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Abstract. Graph-based semi-supervised learning (SSL) is one of the
most popular topics in the past decades. Most conventional graph-based
SSL methods utilize two stage-approach to infer the class labels of the
unlabeled data, i.e. it firstly constructs a graph for capturing the geom-
etry of data manifold and then perform SSL for prediction. However, it
suffers from three drawbacks: (1) the graph construction and SSL stages
are separate. They do not share common information to enhance the
performance of classification; (2) the graph construction and SSL should
be scalable. However, most methods mainly focus on the improvement of
classification accuracy but neglect the computational cost; (3) the graph
should also be adaptive and robust to the parameters and datasets. How-
ever, this will usually increase computational cost making the efficiency
cannot be guaranteed simultaneously. In this paper, we aim to handle the
above issues. To achieve adaptiveness of SSL, we adopt a bilinear low-
rank model for graph construction, where the coefficient matrix of the
low-rank model is calculated through an adaptive and efficient procedure
the corresponding constructed graph can capture the global structure
of data manifold. Meriting from such a graph, we then propose a uni-
fied framework for scalable SSL, where we have involved the graph con-
struction and SSL into a unified optimization problem. As a result, the
discriminative information learned by SSL can be provided to improve
the discriminative ability of graph construction, while the updated graph
can further enhance the classification results of SSL. Simulation indicates
that the proposed method can achieve better classification and cluster-
ing performance compared with other state-of-the-art graph-based SSL
methods.

Keywords: Semi-supervised learning · Unsupervised learning ·
Spectral clustering · Adaptive low-rank model

1 Introduction

Due to the insufficiency of the labeled set, SSL, which incorporates a small num-
ber of labeled data and a large number of unlabeled data into learning, has
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attracted considerable attention in the artificial intelligence and pattern recog-
nition area. Among different methods for SSL, graph-based SSL approaches, a
kind of methods that model the data on a graph, have been extensive study dur-
ing the past decades. The big advantage for these methods is that the graph can
naturally characterize diverse types of the geometry of data manifold. Accord-
ing to the clustering and manifold assumptions, i.e., nearby samples (or samples
of the same cluster or data manifold) share the same label [12,17,18], current
graph-based SSL methods include Manifold Regularization (MR) [1], Gaussian
Fields and Harmonic Functions (GFHF) [18], Learning with Local and Global
Consistency (LLGC) [17], and Special Label Propagation (SLP) [10,11]. These
methods usually model labeled and unlabeled data by a graph, and then cal-
culate the graph Laplacian matrix to capture the geometrical structure of data
manifold [3].

While most conventional graph-based SSL generally perform well in many
real-world applications, a good graph-based SSL model should satisfy the fol-
lowing issues: (1) the graph construction should be adaptive and robust to the
parameters and datasets. In the conventional graph-based SSL, the graph usually
represents a kNN graph associated with weight on it. Many ways are proposed to
define the graph weight which include Gaussian function [10,11,17,18], Locally
Linear Reconstruction [13,14], Local Regression and Global Alignment [16] and
Local Spline Regression [15]. A key limit for these methods is that the number
of k needs to be carefully adjusted hence they are not adaptive. Fortunately, this
drawback can be solved by the sparse or low-rank representation graph, where
SR based graphs can model the data with good properties of adaptiveness, spar-
sity and high discriminating power, while LRR based graphs can characterize
the global structure of data. However, the huge computational cost is needed in
order to solve l1 or trace-norm minimization problem for calculating the sparse
or low-rank graph; (2) the graph construction and SSL strategy should also be
efficient and scalable to large-scale data. As analyzed in [7,8], the computational
cost for searching the k neighbors of data in conventional kNN graph is O

(
kn2

)
.

While those for calculating the weight matrix in the SR graph and LRR graph
are O

(
n3

)
. None of them is linear with the number of datasets.

To handle this problem, Liu et al. [7,8] have proposed an efficient anchor
graph framework by exploring a set of anchors from data points, where it is first
to establish a similarity matrix between data points and anchors, and then to
construct the anchor graph for inferring the class labels of anchors instead of
the whole data points. As a result, the computational cost can be reduced to
be linear with n. Many variants of AGR have been proposed during the past
few years. However, the similarity matrix in AGR and its variants are still not
adaptive and need to be adjusted according to a different dataset. In other words,
it is quite hard to guarantee the adaptiveness and scalability simultaneously; (3)
the graph construction and SSL stages are separate. They do not share common
information to enhance the performance of classification. In another word, the
graph won’t be updated once it is constructed. However, the estimated class
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labels will include some discriminative information and can further be utilized to
update the graph. As a result, the class label inference can further be enhanced.

