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Abstract. The echo state networks (ESNs) have been widely used
for time series prediction, due to their excellent learning performance
and fast convergence speed. However, the obtained output weight
of ESN by pseudoinverse is always ill-posed. In order to solve this
problem, the ESN with batch gradient method and smoothing �0
regularization (ESN-BGSL0) is studied. By introducing a smooth �0
regularizer into the traditional error function, some redundant output
weights of ESN-BGSL0 are driven to zeros and pruned. Two examples
are performed to illustrate the efficiency of the proposed algorithm in
terms of estimation accuracy and network compactness.
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1 Introduction

Recently, the artificial neural networks are widely used to fit nonlinear dynamic
system with arbitrary precision [1]. The typical artificial neural networks include
radial basis function neural network (RBF) [2], echo state network (ESN) [3],
fuzzy neural network [4], hopfield network [5], and so on. Among these networks,
ESN have gained many attentions. As a kind of recursive artificial neural
network, the ESN is consisted of an input layer, a reservoir and an output
layer [6]. In the training process, only the output weights are trained. Hence,
the computational burden of ESN is less than other artificial neural networks.

The performance of an ESN is closely related with its reservoir size. If the
reservoir contains too many nodes, the training error may be small, but the
over-training problem also exists which leads to high computational complexity
and poor generalization performance. If the reservoir size is too small, the
ESN has to face the under-training problem. To optimize network size, many
algorithms have been proposed, among which the growing and pruning methods
are two main trends [7–12]. The growing ESN starts with a small network
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and adds reservoir nodes one-by-one or group-by-group in the network training
process [8,9], this operation requires a long training time which results to heavy
computational burden. On the other hand, the pruning method initializes with
a large network and removes reservoir neurons or output weights in the learning
process [10–12], the network performance can be increased by pruning the
unnecessary neurons or weights. Hence, the pruning method is focused in this
paper.

To generate sparse network architecture, the regularization methods are
studied by adding the norm of weights into the corresponding objective function
[13–20]. The commonly used regularization methods include the �2 regularization
[16], �1 regularization [17,18], �1/2 regularization [19] and �0 regularization
[20]. As illustrated in [16], the �2 regularizer is able to control the risk
of error amplification, but it is a biased estimation. The �1 regularization
based algorithms could reduce network complexity. However, the �1 regularizer
cannot satisfy the oracle property. Moreover, the �1/2 regularization has the
unbiasedness, sparsity and oracle properties. While, the �1/2 regularization is
not differentiable at the origin which causes oscillations in the training process.
Furthermore, according to the regularization theory, the �0 regularizer is able
to yield the most sparse solution among all the regularization based algorithms
[20]. However, the �0 regularization is a NP-hard problem which is difficult to
solve.

To optimize network size, the ESN with batch gradient method and
smoothing �0 regularizer (ESN-BGSL0) is proposed in this paper. Since the
�0 regularization penalty term is a NP-hard optimization problem, a continuous
function is used to approximate the �0 regularizer. In ESN-BGSL0, only the
output weights are updated by using the batch gradient method and smoothing
�0 regularization, hence its computation complexity is greatly reduced than the
traditional recurrent neural networks. Finally, two time series experiments are
carried out to show the effectiveness of the proposed algorithm in terms of
estimation accuracy and network sparsity.

The rest paper is organized as follows. The original ESN is introduced in
Sect. 2. The proposed ESN-BGSL0 is described in Sect. 3. The experiments are
done in Sect. 4. Finally, some conclusions are drawn in Sect. 5.

2 Preliminariies

The structure of an original ESN (OESN) without feedback connections is
illustrated in Fig. 1. Without loss of generality, it is supposed that the OESN
has n input nodes, N neurons and 1 output unit. For given L training samples
{u(k), t(k)}Lk=1, where u(k) = [u1(k), u2(k), ..., un(k)]T ∈ R

n are inputs and t(k)
denote outputs, the echo states x(k) ∈ R

N at the time step k is calculated as
below:

x(k) = g(Wx(k − 1) + Winu(k)) (1)

where g(·) = [g1(·), ..., gN (·)]T are the activation functions of reservoir neurons,
Win ∈ R

N×n stands for the input weight and W ∈ R
N×N is the internal weight
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Fig. 1. The structure of the ESN without output feedback.

of reservoir, these two matrices are unchanged after initialization. Then, the
OESN output y(k) at the step k is updated by the following equation:

y(k) = Wout(k)x(k) (2)

where Wout = (W1,W2, ...,WN+n)T ∈ R
n+N is the output weight matrix, which

is only updated during the learning process.
Now, suppose X = [x(1),x(2), ...,x(L)]T represent the internal state matrix

and T = [t(1), t(2), ..., t(L)]T stand for the target output matrix, the output
weights Wout can be computed by minimizing the mean square error as below:

Ẽ(Wout) =
1
2

∥
∥XWout − T

∥
∥
2

2
(3)

where ‖·‖2 denotes the �2 norm. The solution of Wout is commonly solved by
using pseudoinverse [21]:

Wout = (XTX)−1XTT (4)

3 The Proposed ESN-BGSL0

Generally speaking, if the network size N is too large or the training data
contains too much noise, the solution of Eq. (4) is likely to be ill-posed, which
results in the poor prediction model. To solve this problem, the regularization
method is introduced into ESN to prune network output weights and increase
its estimation performance. By adding the �0 regularization item into Eq. (3),
the conventional cost function is rewritten as below:

E(Wout) = Ẽ(Wout) + λ
∥
∥Wout

∥
∥
0

0
(5)

where λ is the regularization coefficient to balance the tradeoff between training
accuracy and network compactness,

∥
∥Wout

∥
∥
0

0
represents the �0 regularizer [22],
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which is calculated by
∥
∥Wout

∥
∥
0

= (|W1|0+|W2|0 + · · · + |WN+n|0) for Wout =
(W1,W2 · · · WN+n)T .

Since the �0 norm minimization is a NP-hard problem, the following
continuous function f(·) is used to approximate the �0 regularizer,

f(Wout) =
n+N∑

i=1

f(Wi) (6)

where f(Wi) is a continuous differentiable function on R and defined as below

f(Wi) = 1 − ϕ

Wi
2 + ϕ2

(7)

where ϕ is set to a positive value. Based on Eqs. (6) and (7), the proposed cost
function Eq. (5) can be rewritten as below

E(Wout) = Ẽ(Wout) + λf(Wout) (8)

The gradient of the cost function Eq. (8) is given as

∂E(Wout)
∂Wout = −XT(T − XWout) + λ

∂f(Wout)
∂Wout (9)

with
∂f(Wout)

∂Wout
=

n+N∑

i=1

∂f(Wi)
∂Wi

=
n+N∑

i=1

2ϕWi

(Wi + ϕ2)2
(10)

With an arbitrary initial value, the output weights can be iteratively updated
by the batch gradient method,

Wout(j + 1) = Wout(j) − η
∂E(Wout)

∂Wout (11)

where η > 0 is the pre-defined learning rate and j is the updating iteration.
Based on above discussion, the operational process of the proposed

ESN-BGSL0 can be summarized as below,

Step 1. Randomly generate an initial reservoir weight matrix W0 with
predefined sparsity and reservoir size N , then update the matrix W0 as
W=αWW0/ρ(W0), where 0 < αW < 1 and ρ(W0) is the spectral radius
of W0. Furthermore, initialize the input weight matrix Win.
Step 2. Drive the reservoir by input signals as shown in Eq. (2), collect the
reservoir states to obtain the internal state matrix X.
Step 3. Set j = 0, initial the output weights matrix Wout.
Step 4. Increase j = j+1, With the predefined learning rate η, regularization
coefficient λ and positive value ϕ, update the output weights matrix Wout(j)
according to Eqs. (7) to (11).
Step 5. If j reaches to the predefined maximum iteration J , the algorithm
stops; Otherwise, turn to Step 4.
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4 Simulation Results and Discussion

In this section, the effectiveness of the proposed ESN-BGLS0 is evaluated by the
root mean square error (RMSE) [2], which is defined as follows

RMSE =

√
√
√
√

L∑

k=1

(t(k) − y(k))2

L
(12)

where t(k) and y(k) denote the kth target and ESN outputs, respectively, L
is the number of training sample. Moreover, the ESN-BGLS0 is tested on the
Lorenz time series prediction and Mackey-Glass time series prediction problems.

4.1 Lorenz Time Series Prediction

As a chaotic dynamical time series, the Lorenz system is governed by the
following equations [21]

dx

di
= a(−x + y)

dy

di
= bx − y − xz

dz

di
= xy − cz

(13)

where the parameters are set as a = 10, b = 28 and c = 8/3. The Runge-Kutta
method with step 0.01 is used to generate the Lorenz time series values. In each
pair of training samples and test samples, y(k − 3), y(k − 2) and y(k − 1) are
used to predict y(k). In addition, the initial reservoir size is set as 300. In this
experiment, 2400 samples are generated, in which 1200 samples are used as the
training dataset and the remaining values are treated as testing dataset.

To study the effectiveness of regularization coefficient λ on network
performance, the training RMSE values and the resulted network size Ñ with
different λ are illustrated in Table 1. It is noted that the learning rate is set
as η = 0.01 and ϕ = 0.05. It is easily found that too large (λ = 10) or
too small (λ = 0) regularization parameter cannot generate good prediction
accuracy. While the proper value λ = 1 could obtain the sparse network topology
Ñ = 24 and good training RMSE value 0.0291. Therefore, the determination of
regularization parameter is critical for ESN-BGLS0.

The evolving process of training RMSE and the number of non-zero output
weights number versus algorithm iterations j are shown in Fig. 2(a) and (b),
respectively. It is easily found that when j increases, the training RMSE
decreases monotonically and tends to a constant value. Simultaneously, the
network size is gradually reduced, which means that the batch gradient with
smoothing �0 regularizer generates the spare network topology.
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Table 1. Algorithm parameters for Lorenz time series prediction

λ 10 1 0.1 0.01 0

Ñ 4 24 141 147 161

Training RMSE 0.1821 0.0291 0.0304 0.0313 0.0334

Testing RMSE 0.1878 0.0307 0.0327 0.0337 0.0361
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(a) The training RMSE values evolving
process.

0 200 400 600 800 1000
Algorithm iterations j

20

40

60

80

100

120

140

160

N
um

be
r o

f r
es

er
vo

ir 
no

de
s

(b) The network size evolving process.

Fig. 2. The evolving process of training RMSE values and network size versus algorithm
iterations j.

In the testing phase, the prediction results and testing errors of ESN-BGLS0
and OESN are illustrated in Fig. 3(a) and (b), respectively. It is easily found that
the outputs of ESN-BGLS0 could fit to the targets well, also the testing error
of ESN-BGLS0 is smaller than that of OESN. This observations imply that the
better prediction performance is obtained by ESN-BGLS0 than OESN.

To proof of the effectiveness of ESN-BGLS0, its performance is compared
with OESN and the ESN which is trained by the batch gradient (ESN-BG). The
comparisons are showed in Table 2, including the training time (s), the training
and testing RMSE values, the final network size Ñ . From Table 2, it is easily
found that the ESN-BGLS0 obtains the smallest training and testing RMSE
values with the sparsest network topology among all the evaluated algorithms.

Table 2. Algorithm comparisons for Lorenz time series prediction

Approaches Ñ Training time(s) Training RMSE Testing RMSE

ESN-BGSL0 (λ = 1) 3 157.217 0.0291 0.0307

ESN-BGSL0 161 150.494 0.0334 0.0361

OESN 300 1.257 0.0519 0.0554
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(a) The prediction curves.
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Fig. 3. The prediction and testing error of ESN-BGSL0 and OESN.

4.2 Mackey-Glass Time Series Prediction

The Mackey-Glass time series is derived by a time-delay differential system with
the following form [23]

dx

dt
= βx(t) +

ax(t − δ)
1 + x(t − δ)10

(14)

where the parameters are set as β = 0, α = 0.2, and δ = 17. The dataset is
constructed by the second-order Runge-Kutta method with step size 0.1. In this
experiment, 2400 samples are used, in which 1200 samples are used as training
dataset and the remaining 1200 values are treated as test dataset.

The training RMSE values with different regularization parameters λ are
listed in Table 3. Obviously, the too large or too small λ cannot generate good
network compactness and training accuracy. To further study the effectiveness
of the proposed ESN-BGSL0, the training RMSE values and the number of
non-zero output weights versus batch gradient iterations j are shown in Fig. 4(a)
and (b), respectively. It can be clearly seen that the training RMSE values is
gradually reduced when j is increased. In addition, the complexity of the network
is greatly simplified in the training process, which implies the network sparsity
is improved.

To evaluate the estimation performance of ESN-BGSL0, the prediction
outputs and prediction errors of ESN-BGSL0 and OESN are shown in Fig. 5(a)
and (b), respectively. Obviously, the ESN-BGSL0 has smaller prediction error
than that of OESN, thus the validity of ESN-BGSL0 is illustrated.

The performance comparisons between different algorithms are given in
Table 4. It can be seen that the ESN-BGSL0 has the smallest training RMSE
value (0.0346) and the best network size (18), this fact implies that the network
estimation accuracy and network compactness have been greatly improved by
using the smoothing �0 regularization penalty term.
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Table 3. Algorithm parameters for Mackey-Glass time-series prediction

λ 3 0.3 0.03 0.003 0

Ñ 4 18 133 139 148

Training RMSE 0.0463 0.0346 0.0350 0.0371 0.0383

Testing RMSE 0.0481 0.0349 0.0354 0.0384 0.0395
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(b) The network size evolving process.

Fig. 4. The evolving process of training RMSE and network size versus algorithm
iterations j.
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Fig. 5. The prediction and testing error of ESN-BGSL0 and OESN for Mackey-Glass
time series prediction.

Table 4. Algorithm comparisons for Mackey-Glass time series prediction

Approaches Ñ Training time(s) Training RMSE Testing RMSE

ESN-BGSL0 (λ = 0.3) 18 627.172 0.0346 0.0349

ESN-BGSL0 148 614.975 0.0383 0.0395

OESN 300 1.168 0.0503 0.0524
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5 Conclusions

To solve the ill-posed problem is ESN, the batch gradient method and �0
regularization are combined together to train and prune ESN topology. In the
proposed algorithm, the �0 norm of output weights are added into the objective
function, which is solved by the batch gradient descent algorithm. As illustrated
by the simulation results, the proposed ESN owns smaller network size and better
prediction accuracy than OESN.
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