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Abstract. Frequency hopping (FH) technique is usually used to anti-jamming
communication. Frequency dwell time is an important parameter for FH com-
munication. Short dwell time will reduce the communication efficiency due to
frequency switching time, while long dwell time will increase the time to be
jammed after the sensing of a smart jammer. The dwell time of the cognitive
user and the sensing time of the jammer are interactive. We formulate the
interactions between the user and the jammer as a Stackelberg game. The
jammer first senses the user’s operating frequency and then jams the user based
on the sensing result. The user determines its dwell time according to the reward
under the jamming. A tiered reinforcement learning algorithm is proposed to
solve the game. The optimal dwell time of the user is given when the Stack-
elberg Equilibrium is achieved.
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1 Introduction

Wireless networks are suffering more and more security threats [1, 2]. Jamming attack
is one of the vital threats where the jammer jams the communication process of the
users by radiating high power signal. To cope with the jamming attack, various
techniques have been proposed. Frequency hopping [3, 4] is one of the efficient anti-
jamming techniques where the user’s operating frequency hops from one to another
with time slots. High-dimensional modulation [5–7], message driven methods [8, 9],
M-ary orthogonal Walsh sequence keying modulation [10], families of sequences with
good correlations [11], applied in the frequency hopping technique, have been
researched in the previous works. However, these works have not considered the
presence of the smart jammer with cognitive and reconfigurable abilities. In this paper,
we focus on the anti-jamming strategy of FH system to cope with a smart jammer.

In [12, 13], a Stackelberg game was formulated, in which the players are a cog-
nitive user and a smart jammer. Further, to solve the incomplete information problem in
the game, an anti-jamming Bayesian Stackelberg game was proposed [14]. The optimal
strategies based on duality optimization theory were derived. However, those works all
based on the assumption that the jammer senses the user’s power correctly. In practice
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scenario, the sensing results may be error, and the sensing performance is relevant with
the sensing time, signal power, etc.

In this paper, we expect to get the optimal frequency dwell time of FH with
consideration of the detection performance of a smart jammer. Frequency dwell time is
an important parameter for FH communication. Short dwell time will reduce the
communication efficiency due to the frequency switching time, while long dwell time
will increase the time to be jammed after the sensing of the smart jammer. Sensing time
is also a key parameter for the jammer. Short sensing time will decrease the sensing
performance while long sensing time will shorten the jamming time. It is obvious that
the dwell time of the user and the sensing time of the jammer are interactive. In this
paper, we formulate the interaction as a Stackelberg game. The jammer first senses the
user’s operating frequency and then jams the user based on the sensing result. The user
determines its dwell time according to the reward under the jamming. A tiered rein-
forcement learning algorithm is proposed to solve the game. The optimal dwell time of
the user is obtained when the Stackelberg Equilibrium is achieved.

2 System Model

It consists of a user (a transmitter-receiver pair) and a jammer in the system. Both of the
user and the jammer are equipped with a single radio and work with time slotted. The
slot structure of the user and the jammer are shown in Fig. 1. The parameters for the
user and the jammer are assumed to remain unchanged during a time slot.

The user hops from one frequency to another along with time slot to avoid jam-
ming. The user’s frequency f U is selected from a frequency set F with Fj j ¼ M.
Denote C as the dwell time, which is the duration between two adjacent frequency
switching points. Since transmission cannot be started immediately due to the settling
time of radio frequency devices after tuning the frequency of the transceivers, a fixed
frequency switching time tc is considered in each time slot.

The jammer starts to transmit jamming signals after sensing at each time slot. This
type of jammer is referred to as reactive jammer [2]. Since the user works with
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Fig. 1. Transmission structure of the user and the jammer.
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frequency hopping mode, the jammer’s sensing objective is to detect which frequency
the user operates on. The sensing time of the jammer is denoted as s. Based on the
sensing result the reactive jammer obtains the user’s operating frequency estimation f J .
Then, the reactive jammer will jam the frequency f J .