In this paper, we aim to solve the above problems by developing a new frame-
work for scalable SSL. Specifically, in order to achieve adaptiveness for SSL, we
adopt a bilinear low-rank model for graph construction, where the coefficient
matrix of the model is calculated through an adaptive and efficient way. We
thereby construct the graph based on such weight matrix following the basic con-
cept of AGR. As a result, the adaptiveness and scalability can both be achieved.
The corresponding graph can also capture the global structure of the data man-
ifold. Meriting from such a graph, we then propose a unified framework for
scalable SSL, where we have involved the graph construction and SSL into a uni-
fied optimization problem. As a result, the discriminative information learned by
SSL can be provided to improve the discriminative ability of graph construction,
while the updated graph can further enhance the classification results of SSL.
Simulation indicates that the proposed method can achieve better classification
results compared with other state-of-the-art graph-based SSL methods.

The main contributions of this paper are as follows:
(1) We have developed an adaptive bilinear low-rank model for graph con-

struction. With the group sparsity and non-negative constraint, the low-rank
value can be automatically determined, and the learned coefficient matrix S is
non-negative and can characterize the global structure of data;

(2) We have developed a new graph-based SSL framework, in which the
developed low-rank model and SLP are unified into a single optimization prob-
lem. In this way, the discriminative information learned by SLP can be provided
to improve the discriminative ability of graph construction, while the updated
graph can further enhance the classification results of SSL.

(3) We have developed an efficient iterative approach for optimization. The-
oretical analysis has guaranteed the convergence and the computational cost
is linear with the number of data points. Thereby, the solution is efficient and
scalable to large-scale data;

The rest of this paper is organized as follows: In Sect. 1, we will provide
some basic notations and reviews of related work; in Sect. 2, we will present the
proposed bilinear low-rank model for graph construction. We then develop a
unified framework for graph-based SSL. Extensive simulations are conducted in
Sect. 3 and final conclusions are drawn in Sect. 4.

2 Adaptive Low-Rank Graph Regularization
for Semi-supervised Learning

2.1 Graph Construction via Adaptive Low-Rank Model

Denote X = [Xl,Xu] ∈ Rd×(l+u) as the data matrix, in which d is the number of
features, the first l and the remaining u data points in X form the labeled set Xl

and unlabeled set Xu, respectively, Y = [y1, y2, . . . , yl+u] ∈ Rc×(l+u) is the orig-
inal class labels of all data that satisfies: yij = 1, given xj is within the ith class;
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otherwise, yij = 0. Accordingly, denote F = [f1, f2, . . . , fl+u] ∈ Rc×(l+u) be the
estimated class label matrix, where fi is a column vector satisfying 0 ≤ fij ≤ 1.
The AGR has assumed each data point can be approximately reconstructed by
its nearby anchors, i.e. xj =

∑m
i=1 aiZij or X ≈ AZ. The coefficient Zj for each

xj is then calculated by Kernel-defined weights or local reconstructed strategy
one by one, i.e.

min
Z

1
2

‖xj − Azj‖2F s.t. zij ≥ 0,
∑m

i=1
zij = 1 (1)

However, a key problem for the above strategies is Z is not adaptive since some
key parameters (such as the number of anchors m) need to be carefully adjusted.
Another problem is that Z cannot preserve the global structure of data manifold
since each coefficient vector is only associated with nearby anchor data. On the
other hand, the low-rank model can capture the global information as well as
achieve data-adaptiveness. We thereby develop an adaptive low-rank model to
calculate the weight matrix. Specifically, we first reformulate Eq. (1) as follows:

min
A,Z

1
2

‖X − AZ − O‖2F + γ‖O‖1. (2)

where we let X = AZ + O and O ∈ Rd×n is the additive matrix measuring the
corruption of X, ‖O‖1 is the sparse l1-norm of O since we assume the corruptions
usually affects some entries of X making O is sparse. In order to grasp the global
structure of the whole data and achieve data-adaptiveness, we add a low-rank
constraint on AZ, then Eq. (2) can be formulated as:

min
A,Z

1
2

‖X − M − O‖2F + λ‖M‖∗ + γ‖O‖1 s.t. M = AZ. (3)

where ‖M‖∗ is the nuclear norm approximating the rank of M . In addition, as
pointed in [], the nuclear norm M can be further reformulated as the penalty of
bilinear factorizations, i.e.

