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Abstract. This paper is concerned with fault diagnosis problem of a
widely used component in vast rotating machinery, rolling element bear-
ing. We propose a novel intelligent fault diagnosis approach based on
principal component analysis (PCA) and deep belief network (DBN)
techniques. By adopting PCA technique, the dimension of raw bearing
vibration signals is reduced and the bearing fault features are extracted
in terms of primary eigenvalues and eigenvectors. Parts of the modified
samples are trained by DBN for fault classification and diagnosis and
the rest are tested to examine the algorithm. A distinctive feature of
this approach is that it requires no complex signal processing procedure
of bearing vibration signals. The experimental results demonstrate the
effectiveness of the PCA-DBN based fault diagnosis approach with a
more than 90% accuracy rate.
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1 Introduction

Rolling element bearings are widely used in numerous rotating machinery. As the
high precision requirement in practical applications, it is of significant impor-
tance to monitor bearing components and maintain them in good conditions.
Bearing component in general is likely to encounter impact, oscillation, frac-
ture, structure change and clearance chang, etc. For most cases, these failures
may degrade the component efficiency and lifetime, even lead to catastrophic
accidents, which pose great challenge to the implement of rotating machinery.
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With the development of fault diagnosis techniques, nevertheless, various
bearing fault diagnosis schemes have been proposed over the last two decades
(see [1,13,18], and the references therein). An overwhelming majority of the
available results are obtained in virture of analyzing the vibration signal of bear-
ings, where the vibration is measured by an accelerometer directly [12,17]. Sorts
of advanced signal processing and parameter identification methods are utilized,
such as short-time Fourier transform [4], wavelet time-scale decomposition [21],
cumulant spectrum [8], to name a few. Among those achievements, it is worth
noting that [10] proposed a wavelet-based feature extraction method based on
minimum Shannon Entropy Criterion to extract statistical features from wavelet
coefficients of raw vibration signals; [15] developed a new fault diagnosis scheme
utilizing the wavelet transform to process vibration signals and using an adaptive
neuro-fuzzy system to classify the fault data; [17] presented a localized bearing
defects detection method based on wavelet transform; [24] classified bearing fault
categories and identified the fault level by adopting the Hilbert-Huang trans-
form. These results somehow shed light on the signal-processing based bearing
fault diagnosis. Frankly speaking, however, the difficulty in processing the vibra-
tion signal arises from the complicate and unclear formulation of the involved
dynamic model, especially the nonlinearity in vibration signals and the uncer-
tainty in fault state information. It is hard to get a precise model representation
either from time domain or frequency domain aspects, rendering a dilemma of
extracting fault-related features from bearing vibration signals. Furthermore,
with the increasing scale and complexity of industrial control systems, vibration
signals are partial to be with high dimensions and numerous data, making it far
more intricate to process bearing vibration signals [14].

To this end, we propose an intelligent fault diagnosis method in this paper to
extract the fault features from raw vibration signals in spirit of PCA technique.
PCA is a statistical procedure and widely used for dimensionality reduction
[16]. The idea that applying PCA to deal with bearing fault diagnosis was first
advocated in [11], where a PCA-based decision tree was introduced and proved
to have better classification performance compared with normal decision tree.
In [19] and [5], a PCA and support vector machine (SVM) fusion bearing fault
feature extraction method was proposed. [9] applied spectral kurtosis and cross
correlation techniques to extract bearing fault features and developed a health
index using PCA and a semi-supervised k-nearest neighbor distance measure. In
[25], PCA was used to get description features from the combination of energy
spectrums and statistical feature and then a BP based neural network model
is established for the diagnosis of rolling bearing faults. Our work reinforces
these existing results and develop the intelligent fault diagnosis approach further.
We propose a novel approach based on PCA method and DBN technique. We
use PCA to reduce dimensions of raw vibration signals, extract bearing fault
features, and then generate fault feature vectors. Parts of these fault feature
vectors are then input into a DBN as the training set, while the rest are tested
to examine the proposed algorithm.
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The rest of the paper is organized as follows. In Sect. 2, we introduce the
basic theories on PCA and DBN. Section 3 presents our results on PCA-DBN
based bearing fault diagnosis approach. Experiments are carried out to show the
effectiveness of the proposed algorithm. In the end, Sect. 4 concludes the whole
paper.