3 Problem Formulation

After sensing, the jammer gets results. One result is that the jammer correctly detects
the user’s frequency, that is, f J ¼ f U . The user will be jammed after the jammer
sensing. The immediate payoff u0 of the user in this case is defined as:

u0 ¼
1
C

sC0 þ C� tc � sð ÞC1½ �; ð1Þ

where C0 and C1 represent the channel capability without and with jamming, respec-
tively. The other result is that the jammer detects the user’s frequency incorrectly, that
is, f J 6¼ f U . The user will not be jammed during the slot in this case. The immediate
payoff u1 of the user in this case is defined as:

u1 ¼
1
C

C� tcð ÞC0½ �: ð2Þ

Based on the two results the user gets an expected payoff. Define PdðsÞ as the
correct detection probability of the jammer with sensing time s. The utility function of
the user can be expressed as:

u C; sð Þ ¼ PdðsÞu0 þ 1� PdðsÞð Þu1

¼ 1
C

C� tcð ÞC0 � PdðsÞ C� tc � sð Þ C0 � C1ð Þð Þ
ð3Þ

PdðsÞ can be expressed as:

PdðsÞ¼
XM�1

m¼0

ð�1Þm M � 1
m

� �
1

mþ 1
exp

�m
2ðmþ 1Þ

gPs
r2M

� �
; ð4Þ

where P is the user’s transmission power, g is the channel gain between the user and
the jammer, and r2 is the noise power.

The user expects to maximize the utility. The optimization problem for the user can
be expressed as:

max
C

u C; sð Þ: ð5Þ
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Opposite to the user, the jammer expects to decrease the user’s payoff. The instant
return of the jammer in the jth time slot is expressed as:

vðjÞ ¼ 1
T

b td þ sð Þþ 1� bð Þ T � tcð Þð Þ½ �C0; ð6Þ

where b is the indication function. b ¼ 1 represents that the jamming is successful, and
b ¼ 0 represents that the jamming is failed. The utility of the jammer is defined as:

vJ C; sð Þ ¼ I � u C; sð Þ; ð7Þ

where I is a constant value to grantee v positive. From the perspective of the user, the
optimization problem can be expressed as:

max
s

vJ C; sð Þ: ð8Þ

It can be seen that the optimization problems of the user and the jammer are
mutually influential. Hence, the problem can be formulated as a game. Since the
scenario is that jammer adjusts its own strategy after sensing the user, a Stackelberg
game can be used. The user is set as leader and the jammer is set as follower. Math-
ematically, the Stackelberg game is expressed as G ¼ N ; T ;S; u; vf g, where N
denotes the player set including the user and the jammer, T and S represent the strategy
space of the user and the jammer, respectively. In the game, the user selects the dwell
time C from a discrete strategy space T in each time slot, where T , T1; T2; . . .; TWf g,
and Ti is the ith optional action in the space T . The jammer selects its sensing time s
from its strategy space S, where S, S1; S2; . . .; SLf g, and Si is the ith optional action in
the space S.

4 Tiered Reinforcement Learning Algorithm

In the game, since there is no information interaction between the user and the jammer,
the two parties can only choose to optimize their own strategies based on the obser-
vation on the other’s strategy. Because the two strategies are mutually influential, it is
very suitable to solve the game using a tiered reinforcement learning algorithm.

The algorithm is performed with two layers, the upper layer and the lower layer.
The upper layer subject is the user, and the lower layer subject is the jammer. First, the
user selects an action. The jammer learns the optimal response policy under this action.
Then, the user calculates the reward under the policy selected by the jammer and
updates its own action accordingly. Again, the jammer learns and loops until both the
user and the jammer learn the optimal response policy.

The user and jammer updates their policies with different time scales. The frame
structure of the tiered reinforcement learning algorithm is shown in Fig. 2. The user
updates the policy each epoch, and the jammer updates its policy in each time slot. RðkÞ
represents the number of time slots in the kth epoch. Since the epoch duration is greater
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than the slot duration, the user has plenty of time to coordinate the receiver and
transmitter when the dwell time is changed.

In the tiered reinforcement learning procedure, both the user and the jammer expect
an optimal long-term return, called an average cumulative reward. In the lower layer,
the average cumulative reward vector of the jammer QJ ¼ QJ

1;Q
J
2; . . .;Q

J
L

� �
, where QJ

i

is the average cumulative reward with the action Si. When the jammer selects the action
Si, its average cumulative reward is updated as follows:

QJ
i ðjþ 1Þ ¼ QJ

i ðjÞþ
1

giðjÞ
vðjÞ � QJ

i ðjÞ
� �

; ð9Þ

where giðjÞ is the times that the action Si is selected within j time slot, and vðjÞ is the
instant return of the jammer in the jth time slot.

