
A Backward Learning Algorithm
in Polynomial Echo State Networks

Cuili Yang(B), Xinxin Zhu, and Junfei Qiao

Faculty of Information Technology,
Beijing University of Technology Beijing Key Laboratory
of Computational Intelligence and Intelligence System,

Beijing 100124, People’s Republic of China
{clyang5,junfeiq}@bjut.edu.cn,

804340106@qq.com, 1205580412@qq.com

Abstract. Recently, the polynomial echo state network (PESN) has
been proposed to incorporate the high order information of input
features. However, there are some redundant inputs in PESN, which
results in high computational cost. To solve this problem, a backward
learning algorithm is designed for PESN, which is denoted as BL-PESN
for short. The criterion for input features removing is designed to
prune the insignificant input features one by one. The simulation results
illustrate that the proposed approach has better prediction accuracy and
less testing time than other ESNs.
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1 Introduction

Echo state network (ESN) has drawn great interest in the research field
[1]. Compared with the traditional gradient based recurrent neural networks
(RNNs), the ESN has faster convergence speed with better performance. The
core structure of an ESN is the reservoir, which is consisted of a large number of
recurrent connected neurons. In an ESN, the internal weights and input weights
are randomly given, while the weights connecting the reservoir and the readouts
are trained by the standard linear regression routines. Recently, the ESN has
been adopted in different fields, such as time series prediction [2], the pattern
extraction [3], speech recognition [4], and adaptive control [5].

Recently, many various ESN schemes have been explored, such as augmented
complex ESNs [6], the minimum complexity ESN [7], the robust ESN [8].
However, in the above methods, the high order information of input features
are not mentioned. To solve this problem, the polynomial ESN (PESN) was
investigated [9] by employing the polynomial functions of complete input features
into output weights. The experimental results showed that PESN performed
better than traditional ESNs in terms of accuracy and testing speed.
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However, some redundant input features of PESN may be incorporated
to construct the polynomial output weights, which not only increase the
computational cost but also worse the testing accuracy. Thus, it is essential to
prune the redundant features. To solve this problem, the forward and backward
learning algorithms provide an effective way. The forward learning algorithms
start with an empty model, then gradually add the term with the largest decrease
in the cost function [10]. While the backward learning algorithms involve an
over-sized network and delete the unnecessary term one by one [11]. Compared
with backward learning algorithms, the forward learning algorithms are always
sensitive to the initial conditions. Thus, the backward learning algorithm is
focused in this paper. Recently, several backward learning algorithms have been
developed for ESNs. For example, a pruning and regularization algorithm was
proposed in [12] to prune the insignificant connection of the reservoir. Then,
a sensitive iterative pruning algorithm was designed to remove the the least
sensitive reservoir neurons.

In this paper, a backward learning algorithm is designed for polynomial ESN
(BL-PESN) to remove the redundant input features. The BL-PESN is started
with a p-order PESN in which the complete input features are chosen as output
weights. Then, the redundant or insignificant features are pruned one by one
until the required criterion is satisfied. Finally, some experiments are carried out
to illustrate the effectiveness of the proposed method.

The rest of the paper is organized as follows. Section 2 describes the ESN
and the PESN briefly. The criterion of pruning feature for BL-PESN is given in
Sect. 3. In Sect. 4, three experiments are done. Section 5 concludes the paper.

Input Layer Reservoir Output Layer

. . .

. . .

WinW outW

Fig. 1. The structure of the ESN without output feedback.

2 Preliminaries

In this section, the original ESN (OESN) and the PESN are briefly described,
respectively.
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2.1 OESN

The general structure of an ESN without output feedback is shown in Fig. 1.
It is composed of n input units, m readouts and N recurrent connected
neurons called the reservoir. Win and W are the input weight matrix and
reservoir weight matrix. The output weights Wout is trained by linear regression
method. At the time step k, the vectors of input, output and internal state are
denoted by u(k) = [u1(k), u2(k), ..., un(k)]T , y(k) = [y1(k), y2(k), ..., ym(k)]T ,
and x(k) = [x1(k), x2(k), ..., xN (k)]T , respectively. The internal state dynamic
and the output equations of the ESN can be described as below

s(k) = g(Ws(k − 1) + Winu(k)) (1)

y(k) = Wout[s(k)T ,u(k)T ]T = Woutx(k) (2)

where g(·) is the activation function and x(k) = [s(k)T ,u(k)T ]T is the
concatenation of the internal state s(k) and input vector u(k).