2 Preliminary Theories of PCA and DBN

2.1 Dimensionality Reduction by PCA

PCA is a multi-variate statistical method that transforms a large number of
possibly correlated variables into a smaller number of uncorrelated variables. It
is widely used in dimensionality reduction algorithm to reduce signal dimension
by the following steps:

– Step 1. Given a set of vibration signal X ∈ RN×M , in which each row vector
in X refers to one measurement and each column vector in X to refers to a
samples xi ∈ RN×1, i = 1, ...,M . Compute the average value vector of all the
training sets, which is denoted by A

A =
1
M

M∑

i=1

xi (1)

– Step 2. Compute the covariance matrix P

P =
1

M − 1

M∑

i=1

(xi − A)(xi − A)T (2)

It is worth noting that since P ∈ RN×N , there are N eigenvectors in P .
Calculate the eigenvalue λi, i = 1, ..., N and eigenvectors vi, i = 1, ..., N of
the covariance matrix P .

– Step 3. Sequence the eigenvalues from big to small as λ1 � λ2 � . . . � λN

along with the corresponding eigenvectors vi, i = 1, ..., N . The cumulative
contribution rate α is consequently calculated in terms of the first r principal
components

α =
r∑

i=1

λi/

N∑

i=1

λi (3)

– Step 4. If α � 0.85, construct a new matrix E ∈ RN×r composed of eigenvec-
tors vi, i = 1, ..., r, i.e., E = (v1, v2, . . . , vr). The new sample set X ′ can be
obtained by mapping the raw data through matrix E

X ′ = ET X (4)

where X ′ ∈ Rr×M .
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As such, a modified bering vibration signal set is generated which has lower
dimension compared with the original one but maintains the primary feature
information at the mean time.

2.2 Feature Classification by DBN

As is known to all, DBN technique has been frequently used in face recognition
and hyperspectral image classification [20,23]. It was applied for aircraft engine
health diagnosis and electric power transformer health diagnosis as well [22]. In
[3], DBN was directly adopted for bearing fault diagnosis using raw measured
vibration signal. Upon this, we propose an intelligent bearing fault diagnosis
approach by using DBN to train the modified samples (i.e. the dimensionally
reduced vibration signals) obtained by PCA. This can be viewed as the key step
to the proposed intelligent bearing fault diagnosis approach. In what follows, we
shall illustrate the main strategy of DBN technique.

DBN is a probabilistic multi-layer neural network consist of a plurality of
Restricted Boltzmann Machines (RBMs), which are constructed by connections
of visible layers and hidden layers [7]. The visible units (denoted by v) and
the hidden units (denoted by h) are symmetrically connected upon weights wij .
There is no connection among units within the same layer [2]. In this paper, we
consider a DBN model consist of two RBMs, where the structure is as shown in
Fig. 1.

Fig. 1. Architecture of DBN

Define the energy function E(v, h) of a RBM as

E(v, h; θ) = −
nv∑

i=1

aivi −
nh∑

j=1

bjhj −
nv∑

i=1

nh∑

j=1

hjwijvi (5)

where vi and hj are the states of visible units and hidden units respectively with
ai, bj being corresponding biases. Let θ = {wij , ai, bj} refer to the parameter of
RBM.
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The joint probability of the visible units and hidden units is

P (v, h; θ) =
e−E(v,h;θ)

Z(θ)
, Z(θ) =

∑

v,h

e−E(v,h;θ) (6)

where Z(θ) is the normalization factor. Besides, we have

P (h|v) =
e−E(v,h)

∑nh

j=1 e−E(v,h)
(7)