The jammer selects its action according to the following rules:

sðjÞ ¼ selected fromS randomlywith uniform distribution, with probability dJðjÞ;
argmaxi QJ

i ðjÞ; with probability 1� dJðjÞ:

�

ð10Þ

where sðjÞ is the action selected by the jammer during the jth time slot, and dJðjÞ is the
temperature coefficient of the jammer during the jth slot. dJðjÞ is used to control the
tradeoff between exploration and exploitation in the learning process.

In the upper layer, the average cumulative reward vector of the user is defined asQu,
where Qu ¼ Qu

1;Q
u
2; . . .;Q

u
W

� �
. Qu

i is the average cumulative reward with the action Ti.
When the user selects the action Ti, its average cumulative reward is updated as:

Qu
i ðkþ 1Þ ¼ Qu

i ðkÞþ
1

jiðkÞ
ûiðkÞ � Qu

i ðkÞ
� �

; ð11Þ
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Fig. 2. The frame structure of the tiered reinforcement learning algorithm
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where jiðkÞ is the times that the action Ti is selected within k epochs, and

ûiðkÞ ¼
PRðkÞ
j¼1

uðjÞ=RðkÞ, represents the average reward of the user in the kth epoch with

the strategy Ti.
The user’s action is updated according to:

CðkÞ¼ selectedfromT randomlywithuniformdistribution, withprobabilityduðkÞ;
argmaxiQu

i ðkÞ; withprobability1�duðkÞ:

�

ð12Þ

where CðkÞ is the action selected by the user during the kth epoch, and duðkÞ is the
temperature coefficient of the user during the kth epoch.

The specific flow of the algorithm is shown in Algorithm 1.

5 Numerical Results

In this section, simulation results are presented. The strategy space of the user is set as
1

1500 ;
1
500 ;

1
200 ;

1
10

� �
, while the strategy space of the jammer is set as

m=1000; m ¼ 1; 2; . . .; 9f g. Each epoch contains 1000 time slots. The channel gain
between the user and the jammer is 10−3. The frequency switching time tc is set as 50
ls. The temperature coefficient of the user and the jammer are given as 0:5=1:01k and
0:5=1:001 j, respectively.
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The convergence behavior of the user is given in Fig. 3. After learning, the
selection probability of the user converges to a stationary mixed strategy. The con-
vergence behavior of the jammer is given in Fig. 4 where the user’s dwell time is
1/1500 s. It is seen that the selection probability of the jammer also converges to a
stationary mixed strategy.

Figure 5 shows the optimal average cumulative reward of the user under different
transmission power. It can be found that as the number of epoch increases, the average
cumulative reward of the user at different transmission power converges to a steady
value. When the user power is 0.01 W, the average cumulative reward of the user
hardly changes as the number of epoch increases. This is because when the user’s
power is very low, the detection probability of the jammer is almost zero. At this time,
the average utility of the user is almost independent of the jammer’s sensing time, but
only related to the user’s dwell time. Since the user’s frequency switching time is
almost negligible compared to the user’s dwell time, no matter which action is selected
by the user, the utility is almost the same. When the user power is 10 W, the steady-
state value of the user’s average cumulative reward is reduced compared to that when
the user power is 0.1 W and 1 W. This is because as the power of the user increases,
the detection probability of the jammer increases, and the optimal sensing time
decreases. This increases the jamming duration, which makes the user’s average
accumulative reward reduced. Therefore, in the presence of a smart jammer, an increase
in user’s power does not necessarily increase the user’s utility, but may reduce it.

Fig. 3. The convergence behavior of the user.
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6 Conclusions

In this paper, the interaction between the dwell time of the user and the sensing time of
the jammer is formulated as a Stackelberg game. The jammer first senses the user’s
operating frequency and then jams the user based on the sensing result. The user
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Fig. 4. The convergence behavior of the jammer.

Fig. 5. Convergence process of the user’s average cumulative reward under different
transmission power.
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determines its dwell time according to the reward under the jamming. A tiered rein-
forcement learning algorithm is proposed to solve the game. The optimal dwell time of
the user is given when the Stackelberg Equilibrium is achieved.
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