Denote X = [x(1),x(2), ...,x(L)] as the internal state matrix, and the
corresponding matrix of targets as T = [t(1), t(2), ..., t(L)], with t(k) =
[t1(k), t2(k), ..., tm(k)]T . The least-squares estimation of Wout is calculated as

Wout = TX† = TXT (XXT )−1 (3)

where X† is the Moore-Penrose generalized inverse of X.

2.2 PESN

In OESN, the high order information of the inputs is not considered. To solve this
problems, the polynomial echo state network (PESN) is presented. In PESN, the
p-order polynomial function of full input features is constructed as the output
weights, which is expressed as below

wi(u(k)) = wi00 +
p∑

q=1

n∑

j=1

wT
ijqu

q
j(k) = Biz(k) (4)

where i = 1, ..., N +n, p is the polynomial order. Define M = np+1, z(k) ∈ R
M

and Bi ∈ R
m×M are given by

z(k) = [1, u1(k), ..., un(k), up
1(k), ..., up

n(k)]T (5)

Bi = [wi00,wi11, ...,win1, ...,wi1p, ...,winp] (6)

Similar to Eq. (2), the output of the PESN at the time step k is described as

y(k) = Wout(u(k))x(k) (7)

where Wout(u(k)) is generated as below

Wout(u(k)) = [w1(u(k)),w2(u(k)), ...,wN+n(u(k))]
= [B1z(k),B2z(k), ..,BN+nz(k)] (8)
= B(IN+n ⊗ z(k))
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where ⊗ is the Kronecker product, IN+n ∈ R
(N+n)×(N+n) is an unit matrix, and

the unknown parameter matrix B ∈ R
m×M(N+n) is shown as below

B = [B1, ...,BN+n] (9)

Substituting the Eq. (8) into Eq. (7), one obtains

y(k) = B (x(k) ⊗ z(k)) (10)

In this context, calculating the solution of B is equivalent to finding the least
square solution of the following linear formula

J = arg min
B

{
C ‖B‖2F +

∥∥BX̄ − T
∥∥2

F

}
(11)

where ‖·‖F denotes the Frobenius-norm, C > 0 is the ridge parameter, X̄ ∈
R

M(N+n)×L, is given as

X̄ = [x(1) ⊗ z(1),x(2) ⊗ z(2), ...,x(L) ⊗ z(L)] (12)

By setting dJ
dB = 0, one gets

B̂ = TX̄T
(
X̄X̄T + CI

)−1
(13)

3 The Proposed BS-PESN

In this paper, BL-PESN is proposed to prune the insignificant input features. In
the following, the details of the proposed BL-PESN are presented.

Firstly, Eq. (5) can be reorganized as

z(k) = [1, u1(k), ..., up
1(k), ..., un(k), ..., up

n(k)]T = [1, zi(k), ..., zn(k)]T (14)

where zi(k) = [ui(k), ..., up
i (k)], i = 1, ..., n. Following Eq. (12), X̄ is given as

X̄ = [x(1) ⊗ z(1),x(2) ⊗ z(2), ...,x(L) ⊗ z(L)]

=

⎡

⎢⎢⎢⎣

x(1) x(2) · · · x(L)
x(1) ⊗ zT1 (1) x(2) ⊗ zT1 (2) · · · x(L) ⊗ zT1 (L)

...
...

