)
01138000 1030(1991) 74 30(2008)
01076500 3270(1996) 352 112(1919)
01055500 874(1996) 62 24.2(1985)
01197000 372(1938) 33 6.90(1962)
01200000 1980(1938) 84 12(1957)
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RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P ðy� xÞ2
n

s

MAE ¼
P jy� xj

n

Where y and x are the forecast and observed streamflow data set respectively, n is the
total number of samples in each of the data set. The results of the hybrid models are
compared with our reference LSTM and GRU models. Tables 4, 5 and 6 presents the
statistical test results obtained from the calculated train score RMSE, test score RMSE
and MAE of the LSTM, GRU and hybrid models, when the same data set of each basin
are applied. The best model is normally the one having least values of MAE and
RMSE.

4.3 Experimental Results

In this section, the selective results of all 10 testing phases of the river basins con-
taining the observed and predicted values in the study are presented. The results and
discussion are presented in details as shown below.

Fig. 2. Testing phase of the river basins using LSTM model.
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Fig. 3. Testing phase of the river basins using GRU model.

Fig. 4. Testing phase of the river basins using hybrid model.
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4.4 Discussions

In this study we applied train score RMSE, test score RMSE and MAE to measure the
performances of the models using 35 consecutive years (35 Water years) data set
splitted into training and testing for forecasting streamflow discharge on 10 MOPEX
basins. Figures 2, 3 and 4 presents the extent match between the observed and pre-
dicted values of the testing phase of the LSTM, GRU and hybrid models respectively.
While Figs. 5, 6 and 7 shows the histogram distribution of the train score RMSE, test
score RMSE and MAE respectively. Tables 4, 5 and 6 summarizes the results of train
score RMSE, test score RMSE and MAE of LSTM, GRU and Hybrid (LSTM and
GRU) models respectively. These graphs and tables compares the RMSE and MAE of
the 3 models. The best performers on the tables are highlighted in bold font, while the
second best performers are underlined.

The summarized forecasting performance of the LSTM, GRU and hybrid models in
terms of train score RMSE and test score RMSE of all 10 MOPEX basins and the
histogram distribution of train score RMSE and test score RMSE are presented in
Tables 4, 5 and Figs. 5, 6 respectively. As seen from the tables, GRU and hybrid models
performed better than LSTM model in streamflow forecasting because they have the
least values of RMSE. Although the GRU outperformed the hybrid model in 6 of the 10
basins, but the performance of the GRU and hybrid model seems to be very close.

Table 6 presents the results of the calculated MAE, while Fig. 7 shows the plot of
the histogram distribution of MAE of the 10 MOPEX basins when same data set are
applied on LSTM, GRU and hybrid models. As seen from the table, the GRU model
exhibited it’s best performances in 6 MOPEX basins, while hybrid model exhibited it’s
best performances in 4 MOPEX basins with both models slightly different to each
other, but never the less they outperformed the LSTM model in streamflow forecasting.

It is obvious from the Tables 4, 5 and 6 presented that, the GRU are most efficient
for streamflow forecasting on 01048000, 01064500, 01060000, 01127000, 01321000,
01138000 basins with the hybrid model having best performance in 01076500,
01055500, 01197000, 01200000 basins. The performance of the GRU and hybrid
models does not differ much, although the hybrid model have both the characteristics
and properties of both the LSTM and GRU models.

Table 4. Train score RMSE of LSTM, GRU and hybrid models of the 10 MOPEX basins,

Rivers LSTM RMSE GRU RMSE Hybrid RMSE

Sandy 4.9782 1.5376 1.5393
Saco 7.4384 2.2672 2.3089
Royal 5.4146 1.5047 1.5122
Quinebaug 3.7090 0.6765 0.7797
Sacandaga 4.1191 1.2369 1.3485
Ammonoosuc 3.8715 1.2414 1.2488
Pemigewasset 5.4605 1.8866 1.8151
Nezinscot 4.5402 1.0741 1.0463
Housatonic 3.2846 0.8739 0.7079
Tenmile 3.7099 1.8853 0.9426
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Table 5. Test score RMSE of LSTM, GRU and hybrid models of the 10 MOPEX basins.

Rivers LSTM RMSE GRU RMSE Hybrid RMSE

Sandy 5.8595 1.8161 1.8209
Saco 7.9457 2.2349 2.2530
Royal 6.1550 2.0571 2.0745
Quinebaug 3.8878 0.6481 0.7333
Sacandaga 4.8287 1.4959 1.5465
Ammonoosuc 4.2415 1.5033 1.5351
Pemigewasset 6.0844 2.1386 2.0704
Nezinscot 5.1345 1.2112 1.2064
Housatonic 3.5813 0.9273 0.7877
Tenmile 4.2478 1.8923 0.9839

Table 6. MAE of LSTM, GRU and hybrid models of the 10 MOPEX basins.

Rivers LSTM MAE GRU MAE Hybrid MAE

Sandy 0.6454 0.1193 0.1196
Saco 0.8904 0.2150 0.2159
Royal 0.6494 0.1647 0.1657
Quinebaug 0.3367 0.0325 0.0349
Sacandaga 0.5647 0.0943 0.0977
Ammonoosuc 0.5685 0.1400 0.1425
Pemigewasset 0.7577 0.1954 0.1906
Nezinscot 0.4595 0.0556 0.0554
Housatonic 0.3975 0.0911 0.0853
Tenmile 0.3837 0.1014 0.0510

Fig. 5. Histogram on distribution of train score RMSE.
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5 Conclusion

In this research we proposed a hybrid model which is an integration of LSTM and
GRU models while applying it for streamflow forecasting. The hybrid model’s per-
formance is compared with our reference LSTM and GRU models. These models are
trained and tested with 35 consecutive years streamflow discharge data set of 10
MOPEX basins having different basin characteristics from different climatic regions in
United States. MOPEX basins were selected because they have atleast 50 years con-
tinuous streamflow data set available that have minimal or no regulation. The perfor-
mance of each model in terms of train score RMSE, test score RMSE and MAE are
evaluated. The proposed hybrid and GRU models outperformed the LSTM model for
streamflow forecasting. Although the performance of the hybrid model is almost the
same with GRU in streamflow forecasting, but the GRU model outperformed the
hybrid model slightly in 6 of the 10 MOPEX basins suggesting that some models may
be more suitable for certain types of data sets.

Fig. 6. Histogram on distribution of test score RMSE.

Fig. 7. Histogram on distribution of MAE.
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