‖M‖∗ = min
A,Z

1
2

‖A‖2F +
1
2

‖Z‖2F s.t. AZ = M. (4)

where M is optimized via the SVD of M = UΣV T so that A = UΣ1/2 ∈
Rd×q and Z = Σ1/2 V T ∈ Rq×n, q is the low-rank value of M . Here, let P =[
A,ZT

]T ∈ Rq×(d+n) denote a joint matrix, we have:

‖P‖2F =
[
A,ZT

]T
= ‖A‖2F + ‖Z‖2F . (5)

Obviously, the low-rank value is the number of anchors, i.e. q = m, then Eq. (5)
can be roughly equivalent to the following problem by combining Eqs. (3), (4)
and (5):

min
B,S,O

1
2

‖X − AZ − O‖2F +
λ

2
‖P‖2F + γ‖O‖1 (6)
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Note that optimizing l2,1-norm term ‖P‖2,1 in Eq. (6) enable the columns of
P sparse, i.e. some columns of P are non-zero while others are close to zero.
Since each column of P , i.e. pj , is formed by an anchor aj and its corresponding
coefficient zj , setting the norm of pj to zero means aj is less important and can
be neglected, while the pj with non-zero value means the corresponding aj is
more important. As a result, the most important anchors aj combined with its
coefficient zj can be selected when solving the optimization problem. Therefore,
the optimal value of m can be adaptively selected.

After we obtain the weight matrix Z, we can construct the similarity matrix
of graph [7,8] in a low-rank form as follows:

Ws = ZT Z. (7)

where the inner product is regarded as the adjacent weight between any pairwise
xi and xj . In other words, if xi and xj share common anchors, their si and sj

will be similar making W s
ij to be a large value; otherwise, W s

ij will be close to 0,
if xi and xj do not have any anchors. Hence W s can also reflect the geometry
of data manifold.

2.2 Problem Formulation

It should be noted the labeled information is very effective to improve the dis-
criminative ability of the graph if one can involve limited label information into
the graph construction. However, as shown above, the partial label information
is not utilized in graph construction. On the other hand, the SLP is to propa-
gate the class label information of labeled set to unlabeled set, where the class
labels of unlabeled set can be predicted. This motivates us to consider utiliz-
ing the additional labeled information to improve the discriminant of affinity
matrix. Motivated by this end, we develop an effective and scalable approach
to solve the above problem, where we integrate the adaptive graph construction
and SLP into a unified framework. As a result, the discriminative information
can be involved to guide the graph construction, while the newly updated graph
construction can further improve the classification results for SSL. In addition,
both the graph construction and SSL share a unified objective function which can
be simultaneously optimized in one step and to guarantee the overall optimum.
Specifically, we give our model for SSL as follows:

minB,S,O
1
2

∥
∥X − BT S − O

∥
∥2

F
+ β

2 ‖P‖2,1 + γ‖O‖1
+α

(
1
2Tr

(
FLsF

T
)

+ Tr (F − Y ) UDs(F − Y )T
)

s.t. B ≥ 0, S ≥ 0, O ≥ 0, ∀j, ‖sj‖0 ≤ T0

(8)

where Ls is the graph Laplacian matrix for Ws, B ≥ 0, S ≥ 0, O ≥ 0 are the
non-negative constraints for guaranteeing the non-negativity for X = BT S + O.

2.3 Solution

We will develop an iterative approach to handle the problem of Eq. (8). It can
be noted that ‖P‖2,1 can be written as ‖P‖2,1 = Tr

(
ST GS

)
+ Tr

(
BT GB

)
,
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G ∈ Rq×q is a diagonal matrix satisfying:

[G ←

⎡

⎢
⎢
⎣

1
2‖z1‖2

. . .
1

2‖zq‖2

⎤

⎥
⎥
⎦ (9)

where ‖pi‖2 is the norm of the i-th column of P . We also denote R ∈ Rn×n

as a sparse matrix with each element satisfying Rij = ‖fi − fj‖2F , so that the
following equation holds:

Tr
(
FLsF

T
)

=
∑n

i,j=1 ‖fi − fj‖2F (Ws)ij

=
∑n

i,j=1 (R 	 Ws) = Tr
(
SRST

) (10)

where 	 is the pair-wise product and the third equation is satisfied as∑n
i,j=1 (R 	 Ws) = Tr (RWs) = Tr

(
SRST

)
. We then develop multiplicative

updating rules by formulating the Lagrange function to the problem of Eq. (10)
with non-negative constraints as follows:

minB,S,O
1
2 ‖X − BS − O‖2F + β

2Tr
(
ST GS + BT GB

)

+α
(
Tr

(
FLsF

T
)

+ Tr (F − Y ) UDs(F − Y )T
)