. . .
...

x(1) ⊗ zTn (1) x(2) ⊗ zTn (2) · · · x(L) ⊗ zTn (L)

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

X̄0

X̄1

...
X̄n

⎤

⎥⎥⎥⎦
(15)

where X̄0 = X, X̄i =
[
x(1) ⊗ zTi (1),x(2) ⊗ zTi (2), ...,x(L) ⊗ zTi (L)

]
. Corre-

spondingly, the matrix B in Eq. (9) is rewritten as

B = [B0,B1, ...,Bn] (16)

It can be determined that pruning the insignificant input features from PESN
is equivalent to deleting X̄i from X̄. It has been proved that the cost function
is gradually increased with an decreasing number of features. The smaller the
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increase value on the cost function incurred by pruning one feature is, the less
important this feature is viewed to be. Hence, it can be justified which feature
is insignificant from the increase value. Define a full index set P = {1, ..., n},
BL-PESN is initialized with X̄P = X̄ in Eq. (15), and l = 0.

Assuming that BL-PESN is at the lth iteration. The cost function is described
as below

Ĵ (l) = min
BP

{
J (l) = C ‖BP ‖2F +

∥∥BP X̄P − T
∥∥2

F

}
(17)

If at the (l + 1)th iteration, the ith feature is pruned according to a certain
criterion. Equation (17) becomes

Ĵ
(l+1)
−i = min

BP\{i}

{
J
(l+1)
−i = C

∥∥BP\{i}
∥∥2

F
+

∥∥BP\{i}X̄P\{i} − T
∥∥2

F

}
(18)

Here, X̄P =
[
X̄P\{i}
X̄i

]
, BP =

[
BP\{i},Bi

]
. Equation (17) can be rewritten as

Ĵ(q) = argmin
Bp

{
J(q) = C

∥∥[
BP\{i},Bi

]∥∥2

F
+

∥∥∥∥[
BP\{i},Bi

] [
X̄P\{i}

X̄i

]
− T

∥∥∥∥
2

F

}

= argmin
Bi

{
Ĵ
(q+1)
−i +

∥∥BiX̄i

∥∥2

F
+ C ‖Bi‖2F − 2tr

((
B̂P\{i}X̄P\{i} − T

)T
BiX̄i

)} (19)

where tr(·) represents the trace of square matrix.
By setting dĴ(q)

dBi
= 0, one gets

B̂i =
(
B̂P\{i}X̄P\{i} − T

)
X̄T

i

(
X̄iX̄T

i + CI
)−1

(20)

Substituting (20) into (19) obtains

Ĵ (q) = Ĵ
(q+1)
−i − tr

((
B̂P\{i}X̄P\{i} − T

)T

B̂iX̄i

)
(21)

Hence, when removing ith input feature at the (q+1)th iteration, the error value
can be expressed as

Δ−i = Ĵ
(q+1)
−i − Ĵ (q) = tr

((
B̂P\{i}X̄P\{i} − T

)T

B̂iX̄i

)
(22)

Define the criterion of pruning feature as

s = arg min
i∈P

{
Δ−i = tr

((
B̂P\{i}X̄P\{i} − T

)T

B̂iX̄i

)}
(23)

According to Sherman-Morrison formula [14], we can calculate B̂P\{i} in Eq.
(23) with a fast speed.
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Firstly, denote (X̄P X̄T
P + CI)−1 by D(l), D(l) is decomposed in the block

form as

D(l) =

⎡

⎣
D11 D12 D13

DT
12 D22 DT

32

DT
13 D32 D33

⎤

⎦ (24)

where
[
DT

12 D22 DT
32

]
is the corresponding row to the ith feature. Hence, when

the ith feature is pruned at the (l + 1)th iteration,

D(l+1)
−i =

[
D11 D13

DT
13 D33

]
−

[
D12

D32

]
D−1

22

[
DT

12 DT
32

]
(25)

Correspondingly, the output weights can be updated as below

B̂P\{i} = TXT
P\{i}D

(l+1)
−i (26)

3.1 The Flowchart of BL-PESN Algorithm

The complete process of BL-PESN is given as below

• Step 1. Input the training samples {(u(k), t(k))Lk=1|u(k) ∈R
n, t(k) ∈R

m},
generate the matrices Win and W randomly, define the reservoir state
matrix X = [x(1),x(2), ...,x(L)] and the target output matrix T =
[t(1), t(2), ..., t(L)].

