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Abstract. When the investment institution analyzes the transaction
cost of stock orders, it is costly to obtain the transaction cost of the stock
orders by trading it. In contrast, many simulated trading orders cannot
get the exact transaction cost. Due to the lack of enough labeled data, it
is usually hard to use a supervised learner to estimate accurate transac-
tion cost of stock orders. Label-spreading, a graph-based semi-supervised
learner, can integrate a small number of labeled real orders and a large
number of unlabeled simulated orders, and train a learner simultaneously.
Using a RBF kernel, the learner constructs a graph structure through
the spatial similarity measure between the transaction cost samples, and
propagates the label through edges of graph in high-dimensional space.
The results of experiments show that the label-spreading learner can
make full use of the information of unlabeled data to improve classifica-
tion of transaction cost.

Keywords: Label-spreading · Semi-supervised learning · Algorithm
trading

1 Introduction

When investment institutions analyze the transaction cost of the stock orders,
accurate data of transaction cost is required for investment institution to analyze
the transaction cost. However, it is costly to obtain the transaction cost of stock
orders by trading it. Besides, the large amount of simulated data generated by
the stock trading simulator is simulated estimation, which lacks real value and
cannot obtain the exact transaction cost of stock orders. Therefore, transaction
cost data is not enough and accurate for investment institutions to analyze the
order transaction cost by supervised learner.

This paper intends to provide the solution to the problem that when the
transaction data of stock orders is scarce and hard to mark, the graph-based
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semi-supervised learner can be applied to study transaction data of stock orders,
which make full use of the readily available unlabeled data and generalize a well-
performed classifier to predict transaction cost.

Semi-supervised learning can learn both labeled data and unlabeled data. Its
basic principle is to improve the learning effect by using many unlabeled data to
assist a few labeled data. As early as 1970s, some scholars tried to use the unla-
beled samples to improve the performance of the classifier. Based on generative
model theory, they proposed the first semi-supervised learning model and EM
algorithm [4] to solve the model. Subsequently, in 1990s, Vapnik proposed TSVM
[9] based on the idea that the decision boundary should keep the maximum dis-
tance from the labeled and unlabeled samples, which had a greater impact on the
early semi-supervised learning model. And then, Blum and Mitchell proposed
co-train model [2] from the perspective of learning-views. Limited to TSVM is
a non-convex optimization problem and the assumptions of co-train are harsh,
these methods have difficulties in practical applications, so people began to try
other methods for semi-supervised learning. Based on the graph theory, schol-
ars proposed a series of graph-based semi-supervised learners such as min-cut
[1], local and global consistency theory [12], label propagation [13]. Compared
with the earlier methods, most of the learners are convex, which means that
the global optimal solution can be easily obtained. In addition, the calculation
is based on matrix operations, which is efficient and easy to understand and
implement. In recent years, graph-based semi-supervised learners have received
extensive attention in research and application [3,5,7].

The rest of this paper will be organized as follows. Section 2 describe the
dataset and select features and labels. We build the label-spreading model in
Sect. 3 and predict the transaction cost label for the stock orders in Sect. 4.
Section 4.2 analyzes the properties of the label-spreading learner further. And
the conclusions will be presented in Sect. 5.

2 Data Sets of Stock Orders

The data sets used for the experiment is consisted of a transaction data set
of real stock orders L =

{
(x1, y1) , . . . ,

(
x|L|, y|L|

)}
and a transaction data set

of simulation stock orders U =
{
x|L|+1, . . . ,x|L|+|U |

}
. L contains 93 items of

transaction information, and U contains 3776. The data in L and U are derived
from Charles River Advisors Ltd. [6]. For ease of calculation, let l = |L| , u =
|U | , n = l + u.

2.1 Features Selection

As shown in Table 1, the transaction data sets of stock orders contain six trading
features.