+γTr
(
ET O

)
+ Tr (φO) + Tr (ϕB) + Tr (ψS)

(11)

where φ, ϕ and ψ are three Lagrange multipliers to constrain Oij ≥ 0, Bij ≥ 0
and Sij ≥ 0. Here, by setting the derivative w.r.t. Bij , Sij and Oij to zero and
utilizing the Karush-Kuhn-Tuckre (KKT) condition φijOij = 0, ϕijBij = 0 and
ψijSij = 0, Oij , Bij and Sij , can be updated as follows:

Oij ← Oij

(
X − BT S

)
ij

(O + γE)ij

(12)

Bij ← Bij

(
S(X − O)T

)

ij

(SST B + βGB)ij

(13)

Sij ← Sij

(B (X − O))ij

(BBT S + βGS + αSR)ij

(14)

It should be noted that the main computation for calculating the optimal solution
F is to perform the inverse of Ls + UDs, in which the complexity is O

(
n3

)
.

However, such computational complexity for F can be dramatical given the data
is large-scale. Fortunately, by the form of Ws = ST S, Eq. (14) can be rewritten
as follows:

F = Y UDs(Ls + UDs)
−1

= Y U
(
I − ST SD−1

s + U
)−1

= Y Iα

(
I − ST SD−1

s Iβ

)−1

= Y Iα

(
I + ST

(
Iq + SIβD−1

s ST
)−1

SD−1
s Iβ

)
(15)
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Following Eq. (15), we can observe that the computational complexity for per-
forming the inverse of F reduces from O

(
n3

)
to O

(
q3

)
. Given q 
 n, the

calculation for F can be significantly speeded up by Eq. (15), which is good for
dealing with large-scaled data.

3 Simulations

3.1 Dataset Description

We in this section conduct extensive simulations on three synthetic data as
well as several real-world datasets to evaluate the effectiveness of the proposed
method. In the synthetic dataset, we evaluate the proposed method based on
two-swiss-roll and two-moon datasets, where each dataset has two classes and
each class per dataset follows a two-swiss-roll and two-moon distribution. In
real-world datasets, we illustrate the performance of the proposed method as
well as compare with those of other state-of-the-art SSL methods based on six
real-world datasets, which include Extended Yale-B dataset [2], COIL100 [9],
ETH80 [6].

For each dataset, we randomly annotate 5%, 10%, 15% and 20% data from
each class to form labeled set while the remaining data is selected as an unlabeled
set and 20% data per class is selected as a test set.

3.2 Image Classification

We in this subsection evaluate our method for image classification and compare
the results with other graph-based SSL methods, which include LGC, SLP, LNP,
AGR, EMR and Manifold Regularization (MR). We also choose SVM as a base-
line in our simulation. For the parameter k in LGC, SLP, LNP, AGR, EMR and
MR to formulate the k neighborhood graph, we use five-fold cross-validation to
determine the best value, where the candidates are were chosen from 6 to 20.
For the parameter σ used in LGC, SLP EMR and MR as the Gaussian variance,
we utilize the same approach in [4] to choose its best value. For LGC, LNP
AGR, EMR and the proposed method, they need to determine the regularized
parameter, and we set the candidates from

{
10−6, 10−3, 10−1, 1, 10, 103, 106

}
by

using five-fold cross-validation.
The simulation results over 20 random splits with varied numbers of labeled

data for different methods are shown in Table 1. We can have the following
results:

(1) The classification accuracies become higher given the number of labeled
data is increased. In detail, the accuracy of the proposed method is increased
by approximately 15% given the labeled data varies from 5% to 20% in most
cases. This can even be achieved by about 17% for the CASIA-HWDB dataset.
This indicates that the labeled data actually be useful for image classification.
In addition, we can also see that the accuracies will not change any more given
sufficient labeled data;
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(2) among all SSL methods, the proposed method can almost obtain the best
results in all cases. For example, the proposed method can achieve 4%–7% supe-
riority to LGC, SLP and LNP, in most cases. This improvement can even achieve
8% in the CASIA-HWDB dataset. In addition, AGR and EMR can obtain com-
petitive accuracy to the proposed method in most cases. But the results of AGR
and EMR are achieved by carefully adjusting the parameters, while the proposed
method can adaptively calculate the weight matrix for constructing the graph;

(3) another observation is that similar to the unlabeled data, the accuracies
of test data of the proposed method, LNP, AGR and MR increase given that
the number of labeled data increases. Specifically, the accuracy of the test set
will increase by approximately 10% given the number of labeled data increases
from 5% to 20% for most cases. The accuracies of unlabeled data are better than
those of test data. This can be natural due to the reason that the test data are
not be used in training the method as unlabeled data.