• Step 2. Determine the matrices zT (k) in Eq. (14) and X̄ in Eq. (15).
• Step 3. Choose the ridge parameter C, and decide the maximum algorithm

iteration nmax(0 ≤ nmax ≤ n). In the initialization, let P = {1, ..., n}, and
l = 0. Set X̄P = X̄, D(0) = (X̄T

P X̄P + CI)−1, and calculate B̂P = TX̄T
PD

(0).
• Step 4. Determine the index s in Eq. (23) and find X̄s from X̄.
• Step 5. Calculate B̂P\{s} in Eq. (26). Meanwhile, let P←P\{s}, and l ← l+1.
• Step 6. If l ≥ nmax is satisfied , go to Step 7; otherwise, turn to Step 4.
• Step 7. Choose the network with the most important set of input features.

4 Simulation Results and Discussion

In this section, the performance of the proposed BL-PESN is compared with
the PESN and the OESN. The ridge parameter C is chosen from a wide range
of candidates {2−20, 2−19, ..., 219, 220} for each dataset. The characteristics of
regression datasets and the nearly optimal parameter C are shown in Table 1.

To facilitate comparisons among different algorithms, the performance index
root mean square error (RMSE) is defined by

RMSE =

√√√√
L∑

k=1

(t(k) − y(k))2/L (27)
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Table 1. Information of the regression benchmark problems

Datasets #Training samples #Testing samples #Features #Outputs p log2C

Boston housing 350 156 13 1 1 −1

2 −3

Stocks domain 450 500 9 1 1 −7

2 −5

Wine-white 2600 2298 11 1 1 −3

2 −3
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(b) p = 2.

Fig. 2. Experimental results for Boston housing datasets. (Color figure online)

Table 2. Detailed experimented results of regression datasets.

Datasets p Algorithms #nodes #Feature Training

RMSE

Testing

RMSE

Training

time (s)

Testing

time (s)

Boston housing 0 OESN 200 13 0.0413 0.1107 0.3769 0.3205

1 PESN 72 13 0.0579 0.0751 1.2310 0.0995

BS-PESN 72 8 0.0665 0.0702 4.8133 0.0877

2 PESN 38 13 0.0574 0.0755 1.5312 0.0649

BS-PESN 38 9 0.0582 0.0721 6.5818 0.0641

Stocks domain 0 OESN 250 9 0.0364 0.0828 0.2686 0.0608

1 PESN 100 9 0.0331 0.0437 0.4525 0.3528

BS-PESN 100 5 0.0422 0.0428 1.9434 0.2641

2 PESN 53 9 0.0391 0.0411 0.4454 0.3378

BS-PESN 53 6 0.0354 0.0401 3.2356 0.3447

Wine-white 0 OESN 500 11 0.0946 0.1513 0.3608 0.1012

1 PESN 84 11 0.1083 0.1254 7.0332 5.6358

BS-PESN 84 8 0.1169 0.1259 8.9192 5.2360

2 PESN 45 11 0.1013 0.1545 10.7579 8.2422

BS-PESN 45 6 0.1160 0.1225 11.3372 7.2810

where y(k) and t(k) are the estimated output and target output at time k. The
smaller the RMSE value stands for better performance for each algorithm.



508 C. Yang et al.

Figure 2 shows the experimental results for Boston housing. In each figure,
there are two lines, in which the black dash line represents the PESN, and
the blue solid line with triangle marks is represented as BL-PESN. For each
blue line, there are always some marks below the dash line, which indicated
that BS-PESN can obtain better performance than the PESN. Due to space
limitation, the similar results of other regression experiments are omitted.

The comparisons between the proposed BL-PESN, PESN and OESN are
shown in Table 2. The results are average over 30 independent runs. Obviously,
the BL-PESN always needs fewer input features to construct the p-order
polynomial function, thus it needs the less testing time than the PESN. The
testing RMSE values of BL-PESN are always the smallest among all the
compared methods, which means that the BL-PESN is able to improve the
generalization by pruning some insignificant features from the PESN.

5 Conclusions

In this paper, a backward learning algorithm is designed for PESN to prune the
insignificant input features. The BL-PESN begins with a complete PESN, and
gradually prunes the insignificant input features one by one until the required
criterion is satisfied. The simulation results show that the proposed BL-PESN
has better prediction accuracy and training speed than other ESNs.
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