Since the deviation between the weighted price and average price can reflect
the trading market of the order. The Intraday VWAP, TWAP and Full Day
VWAP are the weighted prices of stocks. Therefore, we calculate the relative
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Table 1. Features in transaction data sets of stock orders

Feature Meaning

Average Average transaction price per share

Liq. Consumption Order volume accounts for the size of stock liquidity

Execution Time The time elapsed from the start to the completion of execution

Intraday VWAP Intraday volume weighted average price

TWAP Time-weighted average price

Full day VWAP Full day volume weighted average price

deviation between the three features and average price according to Eq. 1, which
is used as the features for learning. Where features include Intraday VWAP,
TWAP, Full day VWAP. Thus, the features for semi-supervised learning are
x = {Liq. Consumption, Execution Time, Δ Intraday VWAP, Δ TWAP, Δ Full
day VWAP}.

Features =
Features − Average

Average
(1)

To eliminate the deviation generated by different dimensions and of unit each
feature, this paper use the Z-score equation to standardize the data. Calculate
the mean value x̄ and the variance σ of the features in L. Then, according to
Eq. 2, obtain the standardized features Lx of data set L and the standardized
features Ux of data set U .

Z(xi) =
xi − x̄

σ
, i = 1, . . . , n. (2)

2.2 Label of Transaction Cost

Intraday VWAP slippage is used in data set L to describe the transaction cost
of stock orders, which indicates the deviation of Intraday VWAP between the
trading algorithm transmit a buy or sell signal and actually completes the buy
or sell.

For the buyer, intraday VWAP slippage greater than 0 means that the intra-
day VWAP when actually completes the buy transaction is lower than the trad-
ing algorithm transmit signal. Stock is bought at a lower than expected price, and
the transaction cost decreases. On the contrary, the transaction cost increases
when slippage is less than 0. The situation is reversed for the seller. Slippage
greater than 0 means stock is sold at a lower than expected price, that the trans-
action cost increases. On the contrary, when slippage less than 0, the transaction
cost decreases. In the data set mentioned above, we have changed the sign of
slippage according to the direction of buying and selling. So that intraday VWAP
slippage greater than 0 indicates the transaction cost of decreases, and less than
0 indicates the transaction cost increases.
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Because the intraday VWAP slippage is the actual value, so the transaction
cost label y needs to be initialized according Eq. 3 before classifying.

y =

⎧
⎨

⎩

1, Intraday V WAP Slippage ≥ 0;
0, Intraday V WAP Slippage ≤ 0;
−1, Unlabeled.

(3)

3 Label-Spreading Learner

Based on L and U , we construct graph G = (V,E). Where, V = {x1, . . . ,xn} is
consisted by x, and edge set is represented by the affinity matrix W.

In the graph-based semi-supervised learner, the k-nearest neighbor (k-NN)
kernel and the radial basis function (RBF) kernel are commonly used as graph
kernel. In the graph using the k-NN kernel, the node only establishes the joint
edge with its k neighbors, and only reflects the local relationship of each node.
The affinity matrix W is a sparse matrix, and the calculation speed is relatively
fast. In the graph of RBF kernel, the node establishes edge with all other nodes
to form a complete graph, which fully reflects the global relationship of each
node, but the defect is that the calculation speed is slow. In order to ensure that
the semi-supervised learner has good generalization, this paper uses radial basis
function as graph kernel. Substitutes L∪U into Eq. 4 to calculate affinity matrix
W and construct graph structure. Where, let RBF parameter γ = 1

2σ2 = 1
according to experiment.

(W)ij =

⎧
⎨

⎩
exp(

−‖xi − xj‖22
2σ2

), i �= j;

0, Otherwise.
(4)

We assume that in the complete graph G = (V,E) constructed by L ∪ U ,
a real-valued function f : V → R can be obtained by learning. So that f
approaches the true label at the labeled nodes and has smoothness on entire
graph. According to the study by Zhu et al. [14], adjacent nodes on the feature
space should have similar labels, so the energy function of f is defined using the
quadratic energy function. Where, f is the prediction of the transaction cost.
The diagonal matrix D = diag (d1, . . . , dn) whose element di =

∑n
j=1 (W)ij is

the sum of the elements of the i-th row of affinity matrix W.

E(f) =
1
2

n∑

i=1

n∑

j=1

(Wij)(f(xi) − f(xj))2

= fT (D − W)f .