Table 1. Classification accuracies of different datasets

Datasets Methods
5% Training Labeled 10% Training Labeled 15% Training Labeled 20% Training Labeled
Unlabeled Test Unlabeled Test Unlabeled Test Unlabeled Test

Yale-B [5]

SVM 53.1±1.1 52.7±1.0 68.8±2.0 67.7±0.6 75.2±1.1 73.7±1.3 80.0±1.8 78.8±1.2
MR 59.0±1.2 58.5±1.3 70.3±1.1 69.4±0.5 76.4±1.3 74.9±1.5 80.7±1.3 79.0±1.1
LGC 64.7±1.0 71.8±1.1 76.4±4.2 80.8±1.0
SLP 65.6±2.3 73.9±1.0 78.0±1.8 81.8±1.0
LNP 64.9±1.3 53.8±2.7 72.0±1.2 71.2±0.4 78,0±2.4 76.6±2.1 81.6±1.0 80.0±1.4
AGR 66.6±1.5 65.8±1.3 74.3±1.2 72.2±0.4 78.1±1.5 77.3±1.7 83.0±1.2 80.0±4.5
EMR 66.9±0.8 74.4±1.1 78.0±1.5 84.4±2.4
EAGR 69.9±0.4 67.2±1.0 75.7±1.1 74.0±3.3 79.4±1.0 78.3±1.1 86.3±2.5 82.8±2.4
ALG 69.9±0.4 67.2±1.0 75.7±1.1 74.0±3.3 79.4±1.0 78.3±1.1 86.3±2.5 82.8±2.4

COIL100 [9]

SVM 83.6±0.9 83.2±0.8 88.5±0.8 86.6±0.8 91.8±0.8 91.4±0.7 95.3±0.8 94.5±1.6
MR 83.7±1.0 83.4±0.9 89.0±0.9 87.3±0.9 92.1±0.8 91.6±0.9 95.3±0.7 94.7±1.3
LGC 85.5±0.8 89.3±0.9 92.4±0.8 95.5±0.6
SLP 86.4±0.7 89.3±0.9 92.8±0.6 95.6±0.8
LNP 86.5±0.7 85.6±0.7 89.6±0.9 88.7±0.7 92.9±0.7 92.4±0.8 95.8±0.7 95.1±1.3
AGR 86.5±0.6 85.8±0.9 90.9±0.9 88.8±0.8 93.3±0.6 92.7±0.9 95.8±0.7 95.3±1.4
EMR 86.6±0.7 89.9±0.9 93.2±0.6 96.0±0.7
ALG 87.0±0.6 86.7±1.0 91.8±0.9 89.7±0.8 94.7±0.6 93.2±0.8 97.0±0.6 95.6±0.9

ETH80 [6]

SVM 61.1±1.3 59.4±0.3 71.1±1.9 70.2±2.0 75.9±1.5 75.3±3.1 78.9±2.0 77.9±2.5
MR 62.3±0.8 60.0±0.2 71.7±2.0 71.0±2.7 76.2±1.0 75.3±2.8 78.9±1.9 78.3±2.5
LGC 65.7±1.4 73.5±1.4 76.8±1.5 79.0±1.7
SLP 65.9±1.5 73.9±1.2 76.9±1.6 79.3±1.8
LNP 64.9±0.9 62.2±0.2 73.4±2.0 71.4±2.6 76.7±1.1 76.0±2.6 79.0±1.8 78.5±2.0
AGR 66.4±1.6 65.1±0.2 75.0±1.7 72.2±2.2 76.9±1.7 76.1±2.5 79.6±2.0 78.9±1.9
EMR 68.2±1.7 74.9±1.4 77.3±1.7 80.0±2.2
ALG 69.4±1.9 67.2±0.1 74.0±1.3 74.2±2.2 77.5±1.9 77.3±1.8 79.8±2.2 79.0±2.2

4 Conclusion

In this paper, we develop a graph-based semi-supervised learning framework for
image classification and clustering. According to the theoretical analysis and
simulation results, we can draw the following conclusions: (1) we have developed
an adaptive bilinear low-rank model for graph construction. With the group
sparsity and non-negative constraint, the low-rank value can be automatically
determined, and the learned coefficient matrix S is non-negative and can grasp
the global structure of whole data; (2) We have developed a new graph-based
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SSL framework, in which the developed low-rank model and SLP are unified
into a single optimization problem. In this way, the discriminative information
learned by SLP can be provided to improve the discriminative ability of graph
construction, while the updated graph can further enhance the classification
results of SSL.
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