P (v|h) =
e−E(v,h)

∑nv

i=1 e−E(v,h)
(8)

Since that v, h ∈ {0, 1} and there is no connection between the same layer, the
probabilistic version of the neuron activation functions are derived as

P (hj = 1|v) =
P (hj = 1|v)

P (hj = 1|v) + P (hj = 0|v)
= sigmoid(bj +

nv∑

i=1

wijvi) (9)

P (vi = 1|h) =
P (vi = 1|v)

P (vi = 1|v) + P (vi = 0|v)
= sigmoid(ai +

nh∑

j=1

wijhj) (10)

The objective of training RBM is to increase the probability of input data
P (v) by following the parameters update laws

ΔWij = η(< vihj >data − < vihj >recon)
Δai = η(< vi >data − < vi >recon)
Δbj = η(< hj >data − < hj >recon)

(11)

where η is the learning rate, the notation of < · >data refers to the expectation
with respect to the distribution of observed data and < · >recon refers to the
expectation with respect to the distribution of reconstructions produced.

Due to the existence of normalization factor Z(θ), it is complex to calcu-
late the joint probability distribution P (v, h; θ). In [6], a Contrastive Divergence
(CD)-k solution was developed. It has been proved that k = 1 works well in
practical applications. The CD-K algorithm is as shown in Algorithm 1.

3 Intelligent Bearing Fault Diagnosis Approach

The bearing fault diagnosis problem typically is regarded as a class of pattern
classification problem, thus contains four main steps as data acquisition, feature
extraction, feature selection and health condition identification. Our fault diag-
nosis scheme in this paper is carried out by following the procedure stated in
Table 1. In the first place, we acquire bearing vibration signals. In the next, we
define normal and fault types of the bearing component. Three types of fault



460 J. Zhu and T. Hu

Algorithm 1. CD-k algorithm
Require: k, S, RBM(W, a, b)
Ensure: ΔW, Δa, Δb

Initialize : ΔW = 0, Δa = 0, Δb = 0;
for all v ∈ S do

v(0) := v;
for t = 0, 1, · · · , k − 1 do

ht = sample h given v(v(t), RBM(W, a, b));
vt+1 = sample v given h(v(t), RBM(W, a, b))

end for
for i = 1, 2, · · · , nh; j = 1, 2, · · · , nv do

ΔWj,i = δWj,i + [P (hj = 1|v(0))v
(0)
i − P (hj = 1|v(k))v

(k)
j ];

Δai = Δai + [v
(0)
i − v

(k)
i ];

Δbj = Δbj + [P (hj = 1|v(0)) − P (hj = 1|v(k))];
end for

end for

categories are considered including inner race fault, outer race fault and ball
fault with diameters ranging from 0.007, 0.014 to 0.021 in., which eventually
leads up to 10 kinds of state conditions totally. Then we use PCA method to
reduce the dimension of all the vibration signals and normalize the data within
the range [0, 1]. In the followed step, the modified data are divided into two
parts, training set and testing set. Then we initialize the parameters of DBN.
The DBN is trained by training set and then examined by testing set. In the
last, we analyze and obtain the final fault diagnosis result. We shall present our
PCA-DBN based intelligent bearing fault diagnosis approach detailedly in the
following paragraph.

Table 1. Procedure of our intelligent bearing fault diagnosis method

Step Description

Step 1 Acquire bearing vibration data

Step 2 Define normal and fault types

Step 3 Apply PCA to reduce data dimension

Step 4 Divide data into training set and testing set

Step 5 Initial parameters of the DBN

Step 6 Train DBN by training set and diagnose on testing set

Step 7 Analyze and obtain the fault diagnosis result

3.1 Data Description and Reduction

We get the bearing vibration signals from Case Western Reserve University Bear-
ing Data Center and use 2 hp reliance electric motor to conduct the experimental
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simulations, where the acceleration data are measured at locations near to and
remote from motor bearings.

In most rotating machinery, the diameter of bering component ranges from
0.007 in. to 0.021 in. We consider three common sorts of bearings with diameter
being 0.007, 0.014 and 0.021 in., respectively. At the meanwhile, three typical
fault categories such as ball fault, inner race fault, outer race fault are concerned.
Consequently, there are 10 state conditions in total including normal state, or in
other words, 10 feature classifications in all. Parts of the time-domain response
are as shown in Fig. 2. Obviously, it is hard to observe and classify these signal
state features directly from their time-domain response. Alternatively, on the
other hand, it is useful to collect all these points to extract feature by using the
eigenvalues and eigenvectors of the generated fault feature matrix. To this effect,
PCA technique is adopted to reduce the dimension of raw bearing vibration
signals instead of common vibration signals processing.
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Fig. 2. Time-domain responses of different bearing vibrations signals

3.2 Experimental Results and Discussion

In this part, we use experimental results to examine the effectness of our proposed
approach. The experiment data are collected at 12 kHz. All the datasets are
collected upon four different loads as 0, 1, 2, 3 hp. Let the motor speed be close
to 1800 rpm, and each sample contain 400 data points.

We consider four different situations. The dataset A and C are with 12000
original samples and the remaining dataset B and D are with 12120 original
samples. In other words, we examine our fault diagnosis scheme under different
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sample sizes. On the other hand, we compare the DBN based and PCA-DBN
based fault diagnosis schemes between the dataset with same sample size. The
vibration signals in dataset A and B are directly input into DBN to diagnose
the state condition and those data in dataset C and D are input into DBN after
a PCA procedure. The four experimental dataset are described as in Table 2.
From Table 2 we can conclude dataset A and B are with 400 dimension, and
the dimension of dataset C and D is reduced from 400 to 123 since that the
cumulate contribution rate of prior 123 dimension eigenvalues exceeds 95%. In
what follows, we divide dataset A, B, C, D into two parts, training set and
testing set, and normalize all the datasets into the range of [0, 1].

Table 2. Description of four experimental datasets

Fault diameter Conditions Dataset A and C Dataset B and D

Training data Testing data Training data Testing data

None Normal 840 360 909 303

0.007 Inner 840 360 909 303

Ball 840 360 909 303

Outer 840 360 909 303

0.014 Inner 840 360 909 303

Ball 840 360 909 303

Outer 840 360 909 303

0.021 Inner 840 360 909 303

Ball 840 360 909 303

Outer 840 360 909 303

Table 3. Classification rate of four experimental datasets

Dataset Training accuracy rate Testing accuracy rate

Dataset A 85.96% 69.66%

Dataset B 88.38% 76.94%

Dataset C 94% 88.78%

Dataset D 99.6% 91.16%

The DBN model for Dataset A and B has a 400-300-100-10 structure, while
that for Dataset C and D has a 123-100-100-10 sturcture. The learning rate of
η of forward stacked RBM is set to 0.1. The momentum is set to 0.9 and the
dropout is set to 0.1. The fault classification rates of four experimental datasets
are as demonstrated in Table 3. From Table 3, we can see dataset C and D exhibit
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better accuracy rate than dataset A and B, which means the PCA-DBN based
fault diagnosis scheme is better than the pure DBN based fault diagnosis scheme.
In addition, dataset D shows the best accurate rate among all, indicating a larger
number of sample contributes a better accurate rate. However, it is worth noting
that PCA-DBN base intelligent bearing fault diagnosis approach hearing is not
exempt from overfitting phenomena.

4 Conclusion

This paper presents a novel PCA-DBN based fault diagnosis approach for bear-
ing component. We firstly utilize PCA technique to reduce samples dimensions,
extract fault features, and then adopt DBN for fault classification and diagnosis.
The effectiveness of the proposed intelligent bearing fault diagnosis approach is
examined by experimental results. In addition, the PCA-DBN based fault diag-
nosis strategy can be applied into other large scale industrial fault diagnosis
systems without manual feature selection.
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