(5)

By minimizing the energy function (Eq. 5), f can approaches the true label
at the labeled nodes and has smoothness across the graph, i.e. ∀xi ∈ L, f (xi) =
yi, Δf = 0, Δ = D − W. In order to minimize the energy function easily, we
split affinity matrix W into 4 blocks after l-th row and column,

W =
[

Wll Wlu

Wul Wuu

]
, D =

[
Dll 0
0 Duu

]
. (6)
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The energy function (Eq. 5) can be expressed as

E(f) = fT
l (Dll − Wll)fl − 2fT

u Wulfl + fT
u (Duu − Wuu)fu. (7)

Let

P = D−1W =
[
D−1

ll W
ll

D−1
ll Wlu

D−1
uuWul D−1

uuWuu

]
, (8)

there is Puu = D−1
uuWuu,Pul = D−1

uuWul. From ∂E(f)
∂fu

= 0 can get

fu = (Duu − Wuu)−1Wulfl

= (Duu(I − D−1
uuWuu))−1Wulfl

= (I − D−1
uuWuu)−1D−1

uuWulfl

= (I − Puu)−1Pulfl

(9)

Then, according to the established graph structure, take the label information
fl = (y1; y2; , . . . ; yl) into Eq. 9, and the prediction result fu of the unlabeled data
can be obtained.

Furthermore, Zhou et al. [11] proposed a regularization framework equivalent
to Eq. 9, i.e. label-spreading learner.

min
F

1
2

⎛

⎝
l+u∑

i,j=1

(W)2ij

∥
∥
∥
∥
∥

1√
di

Fi − 1
√

dj

Fj

∥
∥
∥
∥
∥

2
⎞

⎠ + μ
l∑

i=1

‖Fi − Yi‖2. (10)

The learner learns labels by minimizing the loss function with regularization
characteristics, which is more robust to noise in most cases. Where, F is a non-
negative label matrix. Y is the matrix with actual label of data set L. the
regularization parameter μ = 1−α

α , α ∈ [0, 1] is clamping factor specified by user.
The first item in Eq. 10 forces similar samples to have similar labels, and the
second item forces the learning result to be as identical as possible to the real
label on the labeled sample.

4 Experiments

4.1 Transaction Cost Classification

Let ŷ be the transaction cost label predicted by the label-spreading learner.
Because the actual transaction cost label yU in U is unknown, the learning effect
of the learner cannot be evaluated by comparing yU and ŷU . So that, this paper
compares the prediction labels of the test set ŷTE and the actual label yTE to
evaluate the learning effect of the learner. 80 data are randomly extracted from
L as the labeled part of training set LTR, and the remaining 13 data are used
as the test set LTE .

In order to reduce the of influence of special case, we slack the limit of
the label of labeled samples, making the clamping factor α = 0.1 (i.e., the
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regularization parameter μ = 9) in Eq. 10. Some labeled samples are allowed to
be assigned incorrect labels, so that the labels in graph are smoother.

Take LTR and U into the label-spreading learner (Eq. 10) to learn and pre-
dict the label ŷTE of LTE . Because the graph-based semi-supervised learning is
transductive, the process of graph construction can only consider the training
set LTR

⋃
U and cannot judge the position of the new sample in graph. Using

label-spreading learner to predict the label of newly added test data LTE is
essentially added LTE to the training set as an unlabeled sample, then recon-
struct the graph and propagate label information on the graph to obtain the test
set label ŷTE . Therefore, based on the above experimental ideas, we can sim-
plify the process of graph construction. Set the label in LTE to unlabeled state
and participate in the construction of the graph structure with the training set
LTR

⋃
U . When the iteration of learner converges, ŷTE is obtained, which saves

the tedious calculation of reconstructing, and the experiment takes about 0.803s.
To avoid accidental errors, the experiment was repeated 100 times, and the

mode of the transaction cost label
{
ŷ
(i)
TE

∣
∣
∣, i = 1, 2, . . . , 100

}
predicted in 100

experiments was taken as the transaction cost prediction label ŷTE . The learning
effect of the label-spreading is evaluated by calculating the f1-score value of ŷTE ,
which shown in Table 2.

Table 2. Label-spreading classification report

Label Precision Recall F1-score

0 0.73 1.00 0.84

1 1.00 0.40 0.57

Weight average 0.83 0.77 0.74

From the experimental results, the weighted average f1-score reached 0.74,
which means the label ŷTE predicted by label-spreading for the test set LTE is
more consistent with the actual label yTE . Because the stock market fluctua-
tions have complex properties such as uncertainty, chaos, and abruptness, the
internal mechanism relationship is very complicated [8]. Moreover, in practical
applications, when the weighted average f1-score is greater than 0.5, the classifier
can be considered to have a good learning effect. Therefore, it is feasible to use
label-spreading to classify and predict the transaction cost of stock orders.

Among the results, the recall of the class 0 is 1, indicating that all transaction
cost loss orders in LTE have been correctly labeled, and the precision of the
class 1 is 1, indicating all transaction cost data labeled as 1 in LTE are classified
correctly. This learner can effectively reduce the risk of loss of order transaction
and be sensitive to loss risk when predict the transaction cost. It can correctly
label all orders with rising transaction costs and ensure that the actual situation
marked as a profit order sample is profitable.
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4.2 Analysis

Graph Kernel. In label-spreading learner, the k-nearest neighbor kernel and
the radial basis function kernel are commonly used as graph kernel. In Sect. 3, we
use the RBF kernel of the graph to improve the learning effect of label-spreading
learner. Compared with the complete graph based on the RBF kernel, the graph
structure based on the k-NN kernel is sparse and has certain advantages in
calculation speed. Below we will build a graph based on the k-NN neighbor
kernel and analyze the prediction effect of the label-spreading based on k-NN
kernel in the transaction cost prediction experiment.

We take the nearest neighbors k = {5, . . . , 9} and train label-spreading
learner based on different k. To avoid accidental errors, the experiment was
repeated 20 times. The average of results is shown in Table 3.

When k = 8, the label-spreading learner based on k-NN kernel has the best
learning effect on transaction cost, and the f1-score is 0.47. However, the f1-score
is only 63.5% of the learner based on RBF kernel, which means that the learning
effect of label-spreading learner based on k-NN kernel is generally inferior to the
learner based on RBF kernel. Although the calculation speed of the learner based
on k-NN kernel is about 271.5% faster, from the perspective of guaranteeing
investors income, the label-spreading learner should be based on RBF kernel
when predicting the transaction cost of stock orders.

Table 3. Label-spreading classification report

k Precision Recall F1-score Time cost

5 0.36 0.54 0.43 0.216

6 0.36 0.54 0.43 0.217

7 0.36 0.54 0.43 0.217

8 0.38 0.62 0.47 0.218

9 0.36 0.54 0.43 0.219

Parameters of Label-Spreading Learning. The setting of parameters affects
the learning effect and convergence speed of learner. In the label-spreading
learner based on the RBF kernel, the parameters that need manually set are the
clamping factor α and the RBF parameter γ. The effect of parameter changes
on label-spreading learner is analyzed by changing one parameter and fixing
the values of other parameters. The learning effect is measured by the weighted
average f1-score of LTE , and the convergence speed of learner is evaluated by
the running time of code.

First, we fixed the RBF kernel parameters, let γ = 1, and analyze the influ-
ence of the change of the parameter α on the learner. Because α ∈ [0, 1] and
usually take less than 0.1, the exponential function with base 10 is used to select
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the clamping factor α, i.e. let α = 10a, a ∈ [−5, 0)and a set of α is obtained
in steps of 0.25, i.e. A = {αi = 10−5+ i

4 |, i = 0, . . . , 20}. To avoid accidental
errors, the experiment was repeated 10 times for each αi. The average of results
is shown in Fig. 1.

As shown in Fig. 1, The clamping factor has less effect on the prediction of the
learner. When the clamping factor is in a reasonable range, i.e. α ∈ [

10−5, 10−1
]
,

the prediction of label has no significant change, and the prediction performance
of the learner is greatly reduced when α is close to 1. For the calculation speed
of the learner, when α ∈ [10−5, 10−1], the time for training is roughly the same,
and it increases dramatically when α is close to 1.

Then, let the α = 0.1 to analyze the effect of changes in γ on the learner.
Similarly, since the value of γ often in [0, 1], so let γ = 10g, g ∈ [−2, 2]. In a
step of 0.2, get a set of RBF parameter Γ = {γi = 10−2+ i

5 |, i = 0, . . . , 20}. To
avoid accidental errors, the experiment was repeated 10 times for each γi. The
average of results is shown in Fig. 1.

Fig. 1. Analysis of parameters of label-spreading learner.

Contrast with Supervised Learning. In theory, the information provided
by unlabeled data can improve the learning effect [10]. In order to analyze the
improvement of learning effect by unlabeled data in label-spreading, a typical
supervised learning learner, support vector classifier (SVC), is selected for com-
parison, which is based on RBF kernel.

In data setL, the number of samples of class 0 is 61, and the number of
samples of class 1 32. There is a large deviation in the number of samples of the
two classes, which will cause SVC to make the decision boundary offset during
classification and resulting in incorrect classification results. So that the class
weight should be set to reduce the deviation. According to Eq. 11, class 0 weight
is 0.34, and a class 1 weight is 0.56.

wi = 1 − li
l
, i ∈ {0, 1}. (11)
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In order to improve the learning effect of SVC, we use grid search with cross-
validation to search for optimal parameters. Because the correlation between the
transaction orders is not obvious, it is assumed in the cross-validation that each
order is independently distributed. It can be known from the SVC principle that
the penalty factor C and the RBF parameter γ are crucial to the learning effect.
So, let C = 10c, c ∈ [0, 3] , step = 0.15; γ = 10g, g ∈ [

10−2, 102
]
, step = 0.25.

Perform a 10-fold cross-validation on the parameter grid consisting of C and
γ to search for the optima parameter (C∗, γ∗). The cross-validation score is
represented by the weighted average f1-score and show in Fig. 2.

Fig. 2. Weighted f1-score on the grid of parameter space, blue dots are the parameters
with the best score. (Color figure online)

According to the optimal parameter(C∗, γ∗), set SVC and train LTR, then
predict labels of LTE to evaluate the learning effect of SVC. As Table 4 show,
there is a large error in using SVC to predict transaction costs, and the weighted
average f1-score is only 0.39. Moreover, the f1-score of class 1 is 0, which means
in cannot predict the decline in transaction costs.

Table 4. SVC classification report

Label Precision Recall F1-score

0 0.55 0.75 0.63

1 0.00 0.00 0.00

Weight average 0.34 0.46 0.39

Comparing the classification results of label-spreading and SVC in Table 5, it
is obviously that the learning effect of label-spreading is significantly better than
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SVC. Especially the label-spreading learner based on RBF kernel, the weighted
average f1-Score is 89.7% more than SVC. It can be seen that a large number of
easy-to-obtain simulated order data can improve the learning effect of predicting
transaction cost.

Table 5. Comparison of learners

Learner Precision Recall F1-score Time cost

Label-spreading (RBF) 0.83 0.77 0.74 0.803

Label-spreading (knn) 0.38 0.62 0.47 0.219

SVC 0.34 0.46 0.39 2.272

5 Conclusions

This paper uses label-spreading algorithm to predict the transaction cost of
stock orders. It can accurately classify the transaction costs of stock orders when
the actual transaction data is scarce and difficult to label. The label-spreading
learner integrate a small number of labeled real orders and a large number of
unlabeled simulated orders, and train a learner simultaneously, thus the transac-
tion cost classifier based on label-spreading has sufficient generalization perfor-
mance. It can make full use of unlabeled data to improve the classifier and has a
good learning effect on the transaction cost of stock orders, whose performance
is far superior to the supervised classifier SVC.

The label-spreading model can construct a graph structure by k-NN kernel
or RBF kernel. Compared with the RBF kernel, the graph built by k-NN kernel
has a faster calculation speed, but the prediction effect is not good. In order
to pursue the optimal prediction effect and ensure the return of investors, the
label-spreading learner based on the RBF kernel should be used in analyzing
and predicting the transaction cost of stock orders